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Abstract

Background: Dense consensus genetic maps based on high-throughput genotyping platforms are valuable for
making genetic gains in Brassica napus through quantitative trait locus identification, efficient predictive molecular
breeding, and map-based gene cloning. This report describes the construction of the first B. napus consensus map
consisting of a 1,359 anchored array based genotyping platform; Diversity Arrays Technology (DArT), and non-DArT
markers from six populations originating from Australia, Canada, China and Europe. We aligned the B. napus DArT
sequences with genomic scaffolds from Brassica rapa and Brassica oleracea, and identified DArT loci that showed
linkage with qualitative and quantitative loci associated with agronomic traits.

Results: The integrated consensus map covered a total of 1,987.2 cM and represented all 19 chromosomes of the
A and C genomes, with an average map density of one marker per 1.46 cM, corresponding to approximately 0.88
Mbp of the haploid genome. Through in silico physical mapping 2,457 out of 3,072 (80%) DArT clones were
assigned to the genomic scaffolds of B. rapa (A genome) and B. oleracea (C genome). These were used to orientate
the genetic consensus map with the chromosomal sequences. The DArT markers showed linkage with previously
identified non-DArT markers associated with qualitative and quantitative trait loci for plant architecture,
phenological components, seed and oil quality attributes, boron efficiency, sucrose transport, male sterility, and
race-specific resistance to blackleg disease.

Conclusions: The DArT markers provide increased marker density across the B. napus genome. Most of the DArT
markers represented on the current array were sequenced and aligned with the B. rapa and B. oleracea genomes,
providing insight into the Brassica A and C genomes. This information can be utilised for comparative genomics and
genomic evolution studies. In summary, this consensus map can be used to (i) integrate new generation markers such
as SNP arrays and next generation sequencing data; (ii) anchor physical maps to facilitate assembly of B. napus genome
sequences; and (iii) identify candidate genes underlying natural genetic variation for traits of interest.
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Background
Rapeseed (also known as canola and oilseed rape, Bras-
sica napus L., 2n = 4× = 38; genomes AACC) is the sec-
ond largest oilseed crop after soybean and provides a
valuable rotational crop for farmers in many parts of the
world. During the past 15 years, global oilseed rape pro-
duction has doubled to >60 million tonnes (http://faostat.
fao.org/; data sourced April 2012), due to the high demand
for healthy vegetable oil, feedstock and a renewable source
for the biodiesel industry. This amphidiploid Brassica
species most likely originated as a result of repeated natural
hybridization and genome doubling between the mono-
genomic diploid species Brassica rapa (2n = 2× = 20, gen-
ome AA) and Brassica oleracea (2n = 2× = 18, genome CC)
along the Mediterranean coastline in Southern Europe,
and was probably selected as an oilseed crop only 300–
400 years ago [1-3].
Selection of useful variation in crop plants has been a

major thrust of early farmers since the dawn of agricul-
ture. In modern Brassica breeding programs, classical
genetic analysis and molecular genetic approaches have
been used to improve our understanding of the inherit-
ance of various qualitative and quantitative loci and
causative genes, to estimate their number, position and
genetic effects, and to identify DNA-based markers asso-
ciated with traits of agronomic importance [4].
Several linkage maps have been constructed from

recombination data in B. napus mapping populations,
which depict the distances between loci, as well as their
order on a chromosome. These linkage maps have been
based on a range of marker systems such as restriction
fragment length polymorphisms (RFLPs), randomly ampli-
fied polymorphic DNAs (RAPD), amplified fragment
length polymorphisms (AFLPs), simple sequence repeats
(SSRs), sequence- tagged sites (STSs), sequence-related
amplified polymorphisms (SRAPs) and single nucleotide
polymorphisms (SNPs) [5-14]. These maps have been used
to uncover qualitative and quantitative trait loci (QTLs)
underlying traits of agricultural importance, for linkage
disequilibrium assessment, candidate gene identification,
marker-assisted selection, and genetic evolutionary studies
[14-19]. The number of marker loci in these genetic link-
age maps varied from 219 to 13,551, where the marker
density was dependent upon the level of polymorphism
between the parental lines of mapping populations and
type of marker system used for detecting polymorphisms.
In order to increase marker density for predictive mo-

lecular breeding and map-based cloning of genes, dense
consensus genetic maps have been developed for various
crops including B. napus [14,20,21]. Such consensus maps
are developed by mapping several common markers from
each linkage group, in different mapping populations, and
anchoring the linkage maps with consensus markers.
However, most B. napus genetic maps have been based
either upon low-throughput marker assays or on different
marker systems, rendering them difficult to utilise to com-
pare the map locations of markers and therefore their link-
ages with traits of interest across populations.
Diversity Array Technology (DArT) markers do not re-

quire prior DNA sequence information and can simultan-
eously genotype a large number of SNPs and insertion/
deletion polymorphisms across the genome in a single
assay, providing a low-cost option for genotyping [22].
The DArT marker system was first used in rice, and has
since been extensively utilised for genetic applications
such as genetic diversity analysis, construction of genetic
linkage maps, and QTL/linkage analysis in different crops
[23,24]. Recently, a 3072-clone B. napus DArT array was
used to generate a linkage map using a B. napus doubled
haploid (DH) population derived from Lynx-/Monty-
028DH [13]. This information was used to identify
QTLs for flowering time, resistance to blackleg disease
caused by Leptosphaeria maculans, and resistance to
pod shatter [25-27].
Comparative mapping studies have shown extensive co-

linearity between the genomes of Brassica and Arabidopsis,
which diverged from a common ancestor approximately 20
MYA [28-30]. The genome of B. rapa has recently been se-
quenced [31], whilst the genomes of B. oleracea and B.
napus are currently being annotated and analysed and are
expected to become publicly available in 2013. These ad-
vances in structural and functional genomics have provided
us with an opportunity to align the genetic DArT markers
with the sequenced genomes of B. rapa and B. oleracea.
This allows the identification of markers for marker-
assisted selection in rapeseed improvement programs.
In the present study, we constructed a consensus map of

rapeseed based on DArT marker datasets produced using
six DH B. napus populations. These populations were de-
rived from Ag-Castle/Topas (AT), BLN2762/Surpass400
(BS), Lynx-037DH/Monty-028DH (LM), Maxol*1/Westar-
10 (MW), Skipton/Ag-Spectrum (SAS), and Tapidor/
Ningyou7 (TN). The parents of the mapping populations
originated from Australia, Canada, China and Europe, and
are currently being used internationally in rapeseed germ-
plasm enhancement programs. We physically mapped the
B. napus DArT sequences using genome sequences from
scaffolds of B. rapa and B. oleracea. DArT marker loci as-
sociated with agronomic traits, including various compo-
nents of phenology, plant architecture, seed and oil quality,
nutrient uptake and mobilisation, and resistance to blackleg
disease and abiotic stresses were also identified.

Results
Map construction from individual mapping populations
Individual component maps were constructed from six
populations that were genotyped with DArT, along with
a selection of SSR markers (Table 1, Additional file 1).

http://faostat.fao.org/
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Table 1 The distribution and density of markers in the linkage maps of individual doubled haploid populations

Population Total
markers
(no.)

DArT
markers
(no.)

Non-DArT
markers
(no.)

Length of
map (cM)

Average marker
interval (cM)

Redundant markers*
(%) DArT

Non-DArT

AT 217 217 0 759.9 3.50 47.5 NA

BS 363 295 58 1462.7 4.03 29.8 0

LM 586 437 149 2288.0 3.90 43.7 11.9

MW 285 285 0 1200.0 4.21 26.7 NA

SAS 275 275 0 1129.8 4.10 38.9 NA

TN 971 403 568 1838.4 1.89 9.2 0.7

* NA: not applicable.
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The number of DArT marker loci on each map ranged
from 217 (AT population) to 437 (LM population). The
TN map consisted of the most markers (971); 403 DArT
and 568 non-DArT (381 SSRs, 69 STSs including candi-
date genes, 68 SNPs, 34 RFLPs, 14 centromeric sequence-
related and two AFLP markers). The genetic linkage map
length for the six populations varied from 759.9 to
2,288 cM, with a mean length of 1446.5 cM.
The order of the DArT marker loci was generally

similar among the different maps (Additional file 2).
However, there was some evidence of chromosomal
segmental rearrangements, such as inversions or translo-
cations, on some genomic regions on chromosomes A7,
A9, A10, C1, C2, and C6. For example, XbrPb-658333
and XbrPb-659113 were mapped within 0.5 cM on
chromosome A10 in the TN population; however, these
markers were not linked in the SAS population and were
located on different linkage groups (A10-II and A10-III
on the SAS map). In the LM population, a high fre-
quency of homoeologous recombination was observed
between chromosomes A7 and C6 [13]. The map lengths
and marker densities were positively correlated among
the populations (r = 0.73).
Segregation distortion was much more pronounced on

chromosome A7 in the populations derived from AT
(original data not shown), MW and SAS [32,33], where
either targeted selection for desirable alleles (for example
for different blackleg resistance genes Rlm1, Rlm3 and
Rlm4) might have occurred within the breeding pro-
grams or could have been a low level of homoeologous
interaction with chromosome C6.
The DArT markers were generally well distributed

throughout the genome, although some chromosomes
exhibited either no or low polymorphism for the DArT
markers (Additional file 2). For example, chromosome
A3 had low DArT marker density (4 DArT/35 total
markers) in the TN map. A number of DArT markers
co-segregated and therefore mapped on as the same locus.
DArT marker redundancy (markers that map to the
identical map position as their respective neighbouring
markers) ranged from 9.2% in the TN to 47.5% in the AT
mapping population (Table 1). In order to estimate redun-
dancy of the DArT markers at the sequence level, we
aligned the DArT sequences using ClustalW program and
found that the majority of co-segregating DArT clones
(0.01 cM =~6 kb) had high levels (77% to 99.4%) of se-
quence identities (Additional file 3). However, a marker
cluster on chromosome C3 had lower sequence identities
(53 to 80%) and hence may not represent the same locus.
Co-segregation of markers may have occurred because
recombination is difficult to observe between loci that are
very close to each other, particularly in the small popula-
tions used here (Table 2).

Consensus map construction
Individual component maps were aligned to the refer-
ence linkage map of the TN-DH population to construct
a consensus map. A total of 1359 marker loci [791
DArTs, 381 SSRs, 69 STSs, 68 SNPs, 34 RFLPs, 14
centromeric region specific (CS) and two AFLPs] were
integrated in the consensus map, covering 1987.2 cM,
with an average interval distance of 1.46 cM, across the
19 chromosomes of B. napus (Table 3, Additional file 4).
The A and C genomes had genetic lengths of 1062.5
cM and 924.6 cM, with the mean distances between
neighbouring markers of 1.08 cM and 2.48 cM, respect-
ively. Approximately 2.6 times more markers were
mapped on the A genome (986) than the C genome (373),
suggesting that the A genome was more polymorphic than
the C genome in B. napus.
The length of individual chromosomes varied from

59.5 cM (chromosome C7) to 153.9 cM (chromosome C3),
whereas the number of marker loci per chromosome ranged
from 23 (chromosome C7) to 156 (chromosome A3). Chro-
mosomes A5 and A9 had the highest marker density
(1 marker/0.89 cM), and chromosome C5 had the lowest
marker density (1 marker/3.91 cM). Both map length and
marker density across chromosomes were moderately cor-
related (r2 = 0.56, Additional file 5).
In general, the consensus map had good coverage of

DArT and non-DArT markers, however there were 16
genomic sites (accounting for 6% of the genetic map)



Table 2 Attributes of doubled haploid genetic mapping populations used for consensus map construction

Parentage Source* Code size Markers Segregating Traits Reference

Ag-Castle/Topas AAFC,
Canada

AT 71 DArT Resistance to L. maculans Larkan et al.
(unpublished)

BLN2762/Surpass400 NSWDPI BS 134 DArT, Non-DArT
based

Resistance to L. maculans Raman et al. [26]

Resistance to shatter Raman et al.
(unpublished)

Water soluble carbohydrates Raman et al.
(unpublished)

Lynx-037DH/Monty-
028DH,

UWA LM 131 DArT, Non-DArT Flowering time, seed oil quality 13, 43, This study

Maxol*1/Westar VICDPI MW 100 DArT Resistance to L. maculans 26, 33

Skipton/Ag-Spectrum NSWDPI SAS 172 DArT, Non-DArT
based

Various component of flowering time 27

Race-specific and non-specific resistance to L.
maculans

32

Carbon isotope discrimination Luckett et al.
(unpublished)

Water soluble carbohydrates Raman et al.
(unpublished)

Tapidor/Ningyou7 HAU TN 153 DArT, Non-DArT
based

Various component of flowering time 15, 34, 37, 40

Oil content 9

Erucic acid 9

α-tocopherol content 41

Glucosinolate concentration 9, 35

*AAFC: Agriculture and Agri-Food Canada (Saskatoon), HAU: Huazhong Agricultural University, Wuhan, China, NSWDPI: New South Wales Department of Primary
Industries, UWA: University of Western Australia, VICDPI: Victorian Department of Primary Industries.
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where adjacent markers were >10 cM apart: on chromo-
somes A1, A2, A7, A10, C2, C4, C5, C6, C8 and C9 (Table 3,
Additional file 4). Of the 791 genome-wide DArT markers,
22% showed redundancy, whereas only 0.9% of non-DArT
markers showed redundancy. Chromosomes A6 and C1
exhibited the maximum redundancy of 3.7% and 40.9% for
non-DArT and DArT markers, respectively (Table 3). The
overall marker density on the consensus map (1 marker/
1.46 cM) was higher compared to that observed in individ-
ual populations (1 marker/1.89 - 4.20 cM) (Tables 1 and 3).
A total of 10 major clusters of DArT markers (≥5 loci/
0.01 cM) were identified on chromosomes A1, A2, A3, A6,
A9, and C1 (Additional file 4).

Comparison of individual maps and the consensus map
The congruency of marker order and map positions was
consistent with an earlier map of TN [9]. The positions of
the DArT markers on the consensus map were generally
consistent with their locations on the six individual linkage
maps from the biparental crosses (Additional file 2). The
order of markers was moderately correlated in most pair-
wise comparisons of populations, and highly correlated
between the AT and SAS populations (Additional file 6).
However, there was a poor correlation between the BS and
LM populations (r < 0.4). Due to the diverse backgrounds
of the DH populations used in this study, the number of
shared DArT markers was extremely variable and ranged
from 0 to 27 per chromosome. The largest number of
shared markers per chromosome (27) was between the
LM and BS maps of chromosome A3, covering a genetic
distance of ~123 cM. Spearman’s rank correlation of the
marker orders also varied between different component
maps (Additional file 6). Therefore, it was difficult to reli-
ably compare the marker orders across individual maps.

Colinearity of the consensus map and the sequence
assemblies of A/C ancestral species
The genomic locations of DArT markers and their hom-
ology (sequence identities and bit scores) are provided in
Additional files 7 and 8. Approximately 80% (2,457/3,072)
of DArT markers were physically mapped to the sequenced
genomes of B. rapa and B. oleracea. This enabled evalu-
ation of the correspondence of the DArT markers on the
genetic and physical maps. The location of 615 DArT
clones on the genome scaffolds of B. rapa and B. oleracea
(256 on the A genome and 359 on the C genome) could
not be determined, as they did not return any hit. These
sequences may represent unassembled regions of the



Table 3 The distribution and density of markers across 19 rapeseed chromosomes of the consensus map

Chromosome
(Linkage group)

Number of marker
in consensus map

Map
length (cM)

Mean distance between
markers (cM)

No of marker-
gaps >10 cM

*Redundancy in
DArT marker (%)

Redundancy in
Non-DArT markers (%)

A1 110 123.6 1.12 2 19/71 (26.8%) 1/39 (2.6%)

A2 70 90.5 1.29 1 13/48 (27.1%) 0/22 (0%)

A3 156 144.9 0.93 - 22/85 (25.9%) 1/71 (1.4%)

A4 97 102.3 1.06 - 12/81 (14.8%) 0/16 (0%)

A5 92 82.0 0.89 - 14/75 (18.7%) 0/17 (0%)

A6 118 107.7 0.91 - 21/91 (23.1%) 1/27 (3.7%)

A7 81 115.3 1.42 1 7/34 (20.6%) 1/47 (2.1%)

A8 35 66.9 1.91 - 1/17 (5.9%) 0/18 (0%)

A9 145 128.3 0.89 - 23/81 (28.4%) 0/64 (0%)

A10 82 101.1 1.23 1 11/54 (20.4%) 0/28 (0%)

A genome (total) 986 1062.5 1.08 5 143/637 (22.4%) 4/349 (1.1%)

C1 42 63.8 1.52 - 9/22 (40.9%) 0/20 (0%)

C2 51 110.2 2.16 2 8/35 (22.9%) 0/16 (0%)

C3 76 153.9 2.03 1 9/30 (30.0%) 1/46 (2.2%)

C4 45 132.9 2.95 1 2/21 (9.52%) 0/24 (0%)

C5 24 93.9 3.91 1 1/7 (14.3%) 0/17 (0%)

C6 42 98.8 2.35 3 0/11 (0%) 0/31 (0%)

C7 23 59.5 2.58 - 0/8 (0%) 0/15 (0%)

C8 31 103 3.32 2 0/8 (0%) 0/23 (0%)

C9 39 108.6 2.79 1 2/12 (16.7%) 0/27 (0%)

C genome (total) 373 924.6 2.48 11 31/154 (20.1%) 1/219 (0.5%)

AC genomes
(total)

1359 1987.2 1.46 16 174/791 (22.0%) 5/568 (0.9%)

*Redundancy refers to co-location of markers at the same genetic locus.
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current genome assemblies or alternatively may be diver-
gent B. napus sequences (Additional file 9). The alignment
of the integrated genetic and physical maps was generally
in agreement (Additional file 10); however, in a number of
instances marker order as determined by sequence hom-
ology suggested chromosomal rearrangements on the link-
age groups A3, A9, C2 and C4 and or due to inaccuracies
in mapping. For two linkage groups, C7 and C8, the align-
ment of the DArT markers to the genome scaffolds sug-
gested that significant portions of these two chromosomes
were not polymorphic in the six crosses.

Distribution of marker duplications across A and C
genomes
Eighty-three markers (18 DArT and 65 non-DArT)
showed inter- and intra-genomic duplicated loci on the
homoeologous chromosomes of the A and C genomes
(Additional files 4 and 11). The frequency of duplicated
(multi-locus) markers varied from 2.27% (18/791) to
11.4% (65/568) for DArT and non-DArT markers, re-
spectively, in the consensus map. Chromosome A9 had
the most duplicated marker loci (13), followed by A2
(10), whereas C1 and C5 did not contain any duplicated
marker loci. In addition, up to five alleles for the marker
Xpw123 could be mapped on chromosomes A6, A9 and
C8. Several DArT markers also showed multiple se-
quence identities with the sequences of B. rapa and B.
oleracea localised on different chromosomes (Additional
files 7 and 8).

Association between DArT markers and agricultural traits
We surveyed all genetically mapped markers, including
DArT, that showed association with traits of agricultural
importance in the mapping populations. This included
traits from the published literature, along with fatty acid
quality QTLs, published for the first time here. In total
139 marker intervals were identified, associated with resist-
ance to Sclerotinia and L. maculans (causing blackleg
disease), yield related traits (seed number, seed weight, seed
yield, oil yield, branch number, and pod number), oil qual-
ity traits (glucosinolate content, fatty acid content, and
vitamin E), biomass yield, phenology traits (plant height,
flowering time, vernalisation requirement, maturity time),
male sterility, boron efficiency, and uptake of nutrients,
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including boron, calcium, iron, magnesium, copper, zinc,
and phosphorus (Additional files 4 and 11) [9,27,32-47].
We did not attempt to locate all (246) QTLs that were
reported to be involved in the glucosinolate metabolic
pathway in the TN population [35]. Details of four newly
identified QTLs governing 16:0, 18:1, 18:2 and 18:3 fatty
acids along with five correlated QTLs for 20:1, 20:2, 22:0,
22:1 and 24:0 in the LM population are presented in
Table 4. These highly significant QTLs accounted for 13.9%
to 75.6% of the explained variation. The marker interval
XbrPb-X657955 - dFAD2a explained the highest (75.6%)
variation, whilst the marker interval brPb-662948 - brPb-
660893 (13.9%) explained the lowest amount of variation in
linolenic acid and palmitic acid content, respectively. The
fatty acid desaturase-2 (FAD2) gene based marker was
mapped within two of the QTLs on chromosome A5. A
majority of the qualitative and quantitative trait related loci
identified in this study, resided within 10 cM of DArT
marker intervals. Some previously published QTLs could
not be precisely identified due to the lack of common
shared markers between the consensus map and the ori-
ginal mapping population and hence they were defined as
approximate (Additional file 12).

Discussion
In this study, we developed the first consensus genetic
map of the rapeseed genome based on DArT markers.
The development of this consensus map will provide a
platform to compare chromosomal locations of markers
across rapeseed populations and facilitate identification
of simple and complex inherited trait-marker associa-
tions, comprehensive assessment of genetic diversity,
and whole genome selection in rapeseed breeding pro-
grams. The consensus map consisted of 1,359 markers
spanning all 19 B. napus chromosomes, with an average
marker density of one marker per 1.46 cM. This corre-
sponds to approximately 880 Mbp of the B. napus gen-
ome, 94% of the mapped AC genome was contained
within intervals <10 cM. These observations suggest that
this consensus map will be suitable for various applica-
tions including detection of quantitative traits in rapeseed
improvement programs, as in most QTL analyses a 10-cM
interval between marker loci is commonly used for
Table 4 Newly identified QTL for fatty acid seed content in th

Fatty acid Chromosome Location in
LM map (cM)

SD* Marker inter

16:0 (Palmitic acid) A01 62.6 12.6 XbrPb-662948

18:1 (Oleic acid) A05 94.9 3.1 XbrPb-657955

18:2 (Linoleic acid) A05 94.2 1.2 XbrPb-657955

18:3 (Linolenic acid) C4 141.6 1.4 XsN11516 - X

* SD = Standard deviation; #LOD = logarithm of the odds; $PEV = Proportion of exp
regression analysis. This consensus map based on the
sequenced DArT markers will also allow the positional
cloning of the causative genes controlling phenotypic
variation, estimation of linkage disequilibrium at the indi-
vidual chromosome/genome level, and identification of
genomic rearrangements such as translocations that oc-
curred during the period between the genome triplication
of Brassica and the divergence of B. rapa and B. oleracea
and their distant relative model plant, Arabidopsis.
Different marker systems were used in each population,

for example, the LM population was mapped with DArT
markers, it had the highest density of SSR markers. These
SSR markers (developed by the Agiculture and Agri-Food
Canada Consortium) were not used in any other popula-
tion undertaken in this study except for the TN population.
The TN population was also mapped with a variety of
markers based on SNPs and CS, which were not used
in any other population. Furthermore, DArT and SSR
markers amplify intra- and inter-homoalleles as a result
of chromosomal duplications between homoeologous se-
quences among subgenomes and between paralogous du-
plicated sequences and other rearrangements such as in
the TN (Additional files 4 and 11) and SAS populations
[35,48], which makes it difficult to compare individual
component maps. Of the DArT clones that were useful for
mapping across the six segregating populations in this
study, relatively few loci were common between popula-
tions. This could be due to utilisation of a range of DH
populations derived from genetically diverse parental lines
used in order to map the DArT clones across the B. napus
genome. For example, the cultivar Surpass 400 is derived
from several backcrosses into cultivated B. napus from B.
rapa ssp. sylvestris. The introgression of chromosomal seg-
ments from B. rapa into Ningyou7 – one of the parental
lines of the TNDH population - has also been recently
reported [49]. We could not ascertain the map positions of
some DArT loci or their order on certain chromosomes
(for example in the MW population, LG I to VI, Additional
file 1) due to the absence of shared markers among map-
ping populations. However, marker order was generally
consistent within some chromosomes where more than
four shared markers were present for assessment of statis-
tical significance [21] and there was a global conservation
e LM population

val LOD# SD* PEV$ SD* Other correlated QTL

- XbrPb-660893 3.71 1.48 13.9% 0.051

- XdFAD2a 20.14 4.31 64.0% 0.083 20:1, 20:2

- XdFAD2a 30.78 3.86 75.6% 0.035

sN0704 15.79 2.86 45.8% 0.057 22:0, 22:1, 24:0

lained variation.



Raman et al. BMC Genomics 2013, 14:277 Page 7 of 13
http://www.biomedcentral.com/1471-2164/14/277
of co-linearity between the corresponding linkage groups
of integrated maps and the A (B. rapa) and C (B. oleracea)
genome scaffolds. On some chromosomes no polymorph-
ism was found between the parental lines of the DH popu-
lations, for example on chromosome C8 in the populations
MW and BS. These findings suggest that the DArT se-
quences in the genomic representations were conserved.
The results presented here demonstrate that the consen-

sus map was longer (1,987.2 cM) than the six individual
maps with the exception of the LM population. The LM
map contained a higher proportion of distorted and dis-
tinct loci [13], than most of the populations. The recom-
bination frequency can also vary with genetic background
[48]. In addition, scoring errors tend to be higher with
SSR markers which show extensive stuttering and multiple
bands (alleles), as compared to DArT markers. These bio-
logical and non-biological factors could have skewed the
map estimates.
In general, the DArT markers were well-distributed

across the genome, however, certain chromosomal regions
showed extensive clustering such as on chromosomes A9
and C2 (Additional file 4). This may indicate the presence
of gene-rich regions and uneven distribution of recombin-
ation events along chromosomes, or it may suggest that
the DArT markers are preferentially surveying DNA poly-
morphisms that are unevenly distributed along chromo-
somes. Similar results have been reported in other crops
including in B. napus [14,49,50]. Uneven distribution of
DArT markers between the A and C genomes may
indicate genome evolution events of B. napus from its dip-
loid progenitor species or uneven representation of DArT
clones from source species used in the array development.
The DArT markers derived from genomic representations
are known to introduce some degree of redundancy [22].
However, in this study, genomic representations were pre-
pared using the CNG methylation sensitive restriction
enzyme PstI, which generates low and single copy DNA
fractions in plants.
In comparison to the non-DArT markers (11.4%), a

low proportion (2.27%) of multi-locus DArT markers
was found. Hybridisation-based markers (such as DArT)
select against multi-locus markers, because hybridisation
intensities contributed by different loci are difficult to re-
solve in the DArT allele calling process and such markers
are normally scored as monomorphic. A similar frequency
(~1.8%) of multi-locus DArT markers has been reported
in rye, sorghum, and barley [22,50,51]. Existence of multi-
locus markers as a result of DNA (DArT) hybridisation
from orthologous and non-homologous regions of rape-
seed, and multiple hits between DArT sequences and the
sequenced scaffolds of B. rapa and B. oleracea, provide
strong evidence for the presence of intra- and inter-
chromosomal duplicated loci in B. napus. Previous studies
have reported that most of the approximately 1.2 Gb
genome of B. napus [52] comprises genome sequences
from the two progenitor species, which exhibit significant
co-linearity. However, homoeologous recombination plays
a major role in chromosome rearrangements, such as du-
plications and reciprocal translocations [53-57]. In certain
cases, the physical position of DArT markers on the B.
rapa and B. oleracea scaffolds did not correspond with
their genetic positions on the linkage maps of segregating
populations as reported previously [58]. This could have
been caused by large translocations within the mapping
populations, mapping inaccuracies and/or errors in assem-
bling genome scaffolds. However, there was a good corres-
pondence between genetic ordering and the current
genome sequence assemblies. Approximately 20% of the
DArT marker sequences did not have a significant match
to B. rapa and B. oleracea. This may be due to the incom-
plete genome coverage in the current genomic scaffolds or
some of them may represent novel loci that may have
evolved in B. napus as a result of inter-specific recombin-
ation between B. rapa and B. oleracea. However, a more
likely explanation is biological (structural) variation among
ancestral genotypes involved in the development of B.
napus cultivars used for mapping, as compared to B. rapa
and B. oleracea genotypes used for sequencing the A and
C genomes [58]. It is also possible that the reference
accessions used to build current A and C genome scaffold
assemblies lack some genomic regions that are present in
the wider gene-pools.
Discrepancies such as inversions and translocations

were identified when comparing the consensus map and
the individual component maps, as have been reported
previously in B. napus [59] and in comparisons of the A
genome in B. napus and B. rapa [58]. Apart from gen-
ome rearrangements, this could be due to the smaller
size of the populations used here [60], and variation in
the number of recombination events in different regions
of the plant genomes [61].
A recent study has shown good co-linearity of DArT and

non-DArT markers between the genetic linkage map of the
SAS population and the assembled pseudomolecules of B.
rapa [27]. As the sequenced genome scaffolds of other A
and C genome Brassica species become available in the
public domain, DArT sequences (available on http://www.
diversityarrays.com/) can be used for comparative genomic
analysis, identification of QTLs for predictive breeding
(as shown in this study) and for the identification of candi-
date genes linked to traits of agricultural importance.
In this study, we related DArT markers with the ma-

jority of QTLs that have been identified in six breeding
populations, however this can be extended to other traits
and populations of B. napus, as well as to related A and
C genome Brassica species. For example, several DArT
markers were related to the positions of QTLs associated
with flowering and quality components in the TN and

http://www.diversityarrays.com/
http://www.diversityarrays.com/
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SAS populations [9,15,27,37,40]. Two QTLs for flowering
time were mapped in the genomic regions harbouring
homoeologues of FLOWERING TIME LOCUS C of
Arabidopsis, BnFLC.A3 on chromosomes A3 and Bn.FLC.
A10 on chromosome A10 [15,27,40]. In the LM popula-
tion, we identified four QTLs associated with 16:0, 18:1,
18:2 and 18:3 fatty acids on chromosomes A1, A5 and C4
(Table 4). Among them, two major QTLs associated with
18:1 (oleic acid) and 18:2 (linoleic acid) were mapped on
A5 within a region containing FAD2 gene (Table 4). Local-
isation of these QTLs suggested that FAD2 controls vari-
ation for both oleic acid and linoleic acid content in this
population. The FAD2 of the endoplasmic reticulum
encodes ω-6 desaturases which is responsible for conver-
sion of oleic acid to linoleic acid by inserting a double
bond at the ω-6 position [62].
The parents of mapping populations used in this study

such as Ag-Castle, Maxol, Monty, Skipton, Ag-Spectrum,
and Surpass 400 are known to harbour resistance both
at the seedling (race-specific, qualitative) and adult plant
stages (race-specific and/or race-non-specific) to L.
maculans [26,32,63]. DArT markers were mapped in the
vicinity of a genomic region associated with Rlm1, Rlm3,
and Rlm4 genes for resistance to L. maculans on the
chromosome A7 [32,33]. It was interesting to note that
some of the loci associated with correlated traits such as
seed yield, pod number, seed weight, flowering time, seed
number and plant height were localised on the same gen-
omic regions (A1, A2, A3, A7, C3 and C6) on the consen-
sus map, which may have been due to pleiotropic effects
of a QTL on different traits and/or tight linkage between
multiple traits and QTLs [64].
Conclusions
We constructed a high-density consensus map of B.
napus utilising 1,359 DArT and non-DArT based
markers. This consensus map was useful in locating loci
associated with various traits of agronomic importance.
The sequences of the DArT clones are publicly available
(http://www.diversityarrays.com/) and provide a valuable
resource in predicted genomic breeding, map-based
gene cloning, and comparative analysis studies of A and
C genomes Brassica species. The development of the in-
tegrated consensus map described in conjunction with
the physical locations of B. napus DArT markers on the
genome scaffolds, and the identification of molecular
markers flanking genomic regions associated with agro-
nomic traits, will empower rapeseed breeding programs
to identify candidate/causative genes controlling genetic
variation for such traits. This will enhance selection effi-
ciency, especially of quantitative traits governed by a
large number of genes and influenced with G × E inter-
action via marker-assisted selection.
Methods
Mapping populations
Six DH populations derived from 12 parents were used
for consensus map construction. The structure of these
populations and the traits that were studied are sum-
marised in Table 2. We used the TN-DH population
from parents Tapidor (Winter-type, European cultivar)
and Ningyou7 (semi-winter, Chinese cultivar) as a refer-
ence, because this population has been extensively used
by the international rapeseed community for the gen-
etic/comparative mapping of a range of traits of agro-
nomic importance such as plant architecture, flowering
time, seed and oil quality attributes, boron efficiency,
and glucosinolate content [9,15,34-38]. The TN-DH
population has been used to map 614 non-DArT
markers based upon SSRs, SNP, STSs, single strand con-
formation polymorphisms (SSCPs), RFLPs, cleaved amp-
lified polymorphic sequences (CAPSs), and AFLPs, as
described previously [9,35,39] and with SNPs identified
from the rapeseed transcriptome [49]. This population
has resulted in the discovery and mapping of candidate
genes for sucrose transporter, α-tocopherol, fatty acid
elongase, indehiscent (IND) gene for pod shatter, and
FLOWERING LOCUS C (FLC), FLOWERING LOCUS T,
APETALA2 for flowering time [15,34,40-42,65]. The TN-
DH published map was further saturated with DArT
markers in this study.
We used the published map data of Lynx-037DH/

Monty-028DH (LM) population [13]. The LM map was
constructed utilising DArTs, SSRs, intron polymorphism
(IP), and candidate gene-based markers for fatty acid
desaturase and FLC genes. Other populations derived
from AT, BS, MW, and SAS were genotyped predomin-
antly with DArT markers and their individual compo-
nent maps were developed in this study.

Trait phenotyping
Seed fatty acid quality (specifically 14:0, 16:0, 16:1, 18:0,
18:1, 18:2, 18:3, 20:0, 20:1, 20:2, 22:0, 22:1, 24:0 and 24:1
fatty acids) was measured in the LM DH population using
gas chromatography (GC; Perkin-Elmer Auto System Gas
Chromatograph; Waltham, MA, USA) using 1.5 g of seed
per line as described previously [43]. DH lines were grown
as spaced plants in two partially replicated spaced plant
nurseries at Manjimup Horticultural Research Centre
(Manjimup, WA, Australia) in the summer or 2004/05 and
at Shenton Park Field Station (Perth, WA, Australia) in the
winter of 2005, with 12 DH lines included in both nurser-
ies. Self-pollination was enforced by enclosing racemes in
perforated plastic bread bags.

DNA isolation
DNA was isolated from the fresh leaf samples of 2-3-
week-old seedlings from parental lines and their

http://www.diversityarrays.com/
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progenies using a standard phenol/chloroform extraction
method [66].

DArT marker analyses
All six populations were genotyped with the B. napus
version 1.0 DArT microarray containing 3,072 markers
that were selected after genotyping several hundreds of
B. napus accessions at Diversity Arrays Technology Pty
Ltd (DArT P/L, Yarralumla, ACT, Australia) as described
previously [13]. The PstI/BstNI genomic representations
of individual samples (parental lines and their segregating
derivatives) were generated, labelled with fluorescent dyes
(Cy3 and Cy5) by random priming [67], and hybridised
with the B. napus DArT array. Images of microarrays were
acquired using a scanner (Tecan LS300; Grodig, Salzburg,
Austria) and further analysed with the DArTsoft software
version 7.4.7 (DArT P/L). The same software was used to
score polymorphisms among parental lines and their DH
lines in a binary format (for the presence of marker in the
representation as ‘1’ and for the absence as ‘0’, as described
previously [13,22]. For quality control, two measures were
used: the first was based on the Q value (a quality param-
eter measuring bimodality of signal distribution between
‘0’ and ‘1’ clusters) and the second was based on call rate
(P, the percentage of DNA samples with defined ‘0’ or ‘1’
allele calls). Only high quality DArT clones with Q > 77%,
a call rate >97% and 100% allele-calling consistency
(reproducibility) across the technical replicates were se-
lected as markers for genetic mapping of different DH
populations. However, some lower quality (those with less
well supported map positions) were integrated as attached
markers into the most appropriate positions in framework
component maps, as described previously in the LM
population [13].

PCR-based marker analysis
Both publicly and privately available SSR primer-pairs
with prefixes ‘BRMS’, ‘BRAS’, ‘CB’, ‘MR’, and ‘MD’ were
obtained from the literature [5,68,69]. Two assays; capil-
lary electrophoresis and agarose gel electrophoresis were
performed for allele sizing of SSR amplicons generated
with fluorescently labelled and non-fluorescent primers,
respectively. The 5’ ends of the forward primers were
tailed with 19-bp long M13 sequences and labelled with a
fluorescent dye (D2, D3 or D4; Beckman Coulter Inc., Ful-
lerton, USA) as previously described [64,70]. SSR primers
were synthesised by Sigma-Aldrich (Castle Hill, NSW,
Australia) and were diluted to 1 to 10 pmol/μl depending
upon the assay used. PCRs and amplifications were carried
out as described previously [64]. Amplified DNA frag-
ments (>600 bp) were separated on a CEQ8000 DNA
sequencer (Beckman Coulter Inc., Brea, CA, USA) and
their sizes measured using fragment analysis software.
Fragments were scored by allele sizes in bp and then
converted into binary format as described above. We
adopted the standard nomenclature for the DArT markers
as described previously [13].

Linkage map construction
Individual genetic (component) maps of the six popula-
tions were constructed separately using DArT linkage
group and marker ordering software [71]. Prior to con-
struction of the map, the redundant markers were
‘binned’, and within each bin the marker with the highest
quality was used for map construction.
The DArT marker ordering system followed a three-

step process similar to the one described previously [72].
In the first step, the ‘first’ markers were grouped. A
complete graph of all the markers was constructed
where the weight assigned to the edges corresponded to
the recombination frequency. Edges corresponding to a
recombination frequency above a threshold (typically
around 0.2) were removed and the resultant connected
components were collected into linkage groups. In the
second step, the markers in each group were ordered.
The optimum marker order was posed as the travelling
salesman path within the group [73]. The optimal solu-
tion was based on the Concorde solver. Finally, the
marker positions were converted to centiMorgans (cM)
by applying the Kosambi function [74] to the recombin-
ation frequencies.
The reference map of TN was compared with the map

constructed using software JoinMap 4.0 [75] with a thresh-
old LOD score of 3.0, however the minimum LOD score
of 1.4 was used to incorporate some markers. Non-DArT
based markers (SSRs, SNPs, STSs, SSCPs, RFLPs, CAPSs,
and AFLPs) with known chromosomal locations on the
TN genetic linkage map were used to assign linkage groups
to chromosomes A1-A10 and C1-C9 representing AA and
CC genomes, respectively. Subsequently, this reference
map was used to assign the chromosomal positions for
DArT markers in other described mapping populations.
Allele segregation ratios for each marker locus were

determined using χ2 tests to determine whether they
conformed to expected Mendelian ratios for one locus
(1:1 allelic ratio) or two locus (1:3 or 3:1 allelic ratio)
models [13]. Markers that showed significant segregation
distortion (P < 0.01) were discarded and were not used
for linkage mapping.

Consensus map construction
The segregation marker data and their order determined
for each population were integrated into the consensus
map with the DArT consensus map software [71]. The
software required the following inputs: (i) seed (reference)
map with one linkage group and marker positions per
chromosome; and (ii) set of linkage groups from individual
populations with marker positions and chromosome
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assignment for each group. The construction procedure
used the following pseudo-code algorithm: (i) initialised
consensus map with the seed map; and (ii) for each
chromosome, we found a subset of linkage groups for this
chromosome and repeated until subset was empty for
each group. The process required at least three markers in
common with the consensus map and correlated the posi-
tions of common markers with the consensus map. The
group with the highest commonality [correlation × log
(number of common markers)] was identified, and if the
correlation was larger than 0.5, all markers were joined to
the consensus map by linear interpolation. The group was
removed from the subset and the process repeated. The
individual and consensus maps were visualised graphically
using the software MapChart [76].
Sequence analysis of DArT clones
All 3,072 DArT markers that represented the current B.
napus DArT array (version 1) were sequenced using ABI
Prism Big Dye Terminator Cycle Sequencing Ready Re-
action Kit (Perkin Elmer, MA, USA) and analysed on an
ABI DNA Sequencer. The clones were sequenced using
universal M13 forward primer. The sequences were
analysed with the dedicated pipeline developed by Diver-
sity Arrays Technology Pty Ltd (unpublished).
In silico mapping of DArT markers on the B. rapa and B.
oleracea genomes
Sequences of DArT clones were used to search the assem-
bled B. rapa [31] and B. oleracea (Isobel Parkin and An-
drew Sharpe, planned for publication) genome scaffolds
using BLASTN [77] and the predicted marker positions
were compared with their locations on the consensus gen-
etic map. The vector and adapter sequences were trimmed
from DNA sequences before determining the percentage
sequence identities. We recorded the percentage identity
using an E-value 10-5 threshold of all scoring pairs rather
than recording only the best hit, in order to capture
genome-wide sequence similarities.
Detection of DArT sequence redundancy
In order to estimate redundancy at the sequence level, we
aligned the DArT sequences with a multiple alignment al-
gorithm CLUSTALW [78] implemented in Geneious soft-
ware [79], with the default option for analysis of gaps.
Although it is difficult to establish a threshold to declare a
DArT marker redundant, we used a pragmatic approach
and assumed that markers showing <80% sequence hom-
ology were less likely to be identical, because they should
not hybridise to the same targets under stringent hybrid-
isation conditions.
Identifying trait-marker associations and chromosomal
(marker) rearrangements
The consensus map developed in this study was used to
(i) localise QTLs and major genes that were identified
in the six DH populations; and (ii) identify chromo-
somal rearrangements such as duplications and inver-
sions on the basis of markers. The location of genetic
markers on the consensus map was delimited by identi-
fying published common markers flanking the qualita-
tive and quantitative loci in the individual genetic
mapping population. QTL analysis of seed fatty acid
content in the LM population was performed using
MultiQTL v2.5 (MultiQTL Ltd, Haifa, Israel) using
default parameters. The goodness of fit of one-gene
models was compared to those of two-gene models.
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