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Abstract

Background: Traumatic brain injury (TBI) induces arachidonic acid (ArA) release from cell membranes. ArA
metabolites form a class of over 50 bioactive eicosanoids that can induce both adaptive and/or maladaptive brain
responses. The dynamic metabolism of ArA to eicosanoids, and how they affect the injured brain, is poorly
understood due to their diverse activities, trace levels, and short half-lives. The eicosanoids produced in the brain
postinjury depend upon the enzymes present locally at any given time. Eicosanoids are synthesized by heme-
containing enzymes, including cyclooxygenases, lipoxygenases, and arachidonate monoxygenases. The latter
comprise a subset of the cytochrome P450 “Cyp” gene family that metabolize fatty acids, steroids, as well as
endogenous and exogenous toxicants. However, for many of these genes neither baseline neuroanatomical nor
injury-related temporal expression have been studied in the brain.

In a rat model of parietal cortex TBI, Cyp and eicosanoid-related mRNA levels were determined at 6 h, 24 h, 3d, and
7d postinjury in parietal cortex and hippocampus, where dynamic changes in eicosanoids have been observed.
Quantitative real-time polymerase chain reaction with low density arrays were used to assay 62 rat Cyps, 37 of
which metabolize ArA or other unsaturated fatty acids; 16 eicosanoid-related enzymes that metabolize ArA or its
metabolites; 8 eicosanoid receptors; 5 other inflammatory- and recovery-related genes, plus 2 mouse Cyps as
negative controls and 3 highly expressed "housekeeping” genes.

Results: Sixteen arachidonate monoxygenases, 17 eicosanoid-related genes, and 12 other Cyps were regulated in
the brain postinjury (p < 0.05, Tukey HSD). Discrete tissue levels and distinct postinjury temporal patterns of gene
expression were observed in hippocampus and parietal cortex.

Conclusions: The results suggest complex regulation of ArA and other lipid metabolism after TBI. Due to the
temporal nature of brain injury-induced Cyp gene induction, manipulation of each gene (or its products) at a given
time after TBI will be required to assess their contributions to secondary injury and/or recovery. Moreover, a better
understanding of brain region localization and cell type-specific expression may be necessary to deduce the role of
these eicosanoid-related genes in the healthy and injured brain.
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Background

The conversion of arachidonic acid (ArA) to over 50
bioactive eicosanoids is catalyzed by a variety of enzymes
including heme-containing cyclooxygenases, prostanoid
synthases, lipoxygenases, and arachidonate monoxygenases.
The latter, arachidonate hydroxylases and epoxygenases,
comprise a subset of the cytochrome P450 or “Cyp” gene
family of evolutionarily related proteins that metabolize
polyunsaturated fatty acids, steroids, as well as endogenous
and exogenous toxicant molecules in organisms from bac-
teria to primates [1].

These Cyp arachidonate monoxygenases produce hydro-
xyeicosatetraenoic acids and epoxyeicosatrienoic acids
(HETEs and EETs) that modulate a variety of responses in
the healthy and injured brain. HETEs and EETs have been
implicated in the physiology of the febrile response, sti-
mulation of hypothalamic somatostatin release, pituitary
vasopressin, oxytocin and luteinizing hormone release,
pancreatic glucagon and insulin release, inhibition of plate-
let aggregation, inhibition of the activity of Na"K"-ATPase
in the nephron and corneal epithelium, regulation of blood
pressure, vasodilation of local microcirculation in the kid-
ney, intestine, heart and brain [2-5]. Their activities in-
clude cerebral vasoconstriction [6-10] and vasodilatation
[11-15], possibly by modulation of monovalent and diva-
lent ion flux [6,16-24].

Many of these Cyps are induced during inflammatory
challenge, however recent evidence suggests that their
products may diminish inflammation [2,25-27]. A num-
ber of neuron-specific effects have also been ascribed to
HETEs and EETs, e.g, 12-HETE neuroprotection from
glutamate-mediated cell death [28] and 14,15-EET accel-
eration of axonal growth [29] in primary cell cultures. In
addition, EETs recently have been implicated in central
nociceptive and hyperalgesic responses, with different
EETs potentially moderating different effects on pain
perception [22,30-34].

Brain injuries activate phospholipases and result in the
release of fatty acids such as ArA from damaged mem-
branes [35-37]. Within 48 h of traumatic brain injury
(TBI), free fatty acid levels increased in human cerebral
spinal fluid (CSF), compared to neurologically unimpaired
controls [38]. Arachidonic acid (20:4 ®-6) increased
1093%; docosahexenoic acid (22:6 w-3) 475%; oleic acid
(18:1) 492%; myristic acid (14:0) 279%; linoleic acid (18:2)
203%; and palmitic acid (18:0) 175%. ArA levels can re-
main elevated for days after TBI [36]. The eicosanoids
formed in different brain regions in response to TBI
change dynamically over the minutes, hours, and days
postinjury, likely due to local alterations in the expression
of their synthetic enzymes. Regulation of prostaglandin
and leukotriene metabolites and many of their source en-
zymes in the brain and after TBI have been well described
[39-50]. Dynamic changes in P450 eicosanoid levels also
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occur in the injured brain [1541,51-57]. However, the
production, enzymatic sources, and local regulation after
brain injury of hydroxylases, epoxygenases and their prod-
ucts have been less well studied.

Local brain HETE and EET levels have not been well
described due to their trace levels, short half-lives, and
closely related chemical structures. Moreover, because of
the historic lack of gene-specific antibodies and mole-
cular probes, it has been difficult to characterize the
regulation of individual Cyp genes in this large family.
Completion of the sequencing of the rat genome [58]
has yielded molecular probes specific for each identified
(and predicted) Cyp gene family member. Many quanti-
tative real-time polymerase chain reaction (QPCR) probe
sets have now been empirically validated and are com-
mercially available. This study utilizes qPCR to quantify
multiple Cyps and other eicosanoid-related gene changes
in the rat hippocampus and parietal cortex at several time
points after TBI. Determining the regulation of these
genes and their eicosanoid products in specific brain re-
gions and at specific time points after brain injury are the
first steps in the investigation of their contribution to sec-
ondary brain damage and/or recovery of function.

Results

Custom low density array qPCR assays, normalization and
negative controls

Parietal cortex and hippocampal cDNA from naive and
brain-injured or sham-operated rats at 6 h, 24 h, 72 h, or
168 h after surgery (n =3 per group) were used to deter-
mine the expression profiles of 96 genes in custom low
density arrays by qPCR (see Additional file 1: Table S1 for
probe set identifiers). The assays included 62 rat Cyp
genes (37 known to metabolize ArA or other unsaturated
fatty acids), plus 2 mouse Cyps as negative controls; 16
eicosanoid-related genes that metabolize arachidonic acid
or its primary metabolites; 8 eicosanoid receptor genes; as
well as 5 inflammatory- or recovery-related genes; plus 3
highly expressed housekeeping genes.

Starting with equal quantities of total RNA, the
housekeeping genes Ppia (peptidylprolyl isomerase A or
cyclophilin-A, CYC); glyceraldehyde 3-phosphate de-
hydrogenase, and 18S rRNA were examined first to de-
termine which to use for normalization purposes. Ppia
was the least variant (Additional file 2: Figure S1), and
subsequent qPCR C, values for each target gene were
normalized as the initial copy number ratio (f; that is
proportional to 2", see Methods) to compare expres-
sion of the same gene between specimens.

Two cross-species negative controls were included in
this study to test for amplification specificity in the
highly conserved cytochrome P450 gene family. Probe
sets for mouse Cyp2c54 and Cyp2c50 yielded no detect-
able amplification products in nearly all specimens.
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Unexpectedly, the probe set for mouse Cyp2c54 showed
expression in the injured hippocampus only at 24 h, in
all 3 rats from this treatment group. Upon closer scrutiny,
5 distinct rat sequences were found to have homology
within the probe set of mouse Cyp2c54 (see Additional
file 3). However, 3 of the rat genes examined in these ana-
lyses (Cyp2c12, Cyp2cl3, Cyp2c37) showed no changes at
any time point, and the 2 processed pseudogenes were not
assayed. This result may characterize transient local ex-
pression of a pseudogene or a new rat Cyp homolog.

Overview of gene expression changes

Forty-five of the 96 genes studied showed time-dependent
changes in cortex or hippocampus after TBI (p <0.05,
Tukey HSD, Table 1). Sixteen arachidonate-metabolizing
Cyps (Table 1A) as well as 17 other eicosanoid-related
genes (Table 1B) were temporally regulated in injured
hippocampus and/or cortex. Moreover, several Cyps with
other known functions were regulated in the brain after
TBI (Table 1C). Over half of the genes examined (51/96)
showed differential expression levels between parietal
cortex and hippocampus (p < 0.05, Tukey HSD, Additional
file 1: Table S2). There were 12 genes showing sham effects;
i.e, differences between naive mRNA levels and shams at
one or more time points (Additional file 1: Table S3).
These were due to anesthesia or surgical intervention, and
might have masked injury-related mRNA changes.

Temporal expression of eicosanoid-related expression
after traumatic brain injury

Of the genes found to change over time, expression
patterns of arachidonate-metabolizing and eicosanoid-
related genes (Table 1A,B), as well as other Cyp genes
(Table 1C) are presented below, organized by temporal
pattern (i.e., time of onset and duration), with neuroana-
tomic differences noted for each.

Acute changes in mRNA levels were those initiated at
6 h or 24 h and did not persist at 72 h after TBL In both
hippocampus and parietal cortex, Ptgs2 (cyclooxygenase-2,
COX2) was increased at 6 h only. In hippocampus, acute-
only increases included Cyp2c6, Cyp2c22, Cyp2c23,
Cyp2c54, Cyp2el, Cyp4al and Hpgd. In cortex, acute-
only increases included Cyp4fI8, Alox15, AloxSap, Ptges,
Ptgis and Ptgir.

Early- and delayed-onset transient changes after TBI
were defined as those changes lasting more than 24 h
but not after 72 h postinjury. These included Ptgsi (72 h
only) in both hippocampus and cortex; in hippocampus
Ptger2 (biphasic at 6 h, 72 h) and Ptgir (6 to 72 h); and
in parietal cortex Cyp4b1 (Additional file 4: Figure S2),
Pla2gda (6 to 72 h), Cyp2j3 and Thxasl (72 h only). It
should be noted that changes detected at 72 h only
might actually have been prolonged between 1d to 6d
surrounding the 72 h timepoint.
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Several mRNA levels changed acutely (within 24 h
postinjury) and remained altered throughout the 7d ob-
servation period. These included Cyp4bl (Additional
file 4: Figure S2), Cyp4a8 and Pigfrn in hippocampus;
Ptger4 and Cyp4x1 (the only mRNA consistently de-
creased) in parietal cortex. Levels of Lta4h mRNA were
increased biphasically, at 6 h and again at 72 h to 168 h
in parietal cortex.

A number of genes showed delayed-onset prolonged
changes (from 72 h to 168 h postinjury, or at 168 h only).
In hippocampus AloxSap, Cyp2ul, Cyp4f5, Cyp4fé,
Pla2g4a, Ptger4, and Thxasl were increased from 72 h to
168 h; whereas Cyp2j3, Cyp2j4, Ptges, Ptgis, Ptgdr, and
Ephx1 were increased at 168h only. In both hippocampus
and parietal cortex, Cyp26b1 and Ptgds2 increased at 168 h
only. It should be noted that changes detected at 168 h
only might have occurred as early as 4d postinjury or only
transiently around the 7d endpoint of this study.

Temporal expression of steroid metabolizing and other
Cyp genes after traumatic brain injury

Several other Cyp genes not known to metabolize ArA or
polyunsaturated fatty acids showed altered levels after TBI
(Table 1C). Acute only changes from 6 h to 24 h postinjury
were seen in the cortex for Cyp24al and Cyp27bI; and at
24 h only for Cyp3a18 in hippocampus. Transient changes
were seen for Cypl1b3 and Cypl7al in hippocampus, and
for Cyp1bl in cortex. Acute-prolonged changes (6 h or
24 h through 168 h) were observed for Cyplal and
Cyp7al in hippocampus. Several were upregulated in a
delayed-prolonged manner, including Cyplbl, Cyp2ri,
Cyp20al, Cyp27al and Cyp27b1 in hippocampus. Inter-
estingly, Cyp2a2 mRNA appeared below detectable
levels in the hippocampus in most sham and all naive
rats except at 24 h postinjury (suggesting gene induc-
tion), and 15/28 rats had below detectable levels in par-
ietal cortex.

Localization of Cyp2j4 and Cyp27a1 expression

As a first step in localizing the expression of two brain
injury regulated Cyps of diverse function, in situ hybrid-
ization histochemistry was used to visualize Cyp2j4 and
Cyp27al expression at 7d postinjury. Predominantly neur-
onal expression was seen for both Cyp2j4 and Cyp27al in
neocortex. For Cyp2j4 mRNA, cortical, hippocampal and
habenular regions showed intense staining primarily in
what appeared to be neuronal cells, with only light stain-
ing in the thalamus. Light staining of perivascular and
other cell types was evident bilaterally. Little to no staining
was observed in the corpus callosum or other white mat-
ter structures. Expression appeared greatest in injured
parietal (Figure 1A) and piriform cortex (Figure 1B), com-
pared with both sham and contralateral brain regions,
whereas cingulate cortex showed expression bilaterally
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Table 1 Changes in rat brain cyp and arachidonate-related
gene expression after traumatic brain injury

HIPPOCAMPUS, time CORTEX, time
postinjury: postinjury:
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Table 1 Changes in rat brain cyp and arachidonate-related
gene expression after traumatic brain injury (Continued)

Cyp20ai 2] [2x]  2.5x

Cyp24ai ~55x" ~7xd b
Cyp27al [Vax] [3x] 9x [ax]  [15x]  [2x]
Cyp27b1 2 ~8" <1 P =24

Gene 6h 24h 72h 168h 6h 24h 72h 168 h
name
A. Arachidonate-related Cyps: mRNA fold-changes*
Cyp2c6 b 35x b b b b
Cyp2c22 3x
Cyp2c23 3x
Cyp2c54 b 3x b b b b b b
Cyp2el 2.5x
Cyp2j3 2x 2x  [1.5x]
Cyp2j4 2x  4x 2" [15x]
Cyp2ul 1.5x  2.5x
Cyp4al 3x
Cyp4a8 2" " o 2
Cyp4b1 B 6ex" sx  ox 2" 3" ax" [15x
Cyp4fs 1.5x 2x [15x] [1.5x]
Cyp4f6 1.5x  2x
Cyp4f18 3x" [2x]  [1.5x]
Cyp4x1 5% Yax [Vax]  Vax 9
Cyp26b1 4x" 2.5x
B. Eicosanoid-related genes: mRNA fold-changes*
Alox15 4x [2x]
Ptgds2 6x  8x sx"  4x'
Ptges [2x] [3x] [3x]  11x 14.5x [45x] [1.5x] [1.5x]
Ptgis M5x 3.5x  2x  1.5x" [25x [25x]
Ptgs1 6X [V2X] 2.5x  [2X]
Ptgs2 3x [ox] [ex] 5x [3x]
Tbxas1 3x  5x [B5 B4 6" [354
Ephx1 2x
Hpgd 1.5x
Lta4h [1.5%] 2.5x" 154
Pla2g4a [2x] 2  3.5x" 25x" 25x" 2.5x"  5xT [2x]
Alox5ap [2x]  [3x] 4x 4x 5x [3x]  [3x]
Ptgfrn 1.5x  1.5x 1.5x 1.5x
Ptgdr_pred [15x]  3x [25x] [2.5x]
Ptger2 2x  [15x]  3x [2x] [2x]  [25x] [2.5X]
Ptger4 25x [25x 5x  7x 25" 15x" 2.5x" 1.5xT
Ptgir 6x" 5x" 3x' [2.5x] 4x 2.5x  [24]
C. Other Cyp genes: mRNA fold-changes*
Cyplai 25x" 1.5x" 1.5xT
Cyp1bi 3x 20x 5x" 6.5x 3.5x"
Cyp2a2 b [~10x b
Cyp2ri [1.5x]  2.5x
Cyp3ai8 3x
Cyp7al B4 a5t e b b
Cyp11b3 95" 85" 25!
Cyp17ai 3x

A: Arachidonate-related Cyps; B: Eicosanoid-related genes; C: Other Cyp genes.

Gene expression assessed by qPCR is expressed as fold-change “x” compared

to sham-operated controls at the same time point (i.e,, 2°22Y). Only changes
greater than 1.5x (or less than Y2x) are shown. *p < 0.05, 2-way ANOVA, Tukey
HSD (except where noted). Analyses performed on 22 values of injured vs.
sham at designated times after TBI (shown as fold-change rounded to the
nearest %2x). 1 p < 0.05, 1-way ANOVA with all shams combined as time zero.
[x] brackets indicate changes >1.5-fold that were not statistically significant,
but showed a trend (0.05 < p < 0.10). ® Below the limit of quantification at
these times. ~ Control (naive, sham) values at or below limit of quantification,
thus fold-change estimated based on highest control value(s).

(not shown). Heaviest staining appeared in layer II cortical
neurons, Ammon’s horn and dentate gyrus hippocampal
neurons (Figure 1C), with many light to moderately
stained cells in deeper cortical layers. Ipsilaterally, deep
cortex and the hippocampal CA1 field showed a large
number of lightly stained small cells (likely microglia or
macrophages) that were not present contralaterally. In
the midbrain, light staining was observed in some
neuron-like and smaller cells, and in some microvascu-
lar and blood cells throughout the brain.

A different pattern of staining was observed for
Cyp27al mRNA. Cingulate, parietal, perirhinal and piri-
form cortex showed Cyp27al stained cells throughout
all cortical layers. Intense staining was observed in many
cortical layer II and deeper layer neurons (Figure 2A, B),
as well as Ammon’s horn and dentate gyrus hippocampal
neurons (Figure 2B). Medial habenula and some thalamic
neurons were also intensely stained; and choroid plexus,
third ventricle ependymal cells, and pial cells were moder-
ately to intensely stained for Cyp27a1 mRNA (not shown).
Moderate stain was seen in some larger vascular profiles
(but not microvasculature), as well as many (possibly
oligodendroglial) cells in the corpus callosum, hippocam-
pal fimbria, and other white matter structures (Figure 2B).

Discussion

The parietal cortex and hippocampus are two brain
regions that have been closely associated with the neuro-
logic deficits observed in this model and in human brain
injuries. Dynamic changes in mRNA levels were observed
in these regions ipsilateral to TBI for many Cyp arachi-
donate monoxygenases and eicosanoid-related genes. A
number of Cyp genes with other activities showed changes
over time postinjury, as well. Altered mRNA levels do not
unequivocally indicate altered enzymatic activities, how-
ever, nearly all changes showed higher mRNA levels,
supporting their proposed function in the sustained surge
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of free fatty acid metabolism proximal to the site of injury
during the hours and days after TBI. Altered eicosanoid
metabolism at specific times after brain injuries contributes
to dynamic local changes in the cerebral vasculature, in-
flammatory status, neural cell death, as well as neurophysi-
ologic functions. It is not clear whether the observed
responses to TBI are beneficial or not, but these results
suggest brain region-specific changes in arachidonate me-
tabolism due to alterations in the enzymatic machinery
available at the time.

Histochemical detection of two Cyp mRNAs, one
known to metabolize ArA (Cyp2j4) and the other known
to metabolize cholesterol and vitamin D (Cyp27a1) showed
different expression patterns at a time when both were in-
duced in the injured brain. The distribution of Cyp2j4 ex-
pression appeared to increase predominantly in cortical
layer II neurons ipsilateral to injury, whereas Cyp27al
appeared more widespread in neurons and other cells
throughout the brain. Staining for Cyp27a1 was seen in
many non-neuronal cells, particularly in lining cells of the
brain and less intensely in white matter and larger vas-
cular structures. Less non-neuronal staining was seen
for Cyp27al, in some smaller (likely glial) cells in deep
cortex and hippocampus ipsitlateral to injury, as well as
light staining in some microvascular structures.

The catalytic specificity of many Cyp monoxygenases
show promiscuous substrate specificity (e.g., ArA, lino-
leic acid [56,59], etc.) and varying product profiles. This
may have a number of implications after TBI, since CSF
levels of many free fatty acids are elevated [38]. One Cyp
enzyme may metabolize the same substrate differently in
different tissues or under different conditions, thus, Cyp
activities remain poorly defined. Still it may be useful to
organize the observed changes in terms of the expected
activities of the eicosanoid-related genes in the injured
brain (assuming increased mRNA levels yield increases
in active proteins).

Functionality of temporally regulated genes

Early increases of prostanoid levels due to the rate-
limiting enzyme COX2 in the injured brain, and their con-
tribution to secondary injury has been well established
[39,41-43,45,47,48,51,60-69]. This study revealed temporal
regulation of prostanoid synthases, Ptgs! (COX1), Ptgs2
(COX2), Ptges (PGE2 synthase, PGES), Ptgds2 (PGD2
synthase-2), Ptgis (prostacyclin synthase), and Tbxasl
(thromboxane A synthase 1) in hippocampus and cortex
after TBL In the cortex, Ptgs2, Ptges and Ptgis were acutely
upregulated. Interestingly, Ptgds2 and Ptgs] were elevated
between 3 to 7d postinjury. Another picture emerged
in the hippocampus. Whereas Ptgs2 and Ptgds2 were
upregulated as in cortex, Ptges and Pigis were upregulated
much later in hippocampus, at 7d postinjury. The acute
elevation in COX2 mRNA was consistent with previous

Page 5 of 14

results in the rat, where levels in hippocampus were
greater than in cortex and COX2 mRNA returned to sham
levels by 24 h postinjury [47,70]. Ptges is a prostaglandin
(PG) synthase that catalyzes the formation of PGE2 from
PGG2/PGH2 formed by cyclooxygenases. Its acute induc-
tion in the cortex was followed at 7d by an increase in
hippocampus. The levels of PGE2 itself are elevated
acutely after TBI in both the parietal cortex and hippo-
campus, and remain elevated for at least 3d postinjury
[71], despite the increase in Hpgd mRNA (a prostaglan-
din dehydrogenase that converts PGs to their 15-keto
metabolites) in hippocampus at 24 h postinjury. Contra-
dictory to the finding of increased hippocampal Ptges at
7d, both tissue extraction [51,71] and hippocampal mi-
crodialysis studies [71] indicated a diminution of PGE2
levels at 6 to 7 days postinjury below that of sham
animals. This increase may, therefore, represent a com-
pensatory mechanism to return hippocampal PGE2
levels to steady state.

Thromboxane has been proposed to mediate hemostasis
early after TBI by constricting blood vessels and promot-
ing platelet activation and aggregation in damaged tissues
[41,42,72,73]. Acute regulation of Thxasl was not ob-
served, either because it was transiently regulated before
the initial 6 h time point, or possibly due to posttranscrip-
tional regulation of this activity [74]. Unexpectedly,
Thxasl mRNA was elevated in ipsilateral hippocampus
between 3 to 7d postinjury (with sustained non-significant
rises in cortex). Except for Thxasl, these enzymes have
been associated with vasodilatory activities. The results
suggest a dynamic balancing of cerebral vasodilatation
and vasoconstriction proximal to the site of injury after
TBIL. Moreover, late expression of Thxasl might have im-
plications for astrocyte and microglial migration [75,76] or
remyelination [77] in the injured brain.

Four of the eight prostanoid receptor genes examined
had altered expression levels after TBI (Table 1B). The
prostacyclin receptor Ptgir mRNA levels in both hippo-
campus and cortex appeared to rise acutely, in parallel
with Ptgis in parietal cortex. In contrast, the PGD2 recep-
tor Ptgdr mRNA was elevated at 7d in the hippocampus,
while Ptgds2 levels in both cortex and hippocampus were
upregulated from 3 to 7d postinjury. In hippocampus, the
prostaglandin receptor EP2 (Ptger2) was upregulated in
what appeared to be a biphasic manner at 6 h and 3d
postinjury. The prostaglandin receptor EP4 (Ptger4) was
upregulated as well, from 3 to 7d in the hippocampus and
throughout the time course in parietal cortex. Both these
genes have been associated with the vasoactivity of PGE2,
but also have been implicated in potential neuroprotective
[78] and antiinflammatory [79,80] activities in the brain.

Early postinjury there was an upregulation in
lipoxygenase-associated gene expression (Alox15, Alox5ap)
in the cortex. Only Alox5ap mRNA was elevated in
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Figure 1 In situ hybridization histochemistry for rat Cyp2j4 mRNA in brain 7 days after TBI. Representative fields of injured and
contralateral (A) parietal cortex; (B) piriform cortex; (C) hippocampal dentate gyrus. Note the apparent loss of pyramidal neurons in the ipsilateral
dentate hilar region. Little staining was observed in the corpus callosum or other white matter structures. Some microvascular profiles appeared
to stain positive in these non-perfused fresh frozen brain sections. Studies were carried out starting anterior to the site of injury, staining every
sixth section through the injured volume (bregma —1.8 mm to approximately —4.5 mm, according to the coordinates of Paxinos and Watson
[155]). High stringency hybridization and washes were performed as described in Section In situ hybridization histochemistry.
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Figure 2 In situ hybridization histochemistry for rat Cyp27al mRNA in brain 7 days after TBI. (A) Representative fields of injured parietal
cortex with higher magnification of negative control sense probe in the same region of a different section (top inset) and neuronal staining with
a large vascular profile (bottom inset). (B) Composite showing injured and contralateral hippocampal Cyp27al mRNA with ablation of neuronal
staining, as well as heavier non-neuronal staining ipsilateral to injury. Some intense white matter staining is visible medially in the corpus
callosum and the ipsilateral hippocampal fimbria (arrows). See Figure 1 legend for methodologic details.

Parietal Cortex - Ipsilateral
Sense Probe ~ fAEE ‘s

hippocampus, from 3 to 7d postinjury. Leukotriene prod-
ucts are known to promote neuroinflammation, increased
vascular permeability, and edema [81-83]; but may
also be associated with the production of potentially
neuroprotective HETEs [84,85]. However, unlike formation
of 12-HETE by Cyps, the 12-lipoxygenase pathway pro-
duces potentially neurotoxic HPETE intermediates [86].
Perhaps in response, several Cyps that metabolize leukotri-
enes (Cyp4f18 at 6 h only, Cyp4f5 and Cyp4f6 at 3 to 7d,
see below) as well as the leukotriene hydrolase Lta4h (at
3d postinjury) appeared to be upregulated in the cortex.
Protein levels of Lta4h have only recently been charac-
terized in the brain [87].

Of the sixty-five Cyp genes assayed, sixteen arachidonate-
metabolizing Cyps (Table 1A) and twelve other Cyps
(Table 1C) were regulated in the injured brain regions ex-
amined. In the hippocampus at 6 h after TBI, Cyp2c6,
Cyp2c22, Cyp2c23, Cyp2el, and Cyp4al mRNAs were ele-
vated (as was Cyp2c54, a mouse gene homolgous to rat
Cyp2c’s, see Results). The increased levels of Cyp2c22,
Cyp2c23, and perhaps Cyp2c54 (homologous to human
Cyp2c8 and Cyp2c9) represent activities that synthesize
various EETs [88-90], with predominantly vasodilatory ac-
tivity [91-93]. Except for Cyp4al, these enzymes have been
associated with hypertension; namely, depletion of these

activities appears to result in vasoconstriction and increased
blood pressure [94-96].

An arachidonate w-hydroxylase, Cyp4al likely pro-
duces 20-HETE as its main product [97-99] (it also cata-
lyzes w-1 hydroxylation of fatty acids, w-hydroxylation of
prostaglandins [97]). In addition, hippocampal levels of
Cyp4a8, also associated with 20-HETE formation [100],
were elevated throughout the time course studied. Thus,
Cyp4al and Cyp4a8 stand out as acute and chronic
vasoconstrictive activities, respectively, particularly after
brain injuries [7,9,100-103].

At later times postinjury, hippocampal Cyp2j3, Cyp2j4,
Cyp2ul, Cyp4f5, and Cyp4f6 levels were elevated. Cyp2j3
and Cyp2j4 likely produce mainly EETs [52,92,104].
Cyp2ul catalyzes predominantly 19- and 20-HETE for-
mation [105], whereas the Cyp4f5 and Cyp4f6 hydroxy-
lases appear to inactivate leukotrienes [50,106,107]. As
with the prostanoid synthases, it appears that regulation
of both vasodilatory and vasoconstrictive Cyp activities
may be required to balance the circulatory needs of the
injured hippocampus.

In the cortex, only two Cyp arachidonate mono-
xygenases were acutely upregulated after TBIL. At 6 h,
Cyp4f18, and from 6 h to 3d postinjury Cyp4b1 mRNA
levels were elevated. Both these genes have been
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associated with potentially neuroprotective activities.
Cyp4f18 metabolizes proinflammatory leukotrienes [108]
and Cyp4bl has been implicated in 12-HETE synthesis
in ocular tissues [84,85,109]. Hampson and Grimaldi [28]
found that 12-HETE can protect neurons from glutamate-
mediated excitotoxicity in vitro. Interestingly, while elevated
Cyp4bl mRNA was seen at 6 h in the cortex, its elevation
was delayed until 24 h postinjury in the hippocampus, a site
of extensive apoptotic cell death [110-112].

Another conspicuous finding was the reduced mRNA
level of Cyp4x1 in the cortex throughout the postinjury
period. This gene is predominantly expressed in brain
[113] and has recently been characterized in converting
the endocannabinoid anandamide to a single mono-
oxygenated product, 14,15-epoxyeicosatrienoic ethan-
olamide [114,115]. The observed reduction of this
activity might contribute to endocannabinoid-mediated
neuroprotection after TBI [116,117].

Several Cyps not directly associated with polyunsatur-
ated fatty acid metabolism also showed time- and tissue-
dependent changes after TBI that might be relevant to
secondary injury and recovery. Cyp27al, the sterol 27-
hydroylase, was differentially expressed after TBI. Hip-
pocampal Cyp27a1 mRNA levels increased 3- to 8-fold
at 72 h to 168 h postinjury, respectively, whereas cortical
levels did not appear to change. Histochemistry revealed
cells intensely stained for Cyp27al mRNA throughout
the cortex, deep brain structures, and meninges, choroid
plexus and ependymal cells. Peripherally, this enzyme me-
tabolizes bile acids, cholesterol and vitamin D3, and has
been suggested to contribute to neurodegenerative disease
by increasing cholesterol penetration across the blood
brain barrier by conversion to 27-hydroxycholesterol
[118]. Conversely, intrinsic brain expression of Cyp27al
might enhance the egress of cholesterol, released from
damaged cell membranes, from the brain to the peripheral
circulation.

Two of the Cyps acutely induced in the brain after TBI
have been shown to be regulated by acute stress-related
stimuli (e.g., stress hormones, ethanol toxicity). For ex-
ample, Cyp2c6 is rapidly induced by glucocorticoids in
rat hepatoma cells [119], and is a close homolog of hu-
man Cyp2c8 and Cyp2c9 implicated in eicosanoid pro-
duction [120-122]. Also acutely regulated, Cyp2el is a
major ethanol-inducible gene in the liver and metabo-
lizes arachidonic acid to HETEs [123]. Its expression is
~1000-fold lower in the hippocampus than the liver, and
is induced in neural cells by high concentrations of etha-
nol [124].

Surprisingly, Cyp2el inhibition has been shown to in-
crease rat brain dopamine levels, implicating it in cat-
echolamine biotransformation [125]. Selected members
of the Cyp2d subfamily (Cyp2d2, 2d4 or 2d18) also have
been shown to synthesize dopamine in vitro and in vivo
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[126,127], although none of these genes were regulated
in hippocampus or cortex after TBI. Dopamine levels
decrease acutely in the traumatically injured rat cortex,
but showed increased levels in hypothalamus and stri-
atum as soon as lh or 6h postinjury, respectively [128].
These regional changes might reflect regional decreases
in Cyp2el expression, or increased Cyp2d activity. Fur-
ther study of hypothalamic and striatal gene expression
may clarify the contribution of Cyps to acute dopamine
fluxes after TBI.

In addition to its possible role in EET production,
Cyp2c¢22 is both regulated by and able to metabolize all-
trans retinoic acid [90]. Its acute regulation after TBI sug-
gests the possibility of transducing cross-lipid signalling,
perhaps with respect to neuroinflammatory cell prolifera-
tion [90]. In addition, Cyp26b1 metabolizes retinoic acid,
including “all trans” retinoic acid, a process thought to
contribute to regulation of spatial patterning during
neurogenesis [129-131] and neuroplasticity [132,133]. In-
duced in both cortex and hippocampus at 7d postinjury,
this enzyme might contribute to neuroplasticity in the
injured brain, possibly in the formation of neuronal-
astroglial boundaries.

TBI-mediated regulation of Cypl7al was observed
only in the hippocampus, being elevated at the 24 h time
point. Cypl7al, the steroid 17alpha-hydroxylase/17,20-
lyase, is one of the key enzymes in glucocorticoid, dehy-
droepiandrosterone, and androgen biosynthesis [134]. Its
activity in the brain, until fairly recently a matter of debate,
has been established [135-137]. This activity is known to
metabolize progesterone, a neuroprotective neurosteroid
[138-140] now in phase III clinical trials for treatment of
TBI [141,142]. This is also a critical step in the biosyn-
thesis of other potentially neuroprotective neurosteroids,
including dehydroepiandrosterone [70,143,144], testoster-
one [145,146], and estradiol [147-150]. It remains to be
determined whether the enhancement of this activity (or
the others described above) after brain injury would im-
prove the recovery phenotype.

Tissue-specific differences between cortex and hippo-
campus were observed in basal mRNA levels in over half
the genes examined. In addition, hippocampus and cortex
responded differently in most cases of injury-induced
changes, as well. Nonetheless, nine genes were coordi-
nately regulated, increasing approximately the same extent,
at similar time points in both tissues. These were Alox5ap,
Cyp2j4, Cyp26bl1, Pla2g¢da, Ptgir, Ptgsl, Ptgs2, Ptgds, and
Thxasl. This might be attributable to release of factors into
the blood or CSF, or neurotransmitter-mediated induction
of these genes in multiple brain regions. Global changes
were also observed in comparing naive and sham-operated
animals in a number of genes (Additional file 1: Table S3),
suggesting that anesthesia and/or craniotomy induced glo-
bal, sometimes lasting changes in the brain.
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Conclusion
This qPCR study has established detectable mRNA
levels for several Cyps not previously described in the
brain (see Additional file 1: Table S1 for genes detected
in cortex and hippocampus). This suggests the presence
of these activities, despite any lack of change postinjury.
There will be, going forward, a need for further study to
better understand these results. For example, only
changes greater than 50% in parietal cortex or hippo-
campus were analyzed in this study due to the large
number of genes examined. Based on these mRNA and
limited histochemical results, it would be of interest to
determine the regulation of these Cyp and eicosanoid-
related genes in more distal brain regions, e.g., hypothal-
amus, dorsolateral thalamus, piriform cortex or amyg-
dala, where neurologic dysfunction might also impact
brain injury recovery. These and more subtle changes in
gene expression, and in other brain regions, likely
contribute to the overall maintenance of lipid metabol-
ism in the healthy brain, and have implications for neural
changes in arachidonate metabolism in response to injury.
The dynamic environment in the brain after traumatic
injury likely requires different metabolic events at different
times for optimal repair to proceed. It may be speculated
that timely regulation of arachidonic acid metabolism con-
tributes to functional recovery after TBL. To determine
whether these eicosanoid-related changes in gene expres-
sion are adaptive or pathologic, pharmacologic and/or
genetic manipulation of each gene (product) will need to
be performed at a given time after brain injury. Thus, the
investigation of arachidonic acid metabolism in the brain
continues to be a fertile field of investigation.

Methods

Traumatic brain injury

All animal protocols used were approved by the University
of Cincinnati IACUC. The lateral cortical contusion rat
TBI model was carried out as previously described [47]
with minor modifications. Sprague—Dawley rats, (male,
300-400 g Harlan) were pre-anaesthetised with isoflurane
and maintained at a surgical level of anaesthesia with a
facemask using oxygen and isoflurane. After immobilisa-
tion in a stereotaxic device, a 6 mm craniotomy was
performed over the parietal cortex between the left lateral
ridge and the sagittal suture, midway between lambda and
bregma. Animals were randomly assigned to sham or in-
jury groups. Traumatic brain injury was induced via a
cortical contusion using a pneumatic piston (5 mm
diameter, 4 m/s, 100 ms) to a depth of 2.7 mm. Sham
operated controls were surgically prepared but not in-
jured. Postsurgical neurological assessments were
performed just after removing aneasthesia for exclusion
criteria.

Page 9 of 14

Sample preparation

Conscious animals were decapitated using a sharpened
guillotine at preselected times of 6, 24, 72 and 168 hours
(n =4 per injured time point, n =3 per sham time point,
n = 4 naives). Brain regions were rapidly dissected on ice
and flash frozen on powdered dry ice. Tissue samples
were stored at —80°C until RNA extraction. Ipsilateral
parietal cortex, ~100 mg, not including the site of injury
was used; for hippocampus, the entire ipsilateral struc-
ture was used. Total RNA was isolated by sonicating fro-
zen tissue in TRI reagent (Molecular Research Labs,
Cincinnati, OH), following the protocol through chloro-
form extraction. Aqueous phase was dissolved in RNA
lysis buffer (RNeasy kit, Qiagen, Chatsworth, CA), and
RNA purified according to kit protocol, including on-
column DNase. RNA quality was assessed by spectrom-
etry, microfluidics and denaturing gel electrophoresis.
All sample Ajg0/280 nm ratios were 1.85 — 2.10, RNA in-
tegrity numbers of 6.5+ 0.5 were obtained (Total RNA
Nano Series II, Agilent), and ribosomal RNAs comprised
21.2 £ 3.8% of total RNA (mean * SD of all samples).

A high capacity cDNA reverse transcription kit (ran-
dom hexamer primers, ABI) was used to generate cDNA
from total RNA (2 pg, 2 h, 37°C); duplicate reactions
provided enough template for all assays. Aliquots of each
sample cDNA were stored at —80°C.

Real-time PCR

Quantitative real-time polymerase chain reaction (qPCR)
studies were carried out in conformity with recommended
guidelines [151]. Sample cDNAs were combined with 2x
Universal PCR Master Mix (ABI, Applied Biosystems,
Inc., Foster City, CA) in a custom 96 well plate array (ABI,
see Additional file 1 for details) using an ABI PRISM 7500
system (courtesy of Allyson Cole Strauss in the lab of Prof.
Jack Lipton, U. Cincinnati Department of Psychiatry).
Each TagMan® Gene Expression Assay (ABI) consisted of
two sequence-specific PCR primers and a TagMan assay-
FAM™ dye-labeled MGB probe. A quantity of 60 ng cDNA
in a 20 pL reaction was chosen because in cortex, 96% of
the probe sets (in hippocampus, 84%) fell within the dy-
namic range after 40 cycles of PCR.

Initially, 8 cDNA samples were evaluated in triplicate
and the interassay variance was found to be very small
(coefficients of variation less than 3% for all assays).
Thereafter, 3 — 4 biological replicates were assayed using
one technical replicate. Acrylamide gel analyses of these
reactions showed appropriately sized amplicon bands
throughout, and “no reverse transcriptase” controls
showed no bands. Assays with very low abundance tar-
gets C,>37.4 (4% of cortex samples, 15% of hipocampal
samples) were judged not abundant enough for precise
quantification and were assigned an expression value of
zZero.
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Consistent reaction efficiencies were confirmed for
relative quantification using a reference gene [152]. Ser-
ial dilutions of the initial 8 sample cDNAs were assayed
on the custom plate arrays. When C; was graphed
against log cDNA input for each assay and dilution, the
mean slope was -2.80 £+ 0.04 (ideal slope = -3.32 [152]),
indicating low variability and high amplification efficien-
cies throughout the assays. Efficiencies of very low
abundance genes (undiluted C,>35.9) could not be
evaluated by this method, however, because serial dilu-
tion brought C; values below the range of detection.
Further validation was carried out by graphing AC; ver-
sus log c¢DNA input [153], vyielding absolute value
slopes less than 0.1 (0.08 £ 0.02, excluding the very low
abundance assays).

Data analysis

Results from qPCR were calculated from C; values (the
estimated number of PCR cycles to reach the threshold
fluorophore release, when signal > 10 standard deviations
of fluoresence background, indicating entry into the ex-
ponential phase of amplification, ABI 7500 manual) gen-
erated for each probe set. Gene expression is most often
represented as a normalized value, i.e., with respect to
an invariant housekeeping gene, sample protein, or tis-
sue weight. For profiling the large number of genes in
this study, we used a normalized representation of the
target (i) to reference (ref) gene copy number ratio
based on the exponential of AC;=(Cy; - Cyr) [153,154].
The number of cycles, C; is related to the initial copy
number of cDNA (Np) in the sample by the equation
No: = k; (1 + E})"“Y, where k; is a constant that directly re-
lates Ng; to copy number, and E; is the efficiency of the
PCR amplification, ranging between 0 and 1. Dividing
No;/Noys vields a constant, K; =k;/k,.s that depends on
the individual properties of each probe set [153]. When
the target efficiency and reference efficiency are compar-
able (within about 10% of each other [154], see above)
they can be assumed to be equal, and the initial copy
number ratio f; = No;/No,or= K; 272Ct Since K; is a con-
stant for each probe set, 2*“" is directly proportional to
the ratio of target to reference initial copy number for
each sample and assay, and can be treated as a continu-
ous variable, amenable to standard statistical approaches
[152,154]. The 272* values were evaluated by two-way
ANOVA (independent variables: treatment, time) with
Tukey HSD post-hoc tests. A separate one-way ANOVA
was performed with all shams combined. A p-value less
than 0.05 was required to reject the null hypothesis that
group means were equivalent. For presentation purposes
in Table 1 (n-fold mRNA levels), the mean 22 values
from injured tissue were normalized to shams at the
same time point.
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In situ hybridization histochemistry

Cellular localization of eicosanoid-related gene expression
was carried out on 20 pm sections of fresh frozen brain tis-
sue by in situ hybridization histochemistry utilizing intern-
ally labeled complementary RNA probes. Sections from
injured and sham-operated rat brains (n=3 each, 7d
postinjury) were chosen starting anterior to the site of in-
jury and then every sixth section through the injured
volume (Bregma -1.8 mm to approximately —-4.5 mm,
according to the coordinates of Paxinos and Watson [155]).
Sequences unique for the individual Cyp genes (as deter-
mined by BLAST analyses) were derived from the 3’-end of
the coding region and a portion of the untranslated region,
spanning a putative exon-exon splice junction. These se-
quences were amplified by high fidelity PCR (Roche Ap-
plied Science, Penzberg, Germany) from rat brain cDNA
and cloned into pGEM (Promega, Madison, WI) vectors.
For rat Cyp2j4, the insert included nucleotides 1188 to
1585 (NM_023025); for rat Cyp27al, the insert included
nucleotides 1361 to 1766 (NM_178847), both with respect
to the translation initiation start site. Plasmids were linear-
ized to provide a template for RNA synthesis directed by a
viral T7 or SP6 promoter to produce either antisense
or sense (negative control) probes. RNA was synthesized
according the the manufacturer’s instructions (Roche
digoxigenin labeling kit), template DNA degraded (RQ1
ribonuclease-free DNase, Promega) and RNA probes puri-
fied on spun columns (Qiagen, Chatsworth, CA). All probes
were size analyzed on denaturing 6% polyacrylamide-urea
gels. Probe concentration and quality were assessed by ab-
sorbance at 260 nm (Aygp) and the Ayep/Asgo ratio. Studies
for each probe (and controls) were carried out in parallel
with equal mass of probe, hybridization and development
times. Prehybridization and hybridization were carried out
in 50% formamide, essentially as described [156], with 400
ng/mL RNA probes under high stringency conditions to
minimize cross-reactivity between the target genes and
closely related Cyp family members. Overnight incubation
was at 50°C in a humidified chamber. All washes were
15 min at 50°C: twice in 2xSSC (SSC is 150 mM sodium
chloride, 15 mM sodium citrate, pH 7.4), twice in 1xSSC,
twice in 0.1xSSC. Staining was performed exactly as de-
scribed (DIG Wash & Block Buffer Set, DIG Staining
Solution, Roche) by incubating sections with wash buffer,
blocking reagent, then alkaline phosphatase-conjugated
anti-digoxigenin F,, fragments (1:250, 1 h in a humidified
chamber at room temperature), washing twice and devel-
oping the color overnight at room temperature in the
presence of 1 mM levamisole (Sigma, St. Louis, MO) to
inhibit endogenous phosphatase activity. Sections were
washed (50 mM tris, 5 mM EDTA, pH7.4), rinsed in dis-
tilled water, dehydrated in increasing ethanol washes, and
coverslipped with Permount (Fisher Scientific) for obser-
vation under bright field microscopy.
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Additional files

Additional file 1: Table S1. Detection of mRNA in naive, sham, and
injured hippocampus (HCl) or cortex (CXI). Positive or negative gPCR
assay detection is shown for each gene, along with the ABI assay
identification and a description of the gene. The 2°°“* for each of the
assayed genes is shown in Tables S4 and S5. Table S2. Regional
differences in mMRNA levels in naive and sham brains. Combined data
from naives and shams are compared to show distinct levels of mMRNA
expression between ipsilateral parietal cortex and hippocampus. Table
S3. Sham effects on mRNA levels in naive and sham brains. Comparison
of gene expression in naives and shams at different times postsurgery
showed a number of sham effects, evaluated by T-way ANOVA with
naives at time 0, and shams at 6 h, 24 h, 72 h, and 168 h. p < 0.05, ANOVA,
Tukey HSD, except where bracketed, 0.05 < p < 0.10. Table S4. Mean and
standard error expression values for ispilateral hippocampus (n = 3-4 for
each). Table S5. Mean and standard error expression values for ispilateral
parietal cortex (n = 3-4 for each).

Additional file 2: Figure S1. Graph of C; values from three
"housekeeping” genes assayed by gPCR in parietal cortex. A total of 29
animals were assessed, with n =4 naives (time 0), n =3 shams per time
point, and n =4 injured per time point. One Gapdh point (C; =394, 72 h
sham) was removed as an outlier. The least variant of these genes over
the entire data set was Ppia (cyclophilin A), that was used for
normalization of all subsequent data.

Additional file 3: Cross species control sequence comparisons
between mouse and rat Cyps.

Additional file 4: Figure S2. Induction of Cyp4b7 mRNA in injured
parietal cortex and hippocampus after brain injury. Acutely after TBI,
Cyp4b1 was elevated in ipsilateral parietal cortex (CXI) and remained
elevated for at least 3d postinjury compared to shams. In ipsilateral
hippocampus (HCI), several-fold elevations occurred starting 24 h and
continued for at least 7d postinjury. Dotted lines represent mean naive
MRNA levels (n=4), n=3 shams and n =4 injured per time point.

*p < 0.05, 2-way ANOVA, Tukey HSD vs. shams at same time point.

9p <0.05, 1-way ANOVA, Tukey HSD, with shams combined at time zero.
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