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Abstract

Background: Traumatic brain injury (TBI) results in irreversible damage at the site of impact and initiates cellular
and molecular processes that lead to secondary neural injury in the surrounding tissue. We used microarray analysis
to determine which genes, pathways and networks were significantly altered using a rat model of TBI. Adult rats
received a unilateral controlled cortical impact (CCI) and were sacrificed 24 h post-injury. The ipsilateral hemi-brain
tissue at the site of the injury, the corresponding contralateral hemi-brain tissue, and naïve (control) brain tissue
were used for microarray analysis. Ingenuity Pathway Analysis (IPA) software was used to identify molecular
pathways and networks that were associated with the altered gene expression in brain tissues following TBI.

Results: Inspection of the top fifteen biological functions in IPA associated with TBI in the ipsilateral tissues
revealed that all had an inflammatory component. IPA analysis also indicated that inflammatory genes were altered
on the contralateral side, but many of the genes were inversely expressed compared to the ipsilateral side. The
contralateral gene expression pattern suggests a remote anti-inflammatory molecular response. We created a
network of the inversely expressed common (i.e., same gene changed on both sides of the brain) inflammatory
response (IR) genes and those IR genes included in pathways and networks identified by IPA that changed on only
one side. We ranked the genes by the number of direct connections each had in the network, creating a gene
interaction hierarchy (GIH). Two well characterized signaling pathways, toll-like receptor/NF-kappaB signaling and
JAK/STAT signaling, were prominent in our GIH.

Conclusions: Bioinformatic analysis of microarray data following TBI identified key molecular pathways and
networks associated with neural injury following TBI. The GIH created here provides a starting point for
investigating therapeutic targets in a ranked order that is somewhat different than what has been presented
previously. In addition to being a vehicle for identifying potential targets for post-TBI therapeutic strategies, our
findings can also provide a context for evaluating the potential of therapeutic agents currently in development.
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Background
It is estimated that 3.17-3.32 million persons in the
United States are living with long-term or lifelong effects
of traumatic brain injury (TBI) [1]. Approximately 1.7
million new TBIs are sustained each year [2] resulting in
53,000 deaths [3] and as many as 125,000 additional
people that have long-term behavioral deficits [4]. Efforts
to implement preventative measures for the leading
causes of TBI (motor vehicle-traffic accidents, falls, and
assaults) are critical [2,3] but will not eliminate TBI as a
major public health problem. Development of effective
clinical treatment protocols post-TBI and potential pro-
phylactic agents for military usage are necessary to ad-
dress those TBIs that cannot be prevented.
Injury to the brain results in irreversible damage at the

site of impact and initiates cellular and molecular pro-
cesses that lead to delayed or secondary neural injury in
the surrounding tissue [5,6]. Neuroprotective strategies
target these processes in an attempt to halt the progres-
sion of or prevent the delayed injury [7]. These processes
include inflammation, damage to the blood brain barrier,
release of excitatory amino acids, oxidative stress, cerebral
edema, reduced cerebral blood flow, hypoxia, and ische-
mia [5,6]. In the current study, we used gene microarray
analysis to determine which genes, pathways and networks
were significantly altered after unilateral controlled cor-
tical impact (CCI), an experimental model of TBI.
Microarray technology is a very powerful tool that al-

lows the user to examine expression profiles for thousands
of genes at one time. The true power of microarray tech-
nology can be maximized when the expression profiles
can be attributed to significant alterations in biological
functions and molecular pathways. Fortunately, the recent
development of advanced bioinformatic analysis tools has
made the utilization of microarray data more practical and
allows for easier replication. One such tool is the Ingenuity
Pathway Analysis (IPA) software program which uses a
database built from published scientific literature to draw
direct and indirect interactions between genes and to as-
sign genes to specific biological functions and canonical
pathways [8]. IPA was used here for functional, canonical
pathway, and network analysis of the genes that were
altered by TBI. We examined gene expression on both
sides of the brain in order to understand the alterations
both locally (ipsilateral) and remotely on the opposite side
of the brain (contralateral). We observed that the contra-
lateral side of the brain, which has often been used as a
control in similar experiments, exhibited significant alter-
ations in gene expression following TBI.
The bioinformatic analysis tools we used also allowed

for both identification of key molecules and elucidation
of their interactions with each other. We used these in-
teractions to identify molecules and molecular pathways
central in the response to TBI that could provide novel
targets for therapeutic strategies. Understanding how local
and remote gene expression profiles change following
TBI, when compared to non-injured brain, will provide
valuable insight into delayed neuronal injury mechanisms
as well as intrinsic neuroprotective processes.

Results
Principal component analysis
The ipsilateral, contralateral, and naïve gene datasets
generated 24 hours post-TBI were analyzed by principal
component analysis (PCA) to assess the variability of our
microarray data. Nine principal components were gener-
ated and the first 3 principal components explain 91.267%
of the variance in our microarray data. The 3D score plot
generated from these identified injury status as the major
source of variability (Figure 1A). Similarity between data
points in the PCA was determined by the distance be-
tween the points, with shorter distance indicating in-
creased similarity. Each data point represents one animal's
gene expression profile. Ipsilateral, contralateral and naïve
all clustered together by injury status and each group was
well isolated from the other two groups.

Functional analysis
A total of 69 biological functions met IPA's threshold
and cutoff conditions for the TBI-I (ipsilateral vs naïve)
dataset. Inspection of the top 15 biological functions asso-
ciated with the dataset in IPA showed that 7 of these func-
tions are explicitly cellular in nature; cellular movement,
cellular growth and proliferation, cellular development,
cell death, cell cycle, cell morphology, and immune cell
trafficking (Figure 1B). Of the other top functions, 5 are
disease and disorder related; cancer, neurological disease,
genetic disorder, skeletal and muscular disorders, and der-
matological diseases and conditions. We posited that the
majority of these functional categories had an inflamma-
tory component and inflammatory response (IR) itself was
ranked as the 15th most significant biological function for
our dataset. To further investigate this, we calculated the
percentage of gene overlap each function had with inflam-
matory response. This overlap ranged from 26% to 93%
with 9 biological functions falling in the 35% to 55%
range (Table 1). The cumulative overlap of IR with the
other 14 top biological functions was 39.3%. Therefore,
we chose to focus our subsequent analysis techniques
on the inflammatory response genes in this study be-
cause of the significant involvement of inflammatory
genes in all of the top ranked biological functions and
the role of the IR in secondary neural injury [5,6,9,10].

Histology and immunohistochemistry
Histology and immunostaining were used to assess dam-
age to and the inflammatory state of the brain. Figure 2
demonstrates cortical damage to the brain tissue ipsilateral



Figure 1 Principal component and functional analyses. (A) PCA was applied to all microarray datasets and the resulting scores for the first 3
principal components were plotted. The first 3 principal components explain 91.267% of the variance in the data. This analysis revealed clustering
of datasets by injury status: Ipsilateral (Ipsi), Contralateral (Contra), and Naïve. (B) Analysis of the top 15 biological functions determined by IPA for
the TBI-I (Ipsilateral vs Naïve) dataset demonstrates that the inflammatory response is one of the primary functions of the genes expressed after
TBI. Additionally, all of the functions IPA found to be more significant than inflammatory response also have an inflammatory component
(see text).
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Table 1 Inflammatory nature of top biological functions

Biological function Unique genes
for function

# of overlapping
IR genes

% overlap

Cellular movement 381 209 55%

Cellular growth and
proliferation

583 227 39%

Cancer 663 225 34%

Cellular development 499 208 42%

Cell death 472 202 43%

Neurological disease 663 185 28%

Genetic disorder 1023 267 26%

Gene expression 441 151 34%

Skeletal and
muscular disorders

538 191 36%

Tissue development 479 203 42%

Cell cycle 296 111 38%

Cell morphology 267 133 50%

Immune cell
trafficking

231 216 94%

Dermatological
diseases & conditions

268 147 55%

Figure 2 Cortical histology following TBI. Damage to the ipsilateral cort
contralateral cortex (B), consistent with the lack of trauma. The damaged c
demonstrated by ED-1 immunostaining (D). There were no activated macro
intact (F). FJB: green; DAPI: blue; ED-1: red; Scale bars: 250 μm (A,B), 125 μm

White et al. BMC Genomics 2013, 14:282 Page 4 of 20
http://www.biomedcentral.com/1471-2164/14/282
to the injury by Fluoro-Jade B (FJB) and DAPI staining
(Figure 2A,C). Near the site of impact, the integrity of
the cortex is disrupted and there is obvious tissue loss.
ED-1 immunostaining showed that many activated
microglia/macrophages were present in the area of
tissue damage (Figure 2D). The contralateral side of the
brain showed no overt structural damage or ED-1
immunoreactivity (Figure 2B,E,F).
The hippocampal region did not display overt structural

damage on either side of the brain (Figure 3C,F) but did
show cellular damage ipsilaterally when stained with
FJB (Figure 3A). ED-1 staining similarly showed only
macrophage/microglial activation in the hippocampus
on the ipsilateral side of the brain (Figure 3D). No cor-
tical or hippocampal labeling was seen in negative con-
trol sections (data not shown). Any apparent staining
in the contralateral hemisphere represented autofluo-
rescence and was similar to levels detected in negative
controls.
In contrast to ED-1, CD11b stains all microglia regard-

less of activation state. When the microglia transform
into activated macrophages they also undergo a morpho-
logical transformation from a resting ramified state to an
ex is demonstrated by FJB staining (A). FJB staining is absent in the
ortex (C) contains many macrophages and activated microglia as
phages in the contralateral cortex (E) and the brain anatomy appears
(C-F).



Figure 3 Hippocampal region histology following TBI. Damage to the ipsilateral hippocampal region was demonstrated by FJB staining (A).
FJB staining was absent in the contralateral hippocampal region (B). While the integrity of the hippocampus appears intact ipsilaterally (C), many
activated microglia and macrophages were present as demonstrated by ED-1 immunostaining (D). There were no activated macrophages in the
contralateral hippocampal region (E) and the anatomical structure appears intact (F). FJB: green; DAPI: blue; ED-1: red. Scale bars: 250 μm (A,B),
125 μm (C-F).
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amoeboid state. Figure 4 demonstrates that this morpho-
logical shift only occurred in areas of cellular damage.
There were no amoeboid shaped microglia detected on
the contralateral side (Figure 4A,B). Ipsilaterally, both
microglial morphologies were observed. Ramified micro-
glia were seen in subcortical regions that did not exhibit
cellular damage (Figure 4C) and amoeboid microglia
were present at the site of impact (Figure 4D) and in
subcortical regions where cellular damage had occurred.
This duality can be seen definitively in the ipsilateral
hippocampal region where there is cellular damage inter-
spersed between structurally intact tissue (Figure 4E,F).
No immunostaining was seen in the cortex or hippocam-
pus in negative control sections (data not shown).

Inflammatory gene expression patterns
Focusing on the inflammatory response genes in our
datasets, we determined that 372 IR genes had a greater
than 2-fold change in expression. Of these genes, 146
genes changed on both the ipsilateral and contralateral
sides of the brain. In order to determine whether these
common genes changed differently on one side of the
brain compared to the other, we calculated the ratio of
the TBI-I fold change to the TBI-C (contralateral vs
naïve) fold change. Those genes that had a TBI-I/TBI-C
ratio greater than 1.75 were determined to have change
differently. We observed that 109 of the common IR
genes (75%) changed similarly (TBI-I/TBI-C ratio < 1.75;
Figure 5A). Of the genes that changed similarly, 79
genes (54%) increased in expression and 30 genes (21%)
decreased in expression. The remaining 37 common IR
genes (25%) were changed differently (TBI-I/TBI-C
ratio > 1.75) (Figure 5A). Table 2 shows the 37 common
IR genes that change differently. These genes span all
cellular compartments (extracellular space, plasma mem-
brane, cytoplasm, and nucleus) with diverse molecule
types. The expression of all these genes was lower on the
contralateral side of the brain. Because of their different
expression patterns, these genes became our first group of
genes of interest (GOI). Notable genes identified included
CCND1, SPP1, ERAP1, LYN, THRA, TIMP1, the tran-
scription regulators STAT3, CEBPD, and CBL, and the
plasma membrane receptors and signaling molecules
IL6ST, CD44, EGFR, ITGA5, and SDC1.



Figure 4 Microglial activation in the injured brain. CD11b immunostaining demonstrated the ramified resting morphology of microglia on
the uninjured, contralateral side of the brain (A & B). This same morphology was seen on the ipsilateral side of the brain in areas less affected by
the trauma (C). In damaged brain regions, the microglia were activated and underwent a morphological change, becoming amoeboid in shape
(D). Both morphologies can be seen in the hippocampal region where there are amoeboid microglia in the areas of damage and ramified
microglia in the surround (E). The same section was counterstained with DAPI to demonstrate the overall cellular anatomy of the region (F).
CD11b: green; DAPI: blue. Scale bars: 200 μm (A,B), 100 μm (C-F).
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There were 188 IR genes that changed uniquely on
the ipsilateral side of the brain. 179 of those genes (95%)
increased while 9 genes (5%) decreased in expression
(Figure 5B). Only 38 IR genes change uniquely on the
contralateral side of the brain and, in contrast to what
we observed on the ipsilateral side, only 10 genes (26%)
increased while 28 genes (74%) decreased in expression
(Figure 5C).

Canonical pathway analysis
We used canonical pathway and network analysis in IPA
to identify genes in our datasets that were most relevant
to the observed IR. Because IPA displays only the rela-
tive expression values, we defined GOI, in this context,
as those genes that either increased or decreased on one
side of the brain and showed no change in expression
on the other side or genes that had opposite changes in
expression. These genes were easily identified by side-
by-side comparison of the canonical pathway and gene
networks overlaid with the expression values of the TBI-I
and TBI-C IR datasets. Canonical pathways in IPA are
well-characterized metabolic and cell signaling pathways
derived from information found in specific journal articles,
review articles, text books, and KEGG Ligand [11]. Figure 6
shows the IL-6 signaling canonical pathway. IPA deter-
mined that this pathway was highly associated with the
TBI-I dataset. Additionally, this pathway also includes
elements of IL-1, TNF-α, and lipopolysaccharide (LPS)
signaling. IL-1 and TNF-α were previously associated
with TBI and inflammation [9,12-14] and TBI induced
inflammation has been shown to be exacerbated by LPS
challenge [15]. By overlaying the relative expression
values for all TBI-I IR genes (Figure 6A) and all TBI-C
IR genes (Figure 6B), we were able to identify a number
of GOI that were increased in TBI-I and were either un-
changed or decreased in TBI-C, including IL1B, several



Figure 5 Breakdown of IR genes based on up- and downregulation in expression. (A) There were 146 genes that change more than 2-fold
on both sides of the brain. Seventy-five percent of them (109 genes) changed similarly while the remaining 25% (37 genes) changed differently
(ratio >1.75; see text). (B) 188 IR genes changed uniquely on the ipsilateral side of the brain and 95% (179 genes) of those increased in
expression. (C) 38 IR genes changed uniquely on the contralateral side of the brain and 74% (28 genes) of those decreased in expression.
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transmembrane cytokine receptors and the transcrip-
tional regulators NFkB, STAT3, CEBPB (NF-IL6), and
FOS.

Gene network analysis
In contrast to canonical pathways, which are relatively
immutable in IPA, gene networks are generated de novo
in IPA based on the list of genes that are imported. IPA
takes “seed” molecules from the gene list, searches the
Ingenuity Knowledge Base, and uses a network algo-
rithm to draw connections between molecules based on
biological function [16]. In order to generate networks
that included IR genes that changed on both sides of the
brain, we combined the TBI-I and TBI-C datasets and
performed an IPA core analysis on that union dataset.
IPA scores the networks in order to rank them
according to their degree of relevance to the network eli-
gible molecules in your dataset [16]. Figure 7 shows the
highest scored network associated with our union
dataset. For this network, we overlaid the relative ex-
pression values for the unique TBI-I IR genes (Figure 7A)
and unique TBI-C IR genes (Figure 7B) and were able to
identify 29 GOI, such as the chemokine CXCL10, a
number of cytokine and toll-like receptors, heat shock
proteins, and transcriptional regulators that were increased
in TBI-I and were either unchanged or decreased in TBI-C.
Interestingly, IRF2 was upregulated on the contralateral
side of the brain.
Figure 8 shows another network that was scored in the

top three networks associated with our union dataset.
For this network, we overlaid the relative expression
values for all TBI-I IR genes (Figure 8A) and all TBI-C
IR genes (Figure 8B) and were able to identify 15 GOI
including the cytokine CXCL1, a number of genes in the
JAK/STAT pathway, NFkB and several genes associated
with apoptosis.
Because the IR is, in part, humoral in nature, we cre-

ated a network within IPA by seeding it with IR cyto-
kines and growth factors expressed uniquely in the TBI-I
dataset and “growing them” (making direct functional
connections) to the TBI-I/TBI-C union dataset. Figure 9
shows the resultant network. By overlaying the relative
expression values for all TBI-I IR genes (Figure 9A) and
all TBI-C IR genes (Figure 9B), we were able to identify
23 more GOI. Notable genes were IL1B, chemokines
CCL7, CCL13, CXCL13 and CCL4, peptidases MMP13,



Table 2 Genes that change differently on each side of the brain

Gene symbol Entrez gene name TBI-I fold
change

TBI-C fold
change

TBI-I/TBI-
C ratio

Molecule type

Extracellular
space

CSF1 colony stimulating factor 1 (macrophage) 3.70 2.09 1.77 cytokine

SPP1 secreted phosphoprotein 1 37.91 2.37 15.99 cytokine

ERAP1 endoplasmic reticulum aminopeptidase 1 5.84 3.05 1.92 peptidase

LCN2 lipocalin 2 71.82 3.90 18.44 transporter

TGFB2 transforming growth factor, beta 2 −4.00 −7.97 1.99 growth factor

SERPINA3 serpin peptidase inhibitor, clade A (alpha-1 antiproteinase,
antitrypsin), member 3

58.49 2.51 23.31 other

SERPING1 serpin peptidase inhibitor, clade G (C1 inhibitor), member 1 5.81 2.03 2.86 other

TIMP1 TIMP metallopeptidase inhibitor 1 38.49 2.10 18.32 other

Plasma
membrane

HLA-C major histocompatibility complex, class I, C 9.30 3.66 2.54 transmembrane
receptor

IGSF6 immunoglobulin superfamily, member 6 22.46 3.27 6.87 transmembrane
receptor

IL13RA1 interleukin 13 receptor, alpha 1 4.53 2.27 1.99 transmembrane
receptor

IL6ST interleukin 6 signal transducer (gp130, oncostatin M receptor) 2.31 −3.28 7.57 transmembrane
receptor

THBD thrombomodulin 3.85 2.09 1.84 transmembrane
receptor

KCNN4 potassium intermediate/small conductance calcium-activated
channel, subfamily N, member 4

3.09 −9.43 29.12 ion channel

EGFR epidermal growth factor receptor 6.77 2.37 2.85 kinase

MGLL monoglyceride lipase −7.85 −18.15 2.31 enzyme

CD44 CD44 molecule (Indian blood group) 15.56 2.40 6.49 other

CLEC12A C-type lectin domain family 12, member A 10.92 2.15 5.08 other

ITGA5 integrin, alpha 5 (fibronectin receptor, alpha polypeptide) 4.83 2.68 1.80 other

SDC1 syndecan 1 13.68 2.57 5.33 other

Cytoplasm

LYN v-yes-1 Yamaguchi sarcoma viral related oncogene homolog 6.94 3.78 1.84 kinase

PDE4B phosphodiesterase 4B, cAMP-specific 5.60 2.36 2.37 enzyme

PTPN4 protein tyrosine phosphatase, non-receptor type 4
(megakaryocyte)

4.49 2.21 2.03 phosphatase

RASA1 RAS p21 protein activator (GTPase activating protein) 1 2.39 −2.11 5.04 transporter

HSPB1 heat shock 27 kDa protein 1 46.92 2.64 17.78 other

LCP1 lymphocyte cytosolic protein 1 (L-plastin) 6.08 2.80 2.17 other

LSP1 lymphocyte-specific protein 1 11.72 2.14 5.47 other

MYO1F myosin IF 4.27 2.26 1.89 other

Nucleus

CBL Cas-Br-M (murine) ecotropic retroviral transforming sequence −3.40 −6.13 1.80 transcription regulator

CEBPD CCAAT/enhancer binding protein (C/EBP), delta 11.27 2.04 5.53 transcription regulator

DEK DEK oncogene −3.01 −7.35 2.45 transcription regulator

STAT3 signal transducer and activator of transcription 3 (acute-phase
response factor)

4.22 −3.77 15.91 transcription regulator
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Table 2 Genes that change differently on each side of the brain (Continued)

MX1 myxovirus (influenza virus) resistance 1, interferon-inducible
protein p78 (mouse)

28.18 7.33 3.85 enzyme

TOP2A topoisomerase (DNA) II alpha 170 kDa 2.26 −2.41 5.44 enzyme

THRA thyroid hormone receptor, alpha −2.80 −11.52 4.12 ligand-dependent
nuclear receptor

CCND1 cyclin D1 2.15 −2.03 4.36 other

Unknown

Slpi (includes
others)

secretory leukocyte peptidase inhibitor 82.91 3.12 26.58 other

TBI-I/TBI-C Ratio: Gene increased on both sides: ratio = (TBI-I)/(TBI-C); Gene decreased on both sides: ratio = 1/[(TBI-I)/(TBI-C)];
Gene increased ipsilaterally and decreased contralaterally: ratio = (TBI-I)/-[1/(TBI-C)].
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MMP3, and MMP9 and many inflammation associated
transcription factors.

Compiling the gene interaction hierarchy (GIH)
By combining the GOI identified through canonical
pathway and network analysis with those in Table 2, we
identified a total of 114 GOI. In order to determine
which genes might be most relevant in the IR, we ranked
these genes relative to each other by the number of direct
interactions each had with the other GOI. Our analysis
showed that 95 of the GOI formed an interconnected
network, leaving 19 “orphan” genes (see Additional file 1).
Genes having more than 10 connections (1st order) within
the main GOI network were considered “primary” in this
analysis (see Additional file 2 for an example). Genes
having 5–10 connections were considered “secondary”
(see Additional file 3 for an example) and those with less
than 5 connections were considered “peripheral”. The
resultant GIH is displayed in Table 3.

Discussion
In this study, we used microarray technology to examine
cellular and molecular mechanisms associated with sec-
ondary brain injury following TBI. Our findings indi-
cated that the inflammatory response and its associated
genes and pathways are significant in the post-TBI mo-
lecular response. This is consistent with our published
studies indicating that inflammation is involved with de-
layed, secondary neuronal injury following other acute
brain injuries (ABI’s) including stroke and neurotoxin
exposure [17-20]. Activated microglia, astrocytes and
macrophages have been shown to be the source of
several of the inflammatory molecules identified in this
study [10,21-23]. The presence of activated inflammatory
cells ipsilaterally and their absence contralaterally was
confirmed by immunohistochemistry. This cellular in-
flammation offers further evidence for pro-inflammatory
molecules being produced in the region of tissue damage
following TBI.
Despite the absence of activated inflammatory cells on

the contralateral side of the brain, our results also showed
that TBI resulted in a significant alteration of the inflam-
matory gene response on the both sides of the brain. The
observed IR gene expression pattern suggests that there is
a baseline IR throughout the whole brain due to unilateral
CCI. This is demonstrated by the nearly 30% of all IR
genes that change similarly on both sides of the brain (109
of 372 IR genes). Above this baseline of inflammation, a
distinct IR gene expression pattern emerges. The expres-
sion level is higher on the ipsilateral side for all the
remaining genes expressed on both sides of the brain. 95%
of the IR genes expressed only in ipsilateral tissues in-
crease in expression while 74% of the IR genes expressed
only in contralateral tissues decrease in expression. Exam-
ination of the contralateral gene expression in our GIH
showed that 11 genes (3 primary tier, 3 secondary tier, 3
peripheral tier and 2 orphan) decreased in expression
contralaterally while either remaining unchanged or in-
creasing in expression ipsilaterally. Only 3 genes (1 sec-
ondary and 2 peripheral tier) increased contralaterally and
remained unchanged ipsilaterally. This demonstrated that
the most significant contralateral IR genes in this analysis
show decreased expression.
Taken together with the cellular inflammation data, we

can surmise that increased expression of the majority of
IR genes ipsilaterally results in the development of func-
tional inflammation that can contribute to secondary
neural injury. Similarly, it is likely that the suppression
of the majority of IR genes contralaterally prevents this
development in brain regions remote to the injury. This
summary of the overall IR gene expression does not take
into account that some IR genes may be classified as
anti-inflammatory in certain contexts. However, any
counter effects of anti-inflammatory molecules seems to
be negligible as the cellular inflammation pattern follows
the IR gene expression pattern assuming the majority of
IR genes are pro-inflammatory. The contralateral inflam-
matory response without detectable cellular inflamma-
tion also fits well with the idea that some inflammation
may actually be beneficial following TBI [9].
Through canonical pathway and network analysis

combined with identification of the common genes that



Figure 6 Canonical pathway analysis. The IL-6 signaling pathway showing the relative expression values for all TBI-I IR genes (A) and all TBI-C
IR genes (B) involved in this pathway. red: relative increase in expression; green: relative decrease in expression; white: no change in expression.
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Figure 7 Analysis of the highest scored IPA generated gene network. This was the highest scored gene network associated with the TBI-I/
TBI-C union dataset. The relative expression values of the unique TBI-I IR genes (A) and unique TBI-C IR genes (B) included in this network are
shown. red: relative increase in expression; green: relative decrease in expression; white: no change in expression; orange connections and outlines: direct
connections with gene groups and complexes in the original network.

Figure 8 Analysis of a highly scored IPA generated gene network. This gene network was scored in the top three networks associated with
the TBI-I/TBI-C union dataset. The relative expression values of all TBI-I IR genes (A) and all TBI-C IR genes (B) included in this network are shown.
red: relative increase in expression; green: relative decrease in expression; white: no change in expression; orange connections and outlines: direct
connections with gene groups and complexes in the original network.
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Figure 9 Cytokine and growth factor network analysis. The gene network was created in IPA by seeding with the IR cytokines and growth
factors expressed uniquely in the TBI-I analysis and “growing” those genes into a network by showing their direct connections with genes in the
union of all TBI-I and TBI-C IR genes dataset. The relative expression values of all TBI-I IR genes (A) and all TBI-C IR genes (B) included in this
network are shown. red: relative increase in expression; green: relative decrease in expression; white: no change in expression.
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change differently on each side of the brain, we identified
114 GOI. Many of these genes have been previously asso-
ciated with the IR following ABI’s (i.e., TBI, stroke, nerve
agent exposure) including CCL13/CCL2, CCL4, CCL6,
CCL7, CCR5, CD14, CD44, CDKN1A, CEBPB, CEBPD,
CXCL13, CXCL9, CSF1, FOS, HBEGF, HSPA1A/HSPA1B,
ICAM1, IER3, IL-1β, IRF1, IRF2, JAK2, LCN2, MMP3,
MMP9, MYD88, NF-κB, PSMB8, S100A4, SPP1, STAT3,
TLR2, TLR4, and TNFRSF1A [10,13,21,24-34]. These
results support the utility of our methods for identifying
the significant genes related to this biological function.
Additionally, several IR genes that appear to be novel
in the context of TBI were also identified, providing
new targets for future study. These genes included
HSP90AA1, ERAP1, PSMB9, CBL, BTK, RORA, THRA,
and ITGA5. We wanted to take our analysis one step
further and determine which genes were likely the most
critical in the observed IR. We accomplished this by
creating a network of these genes and determining how
many 1st order connections each gene had with the
other genes in the network. A GIH was created based
on these numbers and there were some intriguing findings
in terms of which tier certain molecule types predominated.
Not surprisingly, a large number of transcription regula-

tors were included in the primary and secondary tiers as
these molecules are the point of convergence for many of
the inflammatory pathways and the regulatory step in the
production of new proteins. Somewhat surprising was the
large number of cytokines that fell into the peripheral tier
since considerable focus has been placed on cytokines as
mediators of inflammation and targets for therapeutic
intervention [10,21,24]. This result may be due to a near
1-to-1 relationship that these cytokines have with their
receptors, limiting the 1st order connections in the GOI
network. While cytokines clearly play an important role in
initiating the IR, they may not be the most critical mole-
cules in modulating the IR. Only one cytokine, IL1B, is in
the primary tier of our hierarchy while CCL7, CXCL10,
and SPP1 are in the secondary tier. This suggests that
neuroprotective strategies directed at one of the lower tier
cytokines may not be sufficient for limiting the IR [35].
Further, while therapeutic hypothermia after TBI has been
shown to improve outcome, inflammatory cytokine levels
were unaffected, implying minimal cytokine involvement
in the observed neuroprotection [26]. However, targeting
the cytokines in the higher tiers may produce effective
modification of the IR [36]. Our GIH shows that regula-
tion of transcription, phosphorylation (kinases), extra-
cellular matrix/cell adhesion (FN1, MMPs, ICAM1),
and receptors (transmembrane and G-coupled) figure



Table 3 Gene interaction hierarchy (GIH)

Gene symbol Entrez gene name Fold change
(TBI-I | TBI-C)

Cellular
compartment

Molecular type

Primary

CEBPB CCAAT/enhancer binding protein (C/EBP), beta 3.37 | ~ Nucleus transcription regulator

FOS FBJ murine osteosarcoma viral oncogene homolog 2.83 | ~ Nucleus transcription regulator

IRF1 interferon regulatory factor 1 2.22 | ~ Nucleus transcription regulator

IRF7 interferon regulatory factor 7 2.78 | ~ Nucleus transcription regulator

MYC v-myc myelocytomatosis viral oncogene homolog (avian) 3.96 | ~ Nucleus transcription regulator

NFKB2 nuclear factor of kappa light polypeptide gene enhancer in B-cells 2
(p49/p100)

2.77 | ~ Nucleus transcription regulator

STAT3 signal transducer and activator of transcription 3 (acute-phase
response factor)

4.22 | -3.77 Nucleus transcription regulator

EGFR epidermal growth factor receptor 6.77 | 2.37 Plasma
membrane

kinase

IKBKB inhibitor of kappa light polypeptide gene enhancer in B-cells, kinase
beta

2.13 | ~ Cytoplasm kinase

JAK2 Janus kinase 2 2.53 | ~ Cytoplasm kinase

LYN v-yes-1 Yamaguchi sarcoma viral related oncogene homolog 6.94 | 3.78 Cytoplasm kinase

FN1 fibronectin 1 3.97 | ~ Extracellular
space

enzyme

HSP90AA1 heat shock protein 90 kDa alpha (cytosolic), class A member 1 ~ | -4.84 Cytoplasm enzyme

IL1B interleukin 1, beta 5.17 | ~ Extracellular
space

cytokine

CASP3 caspase 3, apoptosis-related cysteine peptidase 2.54 | ~ Cytoplasm peptidase

TLR4 toll-like receptor 4 2.70 | ~ Plasma
membrane

transmembrane receptor

CCND1 cyclin D1 2.15 | -2.03 Nucleus other

CD44 CD44 molecule (Indian blood group) 15.56 | 2.40 Plasma
membrane

other

CDKN1A cyclin-dependent kinase inhibitor 1A (p21, Cip1) 2.68 | ~ Nucleus other

MYD88 myeloid differentiation primary response gene (88) 2.70 | ~ Plasma
membrane

other

Secondary

ERAP1 endoplasmic reticulum aminopeptidase 1 5.84 | 3.05 Extracellular
space

peptidase

MMP13 matrix metallopeptidase 13 (collagenase 3) 2.26 | ~ Extracellular
space

peptidase

MMP14 matrix metallopeptidase 14 (membrane-inserted) ~ | -3.03 Extracellular
space

peptidase

MMP3 matrix metallopeptidase 3 (stromelysin 1, progelatinase) 4.05 | ~ Extracellular
space

peptidase

MMP9 matrix metallopeptidase 9 (gelatinase B, 92 kDa gelatinase, 92 kDa
type IV collagenase)

7.18 | ~ Extracellular
space

peptidase

PSMB8 proteasome (prosome, macropain) subunit, beta type, 8 (large
multifunctional peptidase 7)

3.30 | ~ Cytoplasm peptidase

PSMB9 proteasome (prosome, macropain) subunit, beta type, 9 (large
multifunctional peptidase 2)

2.32 | ~ Cytoplasm peptidase

ICAM1 intercellular adhesion molecule 1 2.60 | ~ Plasma
membrane

transmembrane receptor

IL6R interleukin 6 receptor 2.32 | ~ Plasma
membrane

transmembrane receptor
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Table 3 Gene interaction hierarchy (GIH) (Continued)

IL6ST interleukin 6 signal transducer (gp130, oncostatin M receptor) 2.31 | -3.28 Plasma
membrane

transmembrane receptor

TLR2 toll-like receptor 2 2.33 | ~ Plasma
membrane

transmembrane receptor

TNFRSF1A tumor necrosis factor receptor superfamily, member 1A 3.56 | ~ Plasma
membrane

transmembrane receptor

CBL Cas-Br-M (murine) ecotropic retroviral transforming sequence −3.40 | -6.13 Nucleus transcription regulator

CEBPD CCAAT/enhancer binding protein (C/EBP), delta 11.27 | 2.04 Nucleus transcription regulator

IRF2 interferon regulatory factor 2 ~ | 2.17 Nucleus transcription regulator

IRF9 interferon regulatory factor 9 3.26 | ~ Nucleus transcription regulator

CCL7 chemokine (C-C motif) ligand 7 124.78 | ~ Extracellular
space

cytokine

CXCL10 chemokine (C-X-C motif) ligand 10 ~ | -3.29 Extracellular
space

cytokine

SPP1 secreted phosphoprotein 1 37.91 | 2.37 Extracellular
space

cytokine

AKT1 v-akt murine thymoma viral oncogene homolog 1 2.04 | ~ Cytoplasm kinase

BTK Bruton agammaglobulinemia tyrosine kinase 2.29 | ~ Cytoplasm kinase

EIF2AK2 eukaryotic translation initiation factor 2-alpha kinase 2 2.18 | ~ Cytoplasm kinase

CCR5 chemokine (C-C motif) receptor 5 2.09 | ~ Plasma
membrane

G-protein coupled
receptor

CXCR4 chemokine (C-X-C motif) receptor 4 2.31 | ~ Plasma
membrane

G-protein coupled
receptor

HBEGF heparin-binding EGF-like growth factor 7.07 | ~ Extracellular
space

growth factor

FGF2 fibroblast growth factor 2 (basic) 2.39 | ~ Extracellular
space

growth factor

RORA RAR-related orphan receptor A 2.50 | ~ Nucleus ligand-dependent
nuclear receptor

THRA thyroid hormone receptor, alpha −2.80 | -11.52 Nucleus ligand-dependent
nuclear receptor

RAC1 ras-related C3 botulinum toxin substrate 1 (rho family, small GTP
binding protein Rac1)

2.32 | ~ Plasma
membrane

enzyme

PTPN6 protein tyrosine phosphatase, non-receptor type 6 3.64 | ~ Cytoplasm phosphatase

HSPA1A/HSPA1B heat shock 70 kDa protein 1A 3.14 | ~ Cytoplasm other

ITGA5 integrin, alpha 5 (fibronectin receptor, alpha polypeptide) 4.83 | 2.68 Plasma
membrane

other

SDC1 syndecan 1 13.68 | 2.57 Plasma
membrane

other

TIMP1 TIMP metallopeptidase inhibitor 1 38.49 | 2.10 Extracellular
space

other

Peripheral

CCL13/CCL2 chemokine (C-C motif) ligand 13/2 195.46 | ~ Extracellular
space

cytokine

CCL3L1/CCL3L3 chemokine (C-C motif) ligand 3-like 1 5.27 | ~ Extracellular
space

cytokine

CCL4 chemokine (C-C motif) ligand 4 2.16 | ~ Extracellular
space

cytokine

Ccl6 chemokine (C-C motif) ligand 6 10.29 | ~ Extracellular
space

cytokine

CSF1 colony stimulating factor 1 (macrophage) 3.70 | 2.09 Extracellular
space

cytokine
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Table 3 Gene interaction hierarchy (GIH) (Continued)

CXCL13 chemokine (C-X-C motif) ligand 13 3.78 | ~ Extracellular
space

cytokine

CXCL14 chemokine (C-X-C motif) ligand 14 ~ | 2.13 Extracellular
space

cytokine

CXCL9 chemokine (C-X-C motif) ligand 9 2.85 | ~ Extracellular
space

cytokine

CD14 CD14 molecule 10.66 | ~ Plasma
membrane

transmembrane receptor

FCGR2B Fc fragment of IgG, low affinity IIb, receptor (CD32) 5.12 | ~ Plasma
membrane

transmembrane receptor

HLA-C major histocompatibility complex, class I, C 9.30 | 3.66 Plasma
membrane

transmembrane receptor

HLA-DRA major histocompatibility complex, class II, DR alpha 2.70 | ~ Plasma
membrane

transmembrane receptor

IL13RA1 interleukin 13 receptor, alpha 1 4.53 | 2.27 Plasma
membrane

transmembrane receptor

IL1R2 interleukin 1 receptor, type II 37.03 | ~ Plasma
membrane

transmembrane receptor

GBP2 (includes
EG:14469)

guanylate binding protein 2, interferon-inducible 9.13 | ~ Cytoplasm enzyme

MX1 myxovirus (influenza virus) resistance 1, interferon-inducible protein
p78 (mouse)

28.18 | 7.33 Nucleus enzyme

RALBP1 ralA binding protein 1 2.23 | ~ Cytoplasm enzyme

TOP2A topoisomerase (DNA) II alpha 170 kDa 2.26 | -2.41 Nucleus enzyme

EGR2 early growth response 2 2.27 | ~ Nucleus transcription regulator

NFE2L2 nuclear factor (erythroid-derived 2)-like 2 2.45 | ~ Nucleus transcription regulator

ZFP36 zinc finger protein 36, C3H type, homolog (mouse) 7.28 | ~ Nucleus transcription regulator

ABCC1 ATP-binding cassette, sub-family C (CFTR/MRP), member 1 ~ | -3.11 Plasma
membrane

transporter

LCN2 lipocalin 2 71.82 | 3.90 Extracellular
space

transporter

RASA1 RAS p21 protein activator (GTPase activating protein) 1 2.39 | -2.11 Cytoplasm transporter

NR1H2 nuclear receptor subfamily 1, group H, member 2 2.15 | ~ Nucleus ligand-dependent
nuclear receptor

NR1H3 nuclear receptor subfamily 1, group H, member 3 2.16 | ~ Nucleus ligand-dependent
nuclear receptor

HSPB8 heat shock 22 kDa protein 8 4.11 | ~ Cytoplasm kinase

RIPK3 receptor-interacting serine-threonine kinase 3 7.55 | ~ Plasma
membrane

kinase

CASP4 caspase 4, apoptosis-related cysteine peptidase 3.05 | ~ Cytoplasm peptidase

DPP8 dipeptidyl-peptidase 8 ~ | 2.06 Cytoplasm peptidase

ANGPT2 angiopoietin 2 2.98 | ~ Extracellular
space

growth factor

CD63 CD63 molecule 2.07 | ~ Plasma
membrane

other

HSPB1 heat shock 27 kDa protein 1 46.92 | 2.64 Cytoplasm other

IER3 immediate early response 3 2.35 | ~ Cytoplasm other

IFI44 interferon-induced protein 44 3.12 | ~ Cytoplasm other

IFITM3 interferon induced transmembrane protein 3 3.48 | ~ Plasma
membrane

other

ISG15 ISG15 ubiquitin-like modifier 3.53 | ~ Extracellular
space

other
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Table 3 Gene interaction hierarchy (GIH) (Continued)

NEDD9 neural precursor cell expressed, developmentally down-regulated 9 2.59 | ~ Nucleus other

S100A4 S100 calcium binding protein A4 4.73 | ~ Cytoplasm other

SERPINA3 serpin peptidase inhibitor, clade A (alpha-1 antiproteinase,
antitrypsin), member 3

58.49 | 2.51 Extracellular
space

other

TNFAIP6 tumor necrosis factor, alpha-induced protein 6 3.02 | ~ Extracellular
space

other

Orphan

MGLL monoglyceride lipase −7.85 | -18.15 Plasma
membrane

enzyme

MYO9B myosin IXB 2.18 | ~ Cytoplasm enzyme

PAFAH1B1 platelet-activating factor acetylhydrolase 1b, regulatory subunit 1
(45 kDa)

~ | -2.86 Cytoplasm enzyme

PDE4B phosphodiesterase 4B, cAMP-specific 5.60 | 2.36 Cytoplasm enzyme

DEK DEK oncogene −3.01 | -7.35 Nucleus transcription regulator

TCF12 transcription factor 12 2.16 | ~ Nucleus transcription regulator

IGSF6 immunoglobulin superfamily, member 6 22.46 | 3.27 Plasma
membrane

transmembrane receptor

THBD thrombomodulin 3.85 | 2.09 Plasma
membrane

transmembrane receptor

TGFB2 transforming growth factor, beta 2 −4.00 | -7.97 Extracellular
space

growth factor

KCNN4 potassium intermediate/small conductance calcium-activated
channel, subfamily N, member 4

3.09 | -9.43 Plasma
membrane

ion channel

PRSS23 protease, serine, 23 4.05 | ~ Extracellular
space

peptidase

PTPN4 protein tyrosine phosphatase, non-receptor type 4 (megakaryocyte) 4.49 | 2.21 Cytoplasm phosphatase

CALB1 calbindin 1, 28 kDa −2.09 | ~ Cytoplasm other

CLEC12A C-type lectin domain family 12, member A 10.29 | 2.15 Plasma
membrane

other

LCP1 lymphocyte cytosolic protein 1 (L-plastin) 6.08 | 2.80 Cytoplasm other

LSP1 lymphocyte-specific protein 1 11.72 | 2.14 Cytoplasm other

MYO1F myosin IF 4.27 | 2.26 Cytoplasm other

SERPING1 serpin peptidase inhibitor, clade G (C1 inhibitor), member 1 5.81 | 2.03 Extracellular
space

other

Slpi (includes
others)

secretory leukocyte peptidase inhibitor 82.91 | 3.12 unknown other

Primary: >10 connections in GOI network (see text); Secondary: 5–10 connections in GOI network;
Peripheral: <5 connections in GOI network; Orphan: No connections in GOI network;
Italics= > Gene changes on both sides of the brain; Bold= > Gene changes only contralaterally; All other genes change only ipsilaterally;
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prominently (primary and secondary tiers) in the post-TBI
IR. These molecules may, therefore, be more efficient tar-
gets for therapeutic strategies to combat post-TBI inflam-
mation because they are activated regardless of the
initiating factor.
Two well characterized signaling pathways stood out in

our GIH: toll-like receptor/NF-κB signaling and JAK/
STAT signaling. There was some concern that our choice
of canonical pathway may have skewed our analysis to-
wards these signaling pathways (toll-like receptor/NF-κB
and JAK/STAT) because large portions of both of these
pathways are included in IL-6 signaling (Figure 4). While
12 GOI are included in that pathway, 8 of these genes
were also identified by other analyses used to identify
GOI, further supporting their importance to the post-TBI
IR. Additionally, interconnection of the genes in IL-6
signaling could not account for the total number of 1st

order connections for these genes in the GOI network
used to build the GIH. This was especially true for genes
in the primary tier. 19 GOI were either a part of
(CEBPB, FOS, NFKB2, EGFR, IKBKB, IL1B, TLR4,
MYD88, TLR2, TNFRSF1A, CD14, IL1R2), a product of
(IRF1, FN1, CCND1, CASP3), or associated with (IRF7,
LYN, HSP90AA1) toll-like receptor/NF-κB signaling
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[8]. 15 of these genes were in the primary tier of the
GIH. Secondarily, 5 GOI (JAK2, STAT3, CDKN1A,
IL6R, IL6ST) were a part of JAK/STAT signaling [8],
and three of these genes were in the primary tier. Based
on our analysis, these signaling pathways are likely can-
didates for the induction of post-TBI IR. Therefore,
therapeutic strategies aimed at the molecules in these
pathways may reduce TBI-induced inflammation and,
by extension, post-TBI neuronal death.
It should be noted that this study only takes a snapshot

at 24 hours post-injury of a dynamic and evolving molecu-
lar process initiated by TBI [37]. Therefore, significant
molecular events that precede and follow this time point
are not reflected in these data. For a more complete exam-
ination of the molecular response to TBI, a study includ-
ing multiple time points before and after 24 hours will be
necessary and are underway in our laboratory. Further,
confirmation of the biological relevance of any observed
gene expression profile following TBI is a critical next step
to exploring potential therapies for brain trauma [26,38].
Conclusions
Microarray analysis is a powerful tool that allows for the
analysis of thousands of genes simultaneously. We demon-
strated that TBI was associated with a powerful pro-
inflammatory response in ipsilateral brain tissues. We also
noted the distinct IR gene expression pattern that suggests
a remote anti-inflammatory response. The use of multiple
network and pathway analyses to identify GOI aided in
making our datasets manageable and revealed 2 distinct
pathways, toll-like receptor/NF-κB signaling and JAK/
STAT signaling, associated with post-TBI secondary neural
injury. Our GIH provides a starting point for investigating
therapeutic targets in a ranked order that is somewhat dif-
ferent than what has been presented previously in micro-
array studies. In addition to being a vehicle for identifying
potential targets for post-TBI therapeutic strategies, our
GIH can also provide a context for evaluating the potential
of therapeutic agents currently in development.
Methods
Animals
All animals used in these studies were treated humanely
and with regard for alleviation of suffering and pain and all
protocols involving animals were approved by the IACUCs
of Morehouse School of Medicine and/or The Georgia In-
stitute of Technology prior to the initiation of experimenta-
tion. Adult male Sprague–Dawley rats (290-300 g; Charles
River Laboratories International, Inc., USA) were housed
individually in standard plastic cages in a temperature-
controlled room (22 ± 2°C) on a 12 h reverse light–dark
cycle. Food and water were provided ad libitum.
Controlled cortical impact
Under isoflurane anesthesia, rats received a unilateral con-
trolled cortical impact (CCI/TBI) using the Pittsburgh
Precision Instruments, Inc. device. A craniotomy was
made with the center 4 mm posterior and 3–4 mm lateral
to bregma using a 6 mm diameter trephan drill bit. The
impact was done at an angle of 15° from vertical with a
velocity of 3 m/s to a depth of 2 mm using a 5 mm diam-
eter impact tip. The rats were sacrificed 24 h post-injury
and the brains were removed for RNA isolation or
histology.

RNA preparation and GeneChip analysis
The ipsilateral hemi-brain tissue at the site of the injury,
the corresponding contralateral hemi-brain tissue, and
naïve (control) brain tissue (n = 3 for each) were used for
RNA isolation. Total RNA was extracted with TRIzol
Reagent (Life Technologies, Rockville, MD, USA) and
cleaned (RNAqueous Kit, Ambion, Austin, TX, USA).
The RNA was prepared for microarray hybridization
with the GeneChipW 30 IVT Express Kit (Affymetrix Inc.,
Santa Clara, CA, USA) aRNA amplification procedure.
Briefly, total RNA was reverse transcribed to synthesize
first-strand cDNA containing a T7 promoter sequence.
The single-stranded cDNA was converted into a double-
stranded DNA template for transcription. The reaction
employed DNA polymerase and RNase H to simultan-
eously degrade the RNA and synthesize second-strand
cDNA. In vitro transcription generated multiple copies
of biotin-modified aRNA from the double-stranded
cDNA templates (this was the amplification step). aRNA
Purification removed unincorporated NTPs, salts, en-
zymes, and inorganic phosphate to improve the stability
of the biotin-modified aRNA. Finally, the labeled aRNA
was fragmented to prepare the target for hybridization to
GeneChipW 30 expression arrays [39]. Following fragmen-
tation, 15 μg of the biotinylated cRNA was hybridized to
an Affymetrix Rat Genome 230 2.0 GeneChip. The chips
were hybridized at 45°C for 16 h, and then washed, stained
with streptavidin–phycoerythrin and scanned according to
manufacturing guidelines.

Microarray data analysis
Data analysis was performed using Affymetrix Expression
Console™ software that supports probe set summarization
and CHP file generation of 30 expression using the MAS5
Statistical algorithm. Affymetrix microarrays contain the
hybridization, labeling and housekeeping controls that
help determine the success of the hybridizations. The
Affymetrix Expression Analysis algorithm uses the Tukey’s
biweight estimator to provide a robust mean Signal value
and the Wilcoxon’s rank test to calculate a significance or
p-value and Detection call for each probe set. The Detec-
tion p-value is calculated using a Discrimination Score [R]



White et al. BMC Genomics 2013, 14:282 Page 18 of 20
http://www.biomedcentral.com/1471-2164/14/282
for all probes. The Discrimination Score is a basic prop-
erty of a probe pair that describes its ability to detect its
intended target. It measures the target-specific intensity
differences of the probe pair (perfect match (PM) –
mismatch (MM)) relative to its overall hybridization
intensity (PM+MM). Background estimation is provided
by a weighted average of the lowest 2% of the feature
intensities. Mismatch probes are utilized to adjust the
perfect match (PM) intensity. Linear scaling of the fea-
ture level intensity values, using the trimmed mean, is
the default to make the means equal for all arrays being
analyzed. False-negative and false-positive rates are
minimized by subtracting nonspecific signal from the
PM probe intensities and performing an intensity-
dependent normalization at the probe set level. Three
chips were used for each experimental group: ipsilateral,
contralateral and naïve control. The datasets produced by
the Affymetrix software contain gene identifiers and corre-
sponding expression values. The datasets used for this
study can be accessed in the Gene Expression Omnibus
(http://www.ncbi.nlm.nih.gov/geo/) of the National Center
for Biotechnology Information (NCBI) with accession
number GSE45997. These data were analyzed in Microsoft
Excel for calculation of fold change and whether the genes
were confirmed as present in the tissue sample (as deter-
mined by the Affymetrix software). Genes in the injured
brain that increased or decreased in expression by 2-fold
or more compared to controls and were present in either
all 3 ipsilateral samples or all 3 contralateral samples
were identified. The gene datasets that were generated
were ipsilateral vs naïve (TBI-I) and contralateral vs
naïve (TBI-C) fold changes.

Principal component analysis
PCA was carried out using the Gene Expression Similarity
Investigation Suite software (Genesis; Graz University of
Technology). The microarray datasets were analyzed and
a matrix was constructed to determine distribution of
variants. To compute the principal components (PCs),
Genesis calculates the n eigenvalues and their correspond-
ing eigenvectors are calculated from the (n x n) distance
matrix using Singular Value Decomposition (SVD), where
n = number of genes [40]. The score for each experimental
dataset per PC was determined by multiplying the initial
expression value by the Genesis calculated eigenvector for
each gene and adding up the resulting values. The scores
were plotted on the X, Y, and Z axes resulting in a 3D
scores plot where the coordinates are (PC1 score, PC2
score, PC3 score).

Ingenuity pathway analysis
The gene datasets were analyzed using Ingenuity Path-
way Analysis (IngenuityW Systems, www.ingenuity.com)
and overlaid onto a global molecular network developed
from information contained in the Ingenuity Knowledge
Base. Fischer’s exact test was used to calculate a p-value
determining the probability that each biological function
and/or disease assigned to that network is due to chance
alone. The functions, canonical pathways, and gene net-
works that were most significant to the dataset were
identified. Gene expression profiles were overlaid on the
canonical pathway and gene network figures to reveal
similarities and dissimilarities in their gene expression
patterns. Gene networks were also created using Ingenu-
ity Knowledge Base to further understand specific inter-
actions between our genes of interest.
TBI-I/TBI-C ratio
We used the following formulas to calculate the ratio of
TBI-I to TBI-C fold changes: (1) Gene increased on both
sides: ratio = (TBI-I)/(TBI-C); (2) Gene decreased on both
sides: ratio = 1/[(TBI-I)/(TBI-C)]; and (3) Gene increased
ipsilaterally and decreased contralaterally: ratio = (TBI-I)/-
[1/(TBI-C)].
Histology and immunohistochemistry
At 24 h post injury, rats were anesthetized with an intra-
peritoneal injection of a ketamine:xylazine:acetylpromazine
cocktail (50:10:1.67 mg/kg respectively) and perfused
transcardially with saline followed by cold 4% paraformal-
dehyde solution in PBS for 30 min. Brains were quickly
removed and cryoprotected in 30% sucrose. The brains
were then frozen in OCT mounting medium and stored
until sectioning. Coronal sections of 20 μm thickness were
cryosectioned from the perilesional brain area of each
animal. Sections were mounted on slides which were
stored at −80°C until further processed. Fluoro-JadeW

B (FJB; AG310, Millipore, Billerica, MA) labeling was
performed as previously described [20]. Immunohisto-
chemical localization of macrophages and activated micro-
glia was performed using antibodies against ED-1 (1:500,
MAB1435, Millipore) and CD11b (1:500; CBL1512,
Millipore). After rinsing in 0.01 M PBS, sections were
blocked with buffer containing 5% normal goat serum and
0.3% triton-x 100 for 1 h at 4°C and then incubated for
1 h at 37°C with the primary antibodies. Sections incu-
bated with antibodies to ED-1 and CD11b were washed
with PBS and incubated with DyLight 594 and DyLight
488 conjugated goat anti-mouse secondary antibodies, re-
spectively (1:400; Jackson ImmunoResearch Laboratory,
West Grove, PA) for 1 h at room temperature. Negative
control sections for immunohistochemistry were incu-
bated with the secondary antibody only (no primary
antibodies). A Zeiss microscope equipped with a CCD
camera (Carl Zeiss Microimaging Inc, Thornwood, NY)
was used to capture digital images of the sections.

http://www.ncbi.nlm.nih.gov/geo/
http://www.ingenuity.com
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Additional files

Additional file 1: GOI (genes of interest) network created in IPA.
This is the resulting network when IPA connected our 114 GOI using only
direct (1st order) connections between the genes. 95 of the GOI formed
an interconnected network, leaving 19 “orphan” genes.

Additional file 2: Primary tier example for how direct connections
were counted. This figure shows an example of how we calculated the
number of direct connections for a gene in our GOI network. In IPA, the
gene in question was selected (JAK2 in this example). Then, its direct
connections were selected by right clicking on JAK2 and using the
"select nearest neighbors" option (highlighted in blue). A list of the
selected genes was exported and JAK2 was removed from the list (upper
right corner). The remaining genes were counted (15 in this example)
and JAK2 was ranked in the gene interaction hierarchy (primary tier) by
this number.

Additional file 3: Secondary tier example for how direct
connections were counted. This figure shows an example of how we
calculated the number of direct connections for a gene in our GOI
network. In IPA, the gene in question was selected (IRF2 in this example).
Then, its direct connections were selected by right clicking on IRF2 and
using the "select nearest neighbors" option (highlighted in blue). A list of
the selected genes was exported and IRF2 was removed from the list
(upper right corner). The remaining genes were counted (7 in this
example) and IRF2 was ranked in the gene interaction hierarchy
(secondary tier) by this number.
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