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Abstract

Background: Prion proteins conform a special class among amyloids due to their ability to transmit aggregative
folds. Prions are known to act as infectious agents in neurodegenerative diseases in animals, or as key elements in
transcription and translation processes in yeast. It has been suggested that prions contain specific sequential
domains with distinctive amino acid composition and physicochemical properties that allow them to control the
switch between soluble and β-sheet aggregated states. Those prion-forming domains are low complexity segments
enriched in glutamine/asparagine and depleted in charged residues and prolines. Different predictive methods
have been developed to discover novel prions by either assessing the compositional bias of these stretches or
estimating the propensity of protein sequences to form amyloid aggregates. However, the available algorithms
hitherto lack a thorough statistical calibration against large sequence databases, which makes them unable to
accurately predict prions without retrieving a large number of false positives.

Results: Here we present a computational strategy to predict putative prion-forming proteins in complete proteomes
using probabilistic representations of prionogenic glutamine/asparagine rich regions. After benchmarking our
predictive model against large sets of non-prionic sequences, we were able to filter out known prions with high
precision and accuracy, generating prediction sets with few false positives. The algorithm was used to scan all the
proteomes annotated in public databases for the presence of putative prion proteins. We analyzed the presence of
putative prion proteins in all taxa, from viruses and archaea to plants and higher eukaryotes, and found that most
organisms encode evolutionarily unrelated proteins with susceptibility to behave as prions.

Conclusions: To our knowledge, this is the first wide-ranging study aiming to predict prion domains in complete
proteomes. Approaches of this kind could be of great importance to identify potential targets for further experimental
testing and to try to reach a deeper understanding of prions’ functional and regulatory mechanisms.
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Background
The formation of intracellular amyloid fibrils is a wide-
spread phenomenon in eukaryotes [1-4] and it has been
found related to a number of beneficial adaptive cellular
functions [5-11], to protein-encoded heritable information
transmission in yeast [12-15], and to a variety of important
diseases in mammals [16-20]. Amyloidogenesis is mediated
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by a diverse group of evolutionarily unrelated proteins
from different organisms, all sharing the propensity to
form β-sheet aggregates in their complete or fragmented
forms [19]. A subset of these aggregation-prone proteins
is characterized by the presence of regions that comprise
homopolymeric tracts, also named ‘single sequence re-
peats’ [21]. It has been reported that the presence of these
low complexity stretches, and more specifically that of
(Q/N)-rich regions, strongly influences the aggregation
potential of eukaryotic proteins [22-24]. In several neuro-
degenerative disorders, such as spinocerebellar ataxias and
Huntington’s disease, long pure glutamine repeats are
generated by the instability of CAG codons [25-27], and
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cause the abnormal proteins to form intracellular inclu-
sions in specific neuron types. However, prionogenic Q/
N-rich regions usually contain additional amino acids and
form sequentially heterogeneous domains responsible for
the main properties of prions, including self-propagating
amyloid aggregation.
Much research has been devoted to determine the

structural and sequential basis of prion formation, and
the compositional determinants of prionogenic domains.
Studies from different groups have concluded that both
amino acid composition and the length of such regions
play important roles in prion induction [28-30]. Add-
itional sequential requirements such as the number and
distribution of prolines and charged residues have been
recently found to be relevant in the formation of prionic
aggregates [30]. Mutational studies, in which the sequence
of yeast prions Ure2p and Sup35p were randomly shuffled,
proved that the [PSI+] phenotype is mainly determined by
the amino acid composition of the domain independently
of the primary sequence, as most of the shuffled species
generated were able to form prions in vivo [28,29]. This
knowledge has been used to try to predict putative prions
in biological sequence databases, though the available
methodologies to carry out the task are just a few. A first
group of algorithms intend to estimate the propensity of
peptides of a given length to form amyloid aggregates
based on their primary sequence [31-34]. This kind of
methods, based on more or less complex models of para-
llel β-sheets, have proven quite ineffective for coping with
Q/N-rich stretches since these domains do not share the
common characteristics of β-sheet-amyloid forming pep-
tides [35] –e.g. high hydrophobicity.
A second group of methodologies try to predict Q/N-

rich domains from the primary sequence based on the
strong amino acid compositional bias of these segments.
Proteome-wide identification of Q/N-rich regions was
successfully achieved in 30 proteomes from eukarya,
archaea and eubacteria using a quite straightforward
algorithm based on the estimation of the significance of
occurrence of regions with a high proportion of Q and
N [36]. A similar methodology for assessing compo-
sitional bias in biological sequences was also tested to
find proteins enriched in Q and N [37]. However, these
two algorithms only take into consideration the frequency
of a specific group of biased amino acids in a given se-
quence segment –i.e. Q/N, hydrophobic or charged amino
acids, instead of considering the relative contribution of
all the residues present in the segment to the priono-
genicity of the domain [29]. Furthermore, they failed to
generate a statistical model and a scoring function that
would allow the systematic evaluation of protein segments
and the sorting of the predicted domains according to
their prionogenicity. A recent report has proposed an in-
teresting alternative procedure to generate a bioinformatics
model to predict prions at genomic scale. Starting from the
sequences of four known yeast prions, a hidden Markov
model (HMM) was generated to assess the compositional
similarity of proteins from the yeast proteome to the
model. This yielded up to 200 proteins with candidate
prionogenic domains (PrD), from which the top scoring
100 were tested experimentally in vitro and in vivo [38].
Finally, a total of 19 new proteins that proved switching be-
havior and amyloid formation were identified, which adds
to the four prions previously described in this organism.
Notwithstanding the remarkable outcomes from this work,
the inherent bias of the predictive model built, generated
from just a few sequences [38], apparently hampers its abi-
lity to correctly score proteins sequences, as roughly half of
the high scoring predictions were false positives exhibiting
no prion-like behavior.
A complementary strategy went farther in an attempt

to define the compositional features that influence prion
formation. Libraries of Sup35p mutants expressed in vivo
were used to comprehensively analyze the sequence
compositional determinants of prions [30]. This study
ultimately produced an experimental technique to meas-
ure the prion propensities of individual amino acids,
showing that there is a strong bias against prolines and
charged residues, a strong bias favoring the presence of
hydrophobic residues and no significant bias for or against
Q/N residues [30]. With this methodology, the scoring of
the putative prions made by Alberti et al. could be im-
proved. A recent follow up by the same group has used
this methodology to design de novo synthetic prionogenic
sequences capable, not only of forming amyloids, but also
to stably propagate over many generations [39]. However,
this and the other approaches available to date for identi-
fying and predicting Q/N-rich segments with prionogenic
activity, lack a detailed statistical benchmarking of their
performances at a genomic scale. Thus, a methodology
able not only to identify putative prion domains in large
databases of protein sequences, but also to correctly clas-
sify the predictions in terms of precision and accuracy
would be of high interest.
Here we present a bioinformatics approach to create a

statistical representation of prion domains that allows
scoring protein sequences according to their likelihood of
being prions. Starting from a list of 29 proteins reported
experimentally to exhibit conformational conversion and
amyloid formation in yeast [38], we have developed a
probabilistic model of PrD to discover Q/N-rich prio-
nogenic proteins in complete proteomes. The independent
probability of occurrence of all amino acids in prion do-
mains were estimated and a log-likelihood model was
built to assign uncalibrated scores to sequence fragments
of variable length. We first benchmarked our model
against a list of 18 proteins that were tested in the same
experimental conditions and showed no SUP35C activity



Table 1 Amino acid propensities in PrD and PrD-cores

Residue Prion domains Prion domain (Library 1)

Odds ratio LOr Odds ratio LOr

A 0.675 −0.568 0.670 −0.578

C 0.071 −3.807 1.520 0.604

D 0.352 −1.507 0.280 −1.837

E 0.147 −2.766 0.550 −0.862

F 0.718 −0.478 2.310 1.208

G 1.028 0.040 0.960 −0.059

H 0.913 −0.131 0.760 −0.396

I 0.350 −1.515 2.260 1.176

K 0.271 −1.883 0.210 −2.252

L 0.340 −1.556 0.960 −0.059

M 1.125 0.170 1.960 0.971

N 5.700 2.511 1.080 0.111

P 1.170 0.227 0.300 −1.737

Q 4.125 2.044 1.070 0.098

R 0.436 −1.196 0.670 −0.578

S 1.662 0.733 1.140 0.189

T 0.830 −0.268 0.890 −0.168

V 0.304 −1.716 2.260 1.176

W 0.091 −3.459 1.950 0.963

Y 1.724 0.786 2.180 1.124

The observed frequencies of occurrence of the different amino acid residues
were transformed into the corresponding statistical potentials using the
equation described in Methods. Columns 2 and 3 show the calculated odds-
ratio for the complete prion and the statistical potentials corresponding to the
odds-ratios of PrD respectively (LOr). Columns 4 and 5 contain the ratio and
log-odds obtained experimentally by means of a random mutagenesis assay
with the library 1, as described in the paper by Toombs et al. [30].
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in vivo [38]. From this assay we obtained the predictive
cutoff that should be used and the confidence intervals of
the predictions. Our classifier performed fairly well filter-
ing prions from proteins with no prionogenicity with an
accuracy higher than 0.83 and a precision of 80% at the
predictive cutoff set. In these conditions the fraction of
false positives was rather low, corresponding to less than
16% of the total predictions. We also tested the ability of
our model to scan large sequence datasets from Uniprot
[40], the PDB [41] and intrinsically disordered proteins
(IDPs) annotated in Disprot [42]. Our results proved that
the model is well suited to handle datasets with a high
proportion of negative instances without recovering an
excessive amount of false positives, which is important to
perform predictive assays in complete proteomes. Our
scoring model was effective to almost completely separate
the distributions of real prion domains from the Uniprot
and PDB datasets, while the sequence of some IDPs
proved more alike Q/N-rich prion forming domains.
We have used this methodology to scan all the known

proteomes annotated in public databases, which yielded
20540 predictions in 1536 different organisms from all
taxa. This is to our knowledge the most extensive effort to
predict PrD sequences performed so far, reporting putative
prions in the proteomes of a diverse group of organisms,
most of which have been poorly studied. We also inspected
the predictions obtained and observed some interesting
trends in the distribution of PrDs in different protein func-
tional families. The predicted prionogenic domains appear
to be associated with different cellular components and to
function in different biological processes depending on
the taxon and organism group. The present predictive
approach uncovers a large set of putative prionogenic pro-
teins whose further experimental characterization might
contribute significantly to understanding prion biology.

Results
Amino acid composition of prion-forming domains
Based on the sequence of a group of experimentally
tested protein domains that showed prion-like behavior
in vivo and in vitro in yeast [38] we trained an unsuper-
vised classifier relying on the amino acid propensities in
PrD domains, see Methods for more details. The esti-
mated relative abundance of each amino acid type in a
group of well-characterized prion domains with respect
to the expected frequency of occurrence in proteins is
shown in Table 1. Some residues, such as G, H, M and
P, are equally frequent in PrD and proteins. Other resi-
dues, including C, E, D, K and W, appear to be under-
represented in prion forming domains, while Q and N
and also Y and S, have a significant positive bias. Unlike
previous approaches [36,37], this model allows us to ob-
tain a representation of prionogenic domains accounting
for the relative statistical significance of each residue in
the scoring function. The high odds ratios observed for
Q (4.1) and N (5.7), which represent the previously
reported favorable bias for these residues in PrDs, can
be combined with the statistical potentials obtained for
amino acids such as C and W, which are 14 and 10
times less frequent in these regions than in proteins.
The analysis of the ratios reported in a previous work

[30] resulting from a random mutagenesis assay of two
specific segments of Sup35p protein reveals significant
differences with our results. They include, see Table 1,
differences in the relative log-odds for some important
residues such as E, 3.8 times less frequent in PrDs
according to our results and P, which is 3.9 times more
likely to be found in these domains according to our
model, see Table 1. The more remarkable differences are
obtained for some key residues such as Q and N, for
which we found a marked favorable bias. For other resi-
dues such as K, Y, S and D no significant differences
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were found between our model and the results from
Toombs et al [30].
The contribution of P to the prionogenicity of a given

sequence stretch, unlike those of other amino acids, ap-
pears to be related not just to its abundance in PrDs. As
it has been previously noted, prolines in prions tend to
appear in clusters while, in non-prionogenic Q/N-rich
proteins, they are usually scattered along the complete
sequence of the stretch [30]. However, there were no
experimental or theoretical models to relate the exist-
ence of specific proline patterns in a given PrD with the
prionogenicity of the sequence. In our model we use an
approach to correct the score calculated for a given
stretch from the relative propensities of the amino acids,
taking into account the number of non-contiguous
prolines found in the segment, see Methods. In this
approach we first estimated the relative frequency of
pairs of prolines separated a given distance in a non-
redundant dataset of protein sequences and convert
those frequencies into log-likelihoods, see Figure 1. We
then use those log-likelihoods to assess the significance
of finding a pattern of prolines, separated a given dis-
tance in the window of sixty residues used for the scan-
ning, and the resulting support value is used to correct
the compositional score. In this way, using solely se-
quence information, we generate for a given sequence a
corrected score which takes into account both the relative
propensities of the amino acids and the unfavorable con-
tribution of non-contiguous prolines to prion formation.
0 10 20 30 40 50 60

Distance

5

10

15

20

25

30

F
re

qu
en

cy
(1

0-
3 )

Figure 1 Observed frequency of P-(X)n-P patterns in proteins. A
representative non-redundant dataset of 4606913 from Uniref 50
were analyzed in the search for the significance of proline patterns
in the protein universe. In the chart we plot the trend of the
observed frequency of each pattern of two prolines separated a
given distance between 1 and 60 residues.
Using compositional bias to assess the prionogenicity of
protein sequences
We used the model obtained for the PrD domains to
scan protein sequences. In order to ease the analysis at
the benchmarking stage, we selected the highest scoring
stretch in a given sequence as the putative PrD, assum-
ing only one prionogenic region per protein. Though
there are evidences of proteins that bear more than one
prion-forming domain and in some cases the PrD is a
diffuse region of more than 60 residues [38], this approxi-
mation significantly reduces the number of sequence
fragments to be analyzed without affecting the number of
true positive predictions. A detailed assessment of the pre-
dictive potential of our model is shown in Figure 2. The
ROC plot obtained from the analysis of known PrDs and
the negative dataset used in benchmarking illustrates the
good performance of the algorithm, with an area under
the ROC curve (AUC) of 0.90. The AUC is a global esti-
mator of the statistical significance of a classification
test, representing the probability that, each time a pair
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Figure 2 ROC plots of the PrD recovery and bootstrapping
assays. The scoring histogram distributions of the negative and
positive datasets were processed and the true positive rate (TPR)
was plotted against the false positive rate (FPR) in a tryout in which
the known PrDs –i.e. positives in all four experimental tests [38]– are
picked up from a test dataset of non prions –i.e. negatives in all four
experimental tests [38]. In red we show the plot obtained using our
model which has an area under the curve (AUC) of 0.90. We also
include the result of a bootstrap assay in which the 18 prions used
as the training set were resampled 106 times forming partial training
sets of 9 prions and generating positive test sets for the ROC plot
analysis of the rest 9 prions. One million ROC plots were generated
always using the same negative set and the average ROC curve was
calculated (shown in blue), the area under the curve (AUC) is 0.85.
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of positive and negative instances is randomly retrieved
from the pool, the scoring function will assign a higher
score to the positive example. The non-parametric
Mann-Withney-Wilcoxon rank-sum test for distributions
comparison [43], is rather low (℘-value = 6.7 10-6) with a
significance ℘-value < 0.05. We did not have access to the
absolute scores in the HMM-based prediction of the yeast
prions [38], which were subsequently used to implement
our method. This previous work described in detail an ex-
tensive experimental assessment of the predictions, but
few details were available on the scoring and bench-
marking procedures thus impeding a quantitative eva-
luation of the performances of the two methods. We
addressed this comparison indirectly investigating how
our predictor scored the bona fide prions identified in the
abovementioned work with respect to the complete yeast
proteome. The analysis is described in Figure 3, where we
include the density distribution of the scoring of all the
proteins annotated in the genome of Saccharomyces
cerevisiae and the corresponding ℘-values of each of the
29 known prions in this organism. This chart indicates
that our methodology is able to discriminate PrDs from
the rest of the proteins in the proteome. Except for RBS1
PrD, whose ℘-value of 1.49 10-3 locates it in a more or less
confusion zone in the scoring distribution, the ℘-values
for the rest of real PrDs are well below 10-6. This means
that PrDs can be retrieved as a completely different dis-
tribution from the proteome score distribution, with a
significance level of 0.1%. In addition, at a score of 50
bits, 63% of the real PrD have ℘-value lower than 3.4
10-8 (Figure 3, panel B).
We also decided to test the wealth of the amino acid

propensities calculated in our model and check whether
Figure 3 Scoring of PrDs in yeast with respect to the complete prote
yeast genome is shown in panel A. In panel B, left ordinate axis we include
line connecting open triangles) and the cumulative ratio representing the
value is shown in the right ordinate axis (red line connecting open squares
there is a high rate of redundancy within the training
set, which could hamper the predictive potential of the
model. Thus we performed a thorough bootstrap assay
in which we randomly resampled 106 training sets from
the 18 sequences that are positives in all the experimen-
tal assays, leaving out 9 PrDs each time, see Methods for
details. In each case we recalculated the propensities and
used the excluded PrDs as positive test set in the ROC
plot tryouts, maintaining the same negative set. The
results of this experiment are also shown in Figure 2,
where the average ROC curve calculated from the mil-
lion plots generated is depicted. As expected, the AUC
decreases, but only to 0.87, which still corresponds to a
fairly good classifier performance, reflecting that the de-
viation from the most common classification behavior is
marginal. This finding means that the estimated propen-
sities calculated from the training set are unbiased and
are significant enough to correctly separate the popula-
tion of positive and negative instances.

Testing the suitability of our algorithm to process large
sequence databases
The ROC plot analysis is an excellent technique to evaluate
the predictive potential of a classification methodology,
since it is insensitive to changes in the class distributions –
i.e. the TPR vs FPR dependence remains the same if
the proportion of positive to negative instances changes.
Nevertheless, this property becomes a limitation when the
number of negative instances is considerably higher than
the population of positives, which is quite common in the
analysis of large biological sequence databases. In this
scenario, a classifier corresponding to a reasonably good
shaped ROC plot with a high AUC might return an
ome. The density histogram of the score of all the proteins in the
the observed p-values for the 29 known prions in this organism (blue

percent of known prions with a p-value equal or less than a given
).



-20 0 20 40 60 80 100

Cutoff

0.5

0.6

0.7

0.8

0.9

1

A
cc

ur
ac

y

Figure 5 Accuracy-cutoff plot of the classifier against the
negative test set. The Accuracy obtained for the correct
classification of TP and TN is graphed against decreasing cutoffs
spanning the score range of the corresponding negative and
positive distributions. We highlighted the highest accuracy of the
assay, used to set the predictive cutoff of 50 bits.
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elevated number of false positives along with the putative
predictions at a specific cutoff score. Therefore it is very
important to complement ROC trials with other perform-
ance metrics that combine different classes of the confu-
sion matrix and are consequently sensitive to class skew.
In Figure 4 we inspected the dependence of the precision
of our classifier and the recovery rate of known PrD
for the three test datasets. Our results confirm that our
algorithm also performed very well for processing large
sequence datasets. It is clear in this chart that despite the
proportions of the distribution of prion-forming domains
and the corresponding distributions of the three test sets –
e.g. Disprot is 21 times larger than PrD dataset while the
PDB dataset is 530 times larger– we were able to pick up
almost 90% of the true positives yielding precision values
above 80%.

Selection of a cutoff value for predicting in complete
proteomes
The classification accuracy of the method can be taken
into account to select the predictive cutoff, see Figure 5.
The evaluation of the rate of correctly mapped instances
from both positive and negative distributions prove that
our method is able to both correctly scoring and separ-
ating sequences that experimentally showed prion-like
activity from other sequences with no such an activity in
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Figure 4 Precision-recall plots for the comparison of PrD and
non-prionogenic sequence distributions. For each one of the
three negative additional datasets including proteins from Uniprot,
Disprot and the PDB we follow the evolution of the classifier’s
Precision to correctly make a positive mapping of known PrD
segments from a pool of non-prionogenic sequences. These values
are plotted against the TPR –i.e. recall– of the corresponding
classification step. The ratio between the number of instances in
each positive and negative distribution is also shown.
the same assays, but also handling at the same time
disproportionate positive and negative datasets. As can
be inferred from Figure 5, in our model the cutoff value
of 50 bits marks the maximum predictive accuracy. This
was the cutoff score set for performing prediction assays
in complete proteomes as described below. With this
cutoff we guarantee both an accuracy of 83% and a pre-
cision of classification as high as 80%. These values of
classification efficiency are comparable with those
obtained with a methodology reported recently used for
de novo design of synthetic prion domains [39]. We also
obtained estimations of the proportion of false positives
that our algorithm will necessarily recover along with
the putative predictions. The false discovery rate (FDR)
is quite an interesting metric in classification problems,
corresponding to the proportion of events in which the
null hypothesis is incorrectly rejected, or in other words,
the likelihood of incurring in type I error in a test
[44,45]. In our benchmarking tryouts, the FDR obtained
for the selected cutoff of 50 bits is 16%. This value indi-
cates that our methodology produce fairly clean recovery
sets with a rather low proportion of false positives.

Proteome-wide predictions of proteins bearing putative
PrDs
After a comprehensive benchmarking of our model we
used it to predict proteins containing PrD in the complete
proteomes of organisms. As described in Methods, we
performed a scanning of all the proteins annotated in
complete proteomes, and the predictions obtained in this



Table 3 Ratio of prion domains in the proteomes of
representative organisms

Species Predictions % of the proteome

Listeria monocytogenes1 117 3.90

Bacillus cereus1 89 1.64

Staphylococcus aureus1 468 17.9

Cryptosporidium parvum2 60 1.57

Dictyostelium discoideum2 2692 20.1

Dictyostelium purpureum2 992 8.01

Plasmodium falciparum2 853 10.2

Theileria parva2 11 0.50

Trypanosoma brucei2 15 0.16

Candida albicans3 169 2.62

Saccharomyces cerevisiae3 632 10.7

Lodderomyces elongisporus3 150 2.58

Arabidopsis thaliana4 56 0.20

Oryza sativa4 50 0.08

Drosophila melanogaster5 509 2.48

Drosophila mojavensis5 486 3.33

Anopheles gambiae5 115 0.84

Caenorhabditis elegans6 98 0.42

Homo sapiens7 111 0.29

The percent of the proteome corresponding to proteins bearing putative
prion-domain (column 3) is shown for a representative group of model
organisms (column 1), from different evolutionary classifications, some of
which have been extensively studied and whose complete genomes have
been well characterized. The organisms included correspond to different
species of (1) bacteria, (2) protozoans, (3) yeast, (4) plants, (5) dipterans, (6)

nematode and (7) human. The number of predictions obtained for each
organism is shown in column 2.
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search are available in the Additional files 1, 2, 3, 4, 5, 6,
7, 8, 9, 10. Our methodology yielded 20540 PrD predic-
tions in 1536 different organisms from all taxa from
viruses and archaea to plants and higher eukaryotes. The
predictions are organized by taxon (one additional file for
each taxon), which allows us to analyze the characteristics
of prion-forming domains in evolutionarily different or-
ganisms (Table 2).
The inspection of some selected organisms shown in

Table 3 illustrates some interesting trends of prion content
in proteomes. In most cases the percent of proteins bea-
ring prion-forming domains is less than 1% of the size of
the proteome, see the Additional files for a complete list
of the predictions. In Archaea and Viruses the number of
putative prion proteins is less than 10 per proteome (with
the sole exception of Acanthamoeba polyphaga mimivirus
and Porcine epidemic diarrhea virus), while in Bacteria,
Fungi, Plants and animals it might range from a few
tens to a few hundreds in some specific organisms.
Among Bacteria there exists important exceptions such as
Staphylococcus aureus, for which the number of priono-
genic proteins correspond to almost 18% of the genome.
In Protozoa we observe important differences in the ratio
of PrDs in the proteome of different organisms of this
class. While for Cryptosporidium parvum,Theileria parva,
Trypanosoma brucei the percent of PrD proteins in the
genome is relatively low, for Dictyostelium discoideum,
Dictyostelium purpureum and Plasmodium falciparum
the proportions of putative prions are as high as 20%, 8%
and 10% respectively. This is in agreement with previous
reports proving the abundance of hydrophilic low-
complexity regions in the proteome of these organisms
[46,47]. This tendency is also present in other species
Table 2 Summary of the prion predictions in different
taxa

Taxon # Organisms # Proteins # Predictions

1 Archaea 14 5769 22

2 Bacteria 839 860337 2220

3 Viruses 29 5807 115

4 Fungi 114 965461 3330

5 Invertebrates 220 1064320 13609

6 Vertebrates 30 213915 190

7 Plants 104 591244 518

8 Rodents 7 137372 170

9 Mammals 36 388018 275

10 Human 1 96088 111

The predictions obtained for all the organisms analyzed is organized by taxon
and the following information is included in the table: in the first column the
index of the Additional file including the predictions of a taxon; in column 2,
the taxon; in column 3, the number of organisms for which we obtained
predictions; in column 4, the number of proteins scanned in the search for
PrDs; and column 5 shows the number of proteins bearing prion-forming
domains obtained.
from the genus Plasmodium, such as Plasmodium yoelii,
which has 137 PrD proteins in its proteome. Another
noticeable examples correspond to Fungi, which have a
relatively high number of prions in their genomes. Pre-
vious reports have found this trend in the genomes of
yeasts in which these repetitive stretches are generated
by DNA tandem duplication [48] rendering protein
domains that were thought to have no function [49] but
that according to our results might indeed be prion do-
mains involved in homeostatic processes. In Dipteran,
there are also a significant number of predictions,
amounting to 1—2.5% of the genome for Anopheles
gambiae, Drosophila mojavensis and melanogaster.

Discussion
From amino acid composition to a comprehensive model
of prion-forming domains
Great effort has been devoted in recent years to the experi-
mental characterization of prion proteins, with a special
interest in defining the sequential and structural determi-
nants of aggregate formation and prion transmission. To
date, the number of prions studied is still limited and little
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is known regarding the approximate number of prion-like
proteins in complete proteomes or the cellular processes in
which they might be involved. Nevertheless, several studies
have shed some light into the general characteristics of
prions [1,16,50-52] and how this information can be used
to try to identify novel Q/N-rich candidates in protein
databases [30,36-38]. Only recently the availability of
high-throughput experimental procedures to study prions
in vitro and in vivo [38,53-55] and the feasibility of exten-
sive mutational studies [28-30,56] have provided deeper
insights into the characteristics of protein domains that
mediate aggregation and prion induction. It is now clear
that methodologies relying on approximating the likeli-
hood of contiguous protein stretches to form parallel β-
sheets [31-34] cannot be successfully used to predict Q/
N-rich prion domains. Among other examples, these
methods are unable to predict β-aggregation nuclei in
known yeast prions such as Ure2p and Sup35p [57]. In-
stead, prediction of PrDs using the distinctive amino acid
composition of these domains [30,36,37] and assuming
primary sequence independence for prion formation
[28,29,39,56] appears more promising. A recent compari-
son of most of the methods currently used to predict
prion propensity has proved that approaches that focus
largely on composition –e.g. PAPA and Zyggregator–
show far more predictive accuracy than those focusing on
primary sequence [39].
Following this idea, we have generated here a reliable

model that uses the compositional bias of PrDs, taking
special care on thoroughly benchmarking the algorithm
in order to establish realistic confidence intervals for
predicting in large biological sequence databases. The
results from the work by Alberti et al. were very valuable
to provide an ample enough training set from which we
obtained the statistical potentials summarized in Table 1.
The odds-ratios calculated by us embody the previously
described bias observed in prion-forming domains
[30,36,37], and enable the inspection of protein se-
quences to find putative PrDs. Our method relies solely
on amino acid propensities calculated using compo-
sitional bias, plus a correction to the score which ac-
counts for the unfavorable existence of certain proline
patters in the sequences analyzed, see Figure 1. The vari-
ance of the score distribution of candidate prions for which
there is strong experimental evidence [38], reflects the high
sequential variability that aggregation-prone domains can
accommodate. In their work, Alberti and coworkers do not
make a statistical evaluation of the predictive power of the
model used. Instead, they rely on the potentiality of the
high-scale experimental assays performed to classify the pre-
dictions. They acknowledge the bias of the hidden Markov
model built [38], which might be related to the scant scoring
capability of the method that ranks highest a number of se-
quences that showed no aggregation propensity. The training
stage is very important in the construction of HMMs [58],
and this is probably why this model, generated from just a
few examples, is able to identify probable candidates but is
unable to score them correctly. We believe our model im-
proves the scoring of these sequences, as can be inferred
from the scoring of known PrDs in the complete yeast
genome (Figure 3).
Another recent study aimed at modeling and pre-

dicting prions [30] has produced interesting results. The
authors carried out random mutagenesis assays of the
Sup35p sequence in specific locations and tested for
amyloidogenesis in the expressed cultures, resulting in
estimations of the propensities of amino acids in PrDs.
A two dimensional analysis, complementing the prion pro-
pensity estimations with calculations of intrinsic disorder,
was also used to improve the classification method. This
methodology has been successfully used to generate syn-
thetic prion-like sequences that were able to form aggre-
gates and propagate on in vivo experiments [39]. As stated
above, this methodology by Toombs et al., displaying a
fairly high classification accuracy when compared to other
available methodologies, rely on the random mutation of
just two short segments of 19 and 7 amino acids of Sup35,
a domain of almost 100 residues with long glutamine and
asparagine-rich stretches. As a consequence, it is possible
that the mutational space is not completely explored,
which could result in a model not well suited to scan large
sets of protein sequences. In contrast, our model is based
in the sequences of almost all the known proteins
displaying prion-like behavior and we have demon-
strated that our method can perform as well as PAPA
for differentiating real and false prions. The bootstrap-
ping assay, see Figure 2, also proves that the propen-
sities obtained are unbiased.

Putting the algorithm in context: analyzing real-size
sequence databases
Most of the algorithms used to predict Q/N-rich prion
candidates [30,36-38] have a common downside: they
lack of a proper statistical calibration of the metho-
dology and thus an estimation of the predictive capabil-
ity of the model to scan sequence databases. In some
cases, protein sequences have been modeled as a Poisson
[36] or a binomial [37] distribution to calculate the
probability of occurrence of glutamine and asparagine in
a peptide, and its statistical significance. These approxi-
mations have two main problems; the first is that they
exclude the positive or negative contributions of all
other residues to the prionogenicity of the domain. And
the second is that not even a normalized probability of oc-
currence for the Q/N composition of a stretch guaranties
a good classification performance in terms of number of
false positive prions that will be returned to rescue a de-
sired number of true prions. Our position-independent
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model accounts for the positive contribution of Q and N
to prion induction, but also for the favorable contribution
given by S and Y, and for the unfavorable contribution
of C, E or W, among others (see Table 1). Our model cor-
responds to an unsupervised learning classifier that repre-
sents almost all the rules describing real prion-forming
domains, also appending the negative contribution of
uncontiguous prolines. An increase in the number of PrDs
sequences available for the training, as well as the inclu-
sion of supervised training to add biologically relevant
information to the model, such as organism-specific infor-
mation of the distribution of prolines in the domains or
the intrinsic β-aggregation propensity of the sequence,
might improve the predictive potential of our model.
We have confirmed here that our strategy performs

reasonably well at recovering known prions from large
datasets of protein sequences, which makes it very ap-
propriate to make predictions at genome scale. The
method shows a consistent performance even for 500-
fold skews towards the negative instances population,
see Figure 4, suggesting that the compositional informa-
tion embodied in the model can efficiently discriminate
between prions and non-prions in variable-size protein
sequences databases. This is important if the goal is to
predict Q/N-rich domains in small genomes of just a
few hundred proteins as well as in the larger eukaryotic
genomes.
The benchmarking of our algorithm also gives us the

opportunity to obtain statistically the confidence inter-
vals within which we can predict prions in complete
proteomes. The choice of a classification cutoff score is
always subjective, but an analytical approach permits to
ascertain the composition of the recovery sets during
the search of a database, and also enables controlling the
inherent tradeoff between precision and recall [59]. Here
we decided to set the cutoff high at 50 bits, as depicted
in Figure 5, in accordance to the maximum prediction
accuracy and to diminish as much as possible the rate of
false positives included in the predictions. We were pri-
marily concerned about obtaining a high number of
fall-outs that could mislead the implications of our work.
The false discovery rates obtained support the fairly
good classification ability of the algorithm that mini-
mizes down to 16% the proportion of non-prions pass-
ing the cutoff.
It is also interesting that with our scoring model we

found compositional similarities between some IDPs
[60-62] and prions. Amino acid composition has been
used in the past to predict IDPs [60,63-65] and those
studies have concluded that such domains are enriched
in K, E, P, S and Q, and depleted in W, C, Y, G and N
[63]. The propensities calculated in this study represent
in some cases a compositional bias similar to those
found in IDPs, –i.e. enrichment in Q and S and the
depletion in C and W. This might be the reason causing
the superposition of the right tail of the Disprot score
distribution with that of PrDs. Based in those similar-
ities, we can argue that most of the false positive predic-
tions recovered in a predictive tryout would be natively
disordered proteins. There are also experimental evi-
dences suggesting that certain intrinsically disordered
proteins might in fact propagate like prions [66,67],
including α-synuclein [68], the Aβ peptide [69] and
huntingtin [70], involved in Parkinson, Alzheimer and
Huntington diseases, respectively. Huntingtin is pre-
dicted to posses a PrD, whereas Aβ and α-synuclein are
not included in our dataset. However, it is still a matter
of debate whether these two proteins are disordered or
contain a significant α-helical content [71,72]. Therefore,
it could be that our method can correctly classify pro-
teins in the superposed zone between the two distribu-
tions, and that some of the predictions tagged as false
positives could be in fact prions. However, in general
terms, the amino acid propensities of the rest of residues
is rather different between IDPs and PrDs, which deter-
mines that, in most cases, our algorithm can accurately
discriminate between these domain types.

Discovering putative prion-like domains in complete
proteomes
Although generally thought as linked to disease, prions
are also associated with central cellular functions and
have been well studied in fungi and some microorgan-
isms where they play important roles as epigenetic
elements [73,74], evolutionary capacitors [13,75] and
bet-hedging devices [76,77] in the processes of adapta-
tion to environmental fluctuations. There are also
evidences suggesting that, even in invertebrates, prions
take part in mechanisms crucial to maintain long-term
physiological states [78-80]. However, our knowledge of
prions in higher organisms is limited to a handful of
examples associated to serious illnesses, thereby the
need for strategies that can point out new putative can-
didates that might be coupled to other cellular functions.
The decisive step of a predictive methodology is always
the discovery of new instances resembling a given model
under some statistical restrictions. Our model, and most
importantly the outcomes of the calibration process that
proves that our methodology can be used to scan large
databases without losing accuracy, gave us the opportun-
ity to scan all the available proteomes. This distinguishes
our work from previous attempts in a few specific or-
ganisms. The 20540 predictions in 1536 different organ-
isms from all the evolutionary classes represents, to our
best knowledge, the most extensive set of PrD predictions
obtained so far, which will help to attain a global view of
the distribution of prion domains in the proteomes of
organisms and to unravel the cellular processes in which
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proteins containing different prion-forming domains might
be involved.
Our results show that, in general terms, the number of

prions per genome is low, though there are organisms in
which prion-like self-assembly might play important
functions, as can be inferred from the rather high num-
ber of prions in their genomes. It is important to bear in
mind that there could be a significant bias in these
estimations, when associated with annotation problems
of some genomes. The analysis of incomplete sequenced
genomes of some members of the genus Plasmodium
proved that they contain abundant hydrophilic low-
complexity segments, which correspond to species-
specific, rapidly diverging regions that might be forming
non-globular domains that help the parasites to evade
the host’s immune response [47]. Here we demonstrate
this trend by analyzing the complete proteomes of
various members of this genus, and propose that most
of these stretches may correspond to PrDs. We also
found a similar tendency in the genome of Dictyostelium
discoideum, by far the organism with more predicted
prions in its proteome, which implies that most of the
low-complexity stretches found in the sequencing of the
genome of this organism [46] could be prions, though
the functional implications of such an amount of
aggregation-prone proteins is unclear. Having a high
number of low-complexity stretches appears to be cha-
racteristic of these organisms [81]. Accordingly, despite
being less represented than in Dictyostelium discoideum,
the number of PrDs in Dictyostelium purpureum gen-
ome is fairly high in comparison with that in other or-
ganisms. It is known that Plasmodium is able to survive
with an aggregation-prone proteome even under the
periodic heat shock stress that characterize malaria,
where patients suffer recurrent episodes of fever exceed-
ing 40°C. This is possible thanks to the presence of
specialized chaperones, which are essential for parasite
survival within red cells, [82]. So far only one of our
Plasmodium PrDs candidates has been characterized ex-
perimentally: PFI115w (Q8I2S1_PLAF7). In agreement
with our prediction, the protein aggregates intracellularly
when expressed in human cells [82]. Plasmodium chap-
erones act as cellular capacitors allowing the accumula-
tion of potentially deleterious PrDs, whose presence
should therefore provide certain advantage to the organ-
ism. It is still to discover whether Dictyostelium exploits
a similar strategy to cope with the high aggregation load
of its proteome.
Saccharomyces cerevisiae is the most studied organism

regarding amyloid formation, and there are various pre-
dictive strategies reporting putative PrDs in its complete
proteome [30,38,83]. Here we have not only improved
the scoring capability of previous methodologies [38],
but have also provided an ample list of PrD predictions,
including more than 500 completely new predictions in
the yeast proteome. The molecular chaperone Hsp104 is
essential for the propagation of known yeast prions,
which cannot be propagated in cells devoid of the
chaperone. The current model of amyloid propagation
suggests that the prion fibrils need to be shortened or
cleaved by Hsp104 in order to be transmitted to the pro-
geny during cell division [84]. Therefore, one should ex-
pect a certain correlation between the ability of Hsp104
to propagate prionogenic species and the number of
PrDs in the proteome of this organism. Despite its hom-
ology with the S. cerevisiae chaperone, it has been shown
that the Schizosaccharomyces pombe Hsp104 is unable
to propagate the [PSI+] prion [85]. Interestingly enough,
only 3 putative PrDs were identified in the genome of S.
Pombe. This is in contrast with Candida albicans, the
yeast with the largest number of predicted PrDs after S.
cerevisiae (169 domains), whose Hsp104 chaperone sup-
ports [PSI+] prion propagation [86].
Prions can be defined as proteins able to shift between

their soluble and aggregated states. This equilibrium
should be tightly regulated in the cell, since the accumu-
lation of aggregated species is inherently toxic and
linked to the onset of a variety of human disorders. We
explored the GeneCards database [87] to identify links
between PrD predictions and human disorders. Interest-
ingly enough, most of the human proteins for which
protein function has been reported appear to be strongly
linked to severe diseases, including different neuropa-
thies and cancers, see Table 4. This suggests that physio-
logical conditions or genetic mutations disrupting the
balance between soluble and insoluble species in human
prion candidates might lead to localized pathological
conditions. Moreover, owing to the predicted prion-like
nature of these proteins, it is possible that, once formed,
the seeds might spread to other locations. Thus, impe-
ding the aggregation and/or subsequent dissemination of
the identified candidates might constitute a way to tackle
these, in most cases, intractable disorders.

Prion-like domains are associated to specific protein
functions, processes and locations in different organisms
The analysis of the predictions in the different proteomes
using Gene Ontology annotations allows classification of
proteins into functional classes, processes and cellular
locations, uncovering similarities and differences in PrDs
distribution between taxa or evolutionary related organ-
isms (Additional files 11, 12, 13). A first surprising obser-
vation is that the predicted PrDs appear to be associated
with different cellular components and to work in diffe-
rent biological processes in different taxa and organism
groups. These data are consistent with the view that the
common switching mechanism underlying prion behavior
can be exploited for different physiological purposes [15].



Table 4 Association between proteins bearing PrD
predictions and diseases in human

Gene Disease

ATXN1 Spinocerebellar ataxia

Huntington’s disease

ATXN3 Machado-joseph disease

Spinocerebellar ataxias

ATXN8 Spinocerebellar Ataxia Type 8

BMP2K Internuclear ophthalmoplegia

Ulnar neuropathy

FOXP2 Speech-language disorders

Blepharophimosis

Premature ovarian failure

Autism

Dyslexia

HTT Huntington’s disease

Spinocerebellar ataxia

MAML Mucoepidermoid carcinoma

Hidradenoma

Lipoadenoma

Epithelial-myoepithelial carcinoma

MED12 FG syndrome

Intellectual disability

Schizophrenia

MED15 Epicondylitis

NCOA3 Breast cancer

Ovarian carcinoma

PAXIP1 Spinocerebellar ataxia

TAF15 Chondrosarcoma

Peripheral primitive neuroectodermal tumor

Amyotrophic lateral sclerosis

Sarcoma

Liposarcoma

TOX3 Breast cancer

TPB Spinocerebellar ataxia

Tuberculosis

Huntington’s disease

We compiled the different diseases associated with the genes in humans for
which we found PrD predictions.
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In bacteria, PrDs are depleted in the intracellular space
and significantly enriched at the cell wall. Accordingly,
bacterial PrDs appear to be essentially involved in meta-
bolic and catabolic processes resulting in construction and
disassembly of the cell wall. No prion protein has been
characterized yet in bacteria. However, many bacterial
species form extracellular biofilms, which are constituted,
among other components, by proteins assembled into
amyloid structures identical to those in neurodegenerative
disorders. Amyloidogenic proteins in biofilms are constit-
uents or interact with the bacterial cell wall. Biofilms are
important virulence factors for bacteria favoring the at-
tachment to eukaryotic cells. Importantly, biofilm forming
pathogens such as Staphylococcus aureus present the
highest content in PrDs, suggesting that the identified
proteins might contribute to form or sustain the network
of amyloid contacts that stabilize the biofilm. Preliminary
experimental data support this view since the predicted S.
aureus PrD (SSAA2) forms bona fide amyloid fibrils
in vitro (S.V. unpublished results). Bacterial amyloids can
initiate the formation of pathogenic or misfolded amyloid
upon interaction with diverse host proteins [88]. This
template-directed process resembles prion transmission
and brings up a possible relationship between bacterial
infections and neurodegenerative diseases. Accordingly,
bacterial amyloids cause the development of amyloidosis
when they are injected in susceptible mice [89].
In eukaryotes, PrDs are intracellular and preferentially

localized in the nucleus, as previously suggested [90]. In
yeast and plants, PrDs are found associated with the
transcription factor II D component, a protein complex
composed of the TATA binding protein (TBP) and a set
of TBP associated factors (TAFs), well conserved across
species. Binding of TFIID to DNA is necessary for tran-
scription initiation from most RNA polymerase II pro-
moters. Accordingly, in both taxa, a large number of
PrDs are linked to transcriptional function. In fungi 86
PrDs are involved in catalyzing release of nascent poly-
peptide chains from the ribosome, a function similar to
that exerted by SUP35. Overall, both in fungi and
plantae PrDs are enriched in DNA and RNA-binding
proteins, controlling apparently unrelated processes such
as nitrogen utilization in fungi and hormone (auxin and
ethylene) signaling pathways in plants.
In animals, PrDs are also essentially nuclear and

depleted in both the mitochondrial and plasmatic mem-
brane, consistent with a soluble nature under physiological
conditions. They are also underrepresented in mitochon-
drion, consistent with the observation that bacteria con-
tain a reduced number of PrDs. Also in animals the
majority of PrDs corresponds to DNA and RNA-binding
proteins. In vertebrates, PrDs are overrepresented in two
important functional components; the mediator and the
histone acetyltransferase complexes. Mediator is a multi-
protein complex that functions as a transcriptional
coactivator in all eukaryotes. In fact we also find PrDs
linked to mediator in yeast. The mediator complex is
required for activation of transcription of most protein-
coding genes, but can also act as a transcriptional co-
repressor. In humans, it includes proteins such as MED12
and MED15, which, as discussed previously, are linked to
debilitating disorders. Histone acetylation is also linked to
transcriptional activation and associated to euchromatin.
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Histone acetyl-transferases can also acetylate non-histone
proteins, such as transcription factors and nuclear recep-
tors to facilitate gene expression. The DNA/RNA binding
properties of mammal PrDs determine that most of them
act in the control of transcriptional and translational pro-
cesses. In humans, these proteins include transcriptional
factors (PAX-interacting protein 1, TOX3), tumor sup-
pressor proteins (MN1), histone methyl/acetyl-transferases
(Histone-lysine N-methyl-transferase MLL2, E1A-binding
protein p400) and nuclear receptors (NCOA3), and they
function in essential pathways such as beta cadherin medi-
ated Wnt signaling or estrogen response.
Overall, in animals, PrDs appear to work in the upstream

regulation of central biological processes and more specif-
ically in development. In vertebrates PrDs act in the deve-
lopment of central nervous regions such as the putamen,
caudate nucleus or the neural crest. This regulatory activity
of neuronal development is conserved between mammals
and humans, where PrDs additionally play a role in cere-
bellum and cerebral cortex development. Therefore, it is
likely that PrDs malfunction might be intimately linked to
the apparition of neurodegenerative diseases, as previously
discussed (Table 4). Mammal and human PrDs are also
involved in embryonic development and more generally in
cell differentiation, which might explain the association of
PrDs with different types of cancer (Table 4).
Interestingly, 30% of the predictions in humans were

found in proteins of unknown function. If we combine
all the predictions obtained in this study for all the ana-
lyzed organisms, the percentage of PrDs predictions in
proteins of unknown function raises to 564%. Therefore,
our results could be of help to uncover new potential
targets for experimental analysis and to unravel the yet-
to-discover functional implications of these proteins.

Conclusions
In this work, we have developed a probabilistic model to
predict prion domains based on the primary sequence of
proteins. By using this model, which is combined with
a thorough benchmarking and calibration to handle
genome-size sequence databases, we have been success-
ful on predicting prions in all the proteomes available,
which to our knowledge constitutes the most extensive
study in this direction performed so far. We have
disclosed an ample list of proteins containing stretches
with a fairly high compositional similarity to those of
known prions, including proteins from almost all the
evolutionary classifications and taxa, from archaea and
viruses to mammals and human. Our results also show
that this kind of domains is found in an ample and
diverse group of evolutionarily unrelated proteins. In
fact, our predictions highlight some interesting trends in
the distribution of prion domains in different protein
functional families, different cellular compartments and
involved in dissimilar biological processes depending on
the taxonomic classification. In a time in which prion
biology is a rather unexplored field, and the number of
prion proteins confirmed experimentally is scarce, pre-
dictive approaches such as ours could be of great help to
pinpoint putative prionogenic proteins for further ex-
perimental characterization. Thus, the free distribution
of these predictions, as well as the continuous updating
and improvement of the predictive models based on new
experimental evidence, might significantly contribute to
increase the understanding of prion biology and to reach
a deeper understanding of prions’ functional and regula-
tory mechanisms.

Methods
Sequence datasets
A group of 29 proteins that proved heritable switch and
significant in vivo amyloid formation in yeast [38] was
used as the training set for obtaining the amino acid
propensities in prion domains. We calculated the propen-
sities based on the complete sequences that were cloned
and tested experimentally in this work, which we believe,
is more credible than using the predicted PrD-cores,
which are inferred solely based in statistical precepts. An-
other set of 18 high scoring prion predictions, all of which
had also been experimentally tested and showed no prion-
forming propensity in any of the four assays [38], was used
as the negative evaluation set in the benchmarking of the
methodology (the sequences of the proteins and PrDs are
described in the Additional file 14). The positive evalu-
ation set for the ROC plot analysis was formed with the
18 out of the 29 prions used to construct the model that
resulted positive in all the four assays described in the
work by Alberti et al. In order to avoid artifacts due to the
use of intersected sets of positive instances for training
and testing, we also performed an exhaustive jackknife
bootstrap assay to estimate the significance of the amino
acid propensities obtained. In this bootstrap assay we
resampled with replacement one million subsets from the
positive set of 18 prion proteins, randomly excluding half
of the prions each time. We then regenerated the model
with the remaining 9 prions and used the excluded
instances as the positive test set for the ROC plot con-
struction, while the negative set was the same set of 18
negative sequences in all cases. Accordingly a million
ROC plots were built and processed to obtain the average
curve and the errors associated to the estimations in each
point of the curve.
We also defined three additional evaluation datasets,

comprising the Uniprot/Swissprot database [40] (release
from February 2012), a culled list of proteins with solved
tridimensional structure annotated in SCOP (version
1.75) obtained from the ASTRAL compendium [91] (in-
cluding proteins with less than 95% sequence similarity)
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and all the intrinsically disordered proteins annotated in
Disprot [42] (version 5.7). In the case of the Uniprot/
Swissprot dataset we randomly generated a million sets
that were used in the benchmarking, while for the other
two databases we used all the protein sequences anno-
tated. In all cases the known prions were removed from
the negative datasets. These three test sets were used to
measure the ability of the model to handle sequence
datasets with a high number of negative instances, as
it is the case of the scanning of complete proteome
databases.

Construction of the probabilistic model
The amino acid frequency propensities obtained from
the known PrD training dataset described above were
used to build an independent log-likelihood model of
prion-forming domains. In this model we assume that
composition and not primary sequence determines the
principal properties of PrD [28,29], thus we choose a
model in which the position of amino acids in a given
sequence is irrelevant. The observed frequencies were
transformed into statistical potentials by using the fol-
lowing expression:

LOri ¼ log2
f i
pi

in which LOri is the log-odds ratio of amino acid (i) in bits,
fi is the observed frequency of this amino acid in the train-
ing set and pi is the corresponding expected frequency in
the protein universe –i.e. frequency of amino acids in all
known proteins reported in Swissprot. The resulting statis-
tical potentials for all the amino acids are shown in Table 1.
Assuming complete independence among the positions of
a sequence fragment of a certain length, these log-odds can
be summed up to return an uncalibrated score associated
to the fragment, for which the higher the score the higher
the probability that the sequence is a PrD. With this model,
that is essentially a ‘classifier’ for mapping instances into a
specific class, we scanned protein sequences with a sliding-
window approach using the expression:

ScoreL ¼
XL

l¼1

LOrl

where the Score of a protein sequence segment of length L
is obtained accounting for the relative support of each
amino acid independently.
We added a correction to the score based on the num-

ber and distance between non-contiguous prolines found
in the PrD. It has been previously reported that the rela-
tive abundances of the different amino acids, and not
the specific sequence, is related to the prionogenicity of
a given sequence stretch [28-30]. However, prolines dis-
play important differences with the other amino acids
because they cause a characteristic structural disruption
of secondary structures, and it has been suggested that
the abundance of non-contiguous prolines decrease the
prionogenicity of a given sequence [30]. Thus we set up
a strategy in which we estimated the relative abundance
of proline pairs separated a given distance –i.e. between
one and sixty residues in accordance with the scanning
window defined–. In order to do so we parsed a set of
4606913 sequences included in UniRef 50, release of
February 2012. This database contains cluster sets of se-
quences extracted from Uniprot/Swissprot [40] and is
both representative of the protein universe and non-
redundant, as it only contains sequences with less than
50% sequence identity. From this assay we were able to
obtain the relative frequency of proline patterns, see
Figure 1, and we used those frequencies to obtain the
corresponding log-likelihoods for each proline pattern,
taking into consideration the corresponding expected
frequencies. We then obtained the final corrected score
using the following formula:

ScoreL ¼
XL

l¼1

LOrl þ
XP−1

p¼1

LOr dp−dpþ1ð Þ

in which the second addend accounts for significance of
non-contiguous prolines in the sequence. The resulting
corrected scores were used in the benchmarking and
predictive stages of our methodology.

Benchmarking of the classification methodology
The classifier performance was assessed with the positive
and negative sets described above in this Methods sec-
tion. The real prionogenic sequences –i.e. positive test
set– were analyzed in combination with a set of non-
prion sequences –i.e. negative test set–, and the ability
of the classifier to correctly rank the positive instances
in the pool of negative cases was tested. The following
statistical performance metrics were calculated to follow
the benchmarking progress:

TPR ¼ TP
TP þ FN

FPR ¼ FP
FP þ TN

Accuracy ¼ TP þ TN
P þ N

Precision ¼ TP
TP þ FP

FDR ¼ FP
FP þ TP

where TP, FN, FP, TN stands for true positives, false nega-
tives, false positives and true negatives respectively. These
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variables were used to calculate the false positive (FPR) and
true positive (TPR) rates, needed for constructing the re-
ceiver operating characteristics (ROC) curves. The Accur-
acy, Precision and false discovery rate (FDR) were also
calculated. The areas under the ROC curves (AUC) were
calculated non-parametrically using the trapezoid algo-
rithm. All the statistical analysis was done using the R suite
[92] and a library of ad hoc Perl scripts developed by us.

Predicting Q/N-rich putative PrD in complete proteomes
We downloaded the complete proteomes of all the
organisms sequenced so far from the Uniprot/
Knowledgebase database [40] to identify novel proteins
containing prion-forming domains. These repositories
include four-weekly updates of proteins resulting from
genome sequencing and annotation projects and are
subdivided in two complementary and non-redundant
datasets: a) Swissprot for fully annotated curated entries
and b) TrEMBL formed by computer-generated entries
enriched with automated classification and annotation.
This subsection of Uniprot is organized in separate files
for different taxonomic divisions, which give us the op-
portunity to study the compositional characteristics of
our predictions in each evolutionary clade. In this dataset,
there is a file for each taxon, including all the proteins for
organisms belonging to that taxon, except for rodents,
mammals and human, which are distributed in individual
files each. These files were processed with an ad hoc perl
script included in Additional file 15. The proteins passing
the cutoff defined in the predictive methodology based
on the amino acid composition of a continuous stretch
of sixty residues [38] –i.e. what was proposed to be a typ-
ical length of PrD-cores– were accepted as predictions.
All the predictions, organized in one file for each taxon
can be found in the Additional files 1, 2, 3, 4, 5, 6, 7, 8, 9,
10. The predictions obtained were analyzed to estimate
the number of proteins with PrDs in all the taxa studied,
belonging to different ontology classifications [93] in the
following sub-categories: Molecular Function, Biological
Process and Cellular Component. Also, in order to esti-
mate the significance of the number of predictions in a
given classification, we set up a tryout in which we calcu-
lated the expected number of each GO term by randomiz-
ing the selection 106 times and then estimating the z-
scores for each GO term parametrically. These results are
included in Additional files 11, 12, 13.

Additional files
The following additional data are available with the on-
line version of this paper:
We provide ten pdf-files (one for each taxon: Archaea,

Bacteria, Viruses, Fungi, Invertebrates, Vertebrates, Plants,
Rodents, Mammals and Human) including all the prion-
forming domain predictions obtained using our metho-
dology. Each file is organized by organism (the organism
line is headed with the ‘>’ symbol, followed by the specific
name of the organism followed by colon and the number
predictions in this organisms). After the organism line,
we include one description line for each prediction, orga-
nized in the following way: the Uniprot ID of the protein
bearing the prediction followed by tab and the position of
the first residue of the sixty-residue window used by our
algorithm as described in the Methods section, followed
by a semicolon and the score of the prediction in bits,
then a vertical bar separates the sequence of the ‘Prion
Domain’ predicted in this protein. At the head of each file
we also include a summary section with the information
of all the predictions obtained in the given taxon with the
name of the taxon.

Additional file 1: Prion-forming domain predictions in Archaea.

Additional file 2: Prion-forming domain predictions in Bacteria.

Additional file 3: Prion-forming domain predictions in Viruses.

Additional file 4: Prion-forming domain predictions in Fungi.

Additional file 5: Prion-forming domain predictions in Invertebrates.

Additional file 6: Prion-forming domain predictions in Vertebrates.

Additional file 7: Prion-forming domain predictions in Plants.

Additional file 8: Prion-forming domain predictions in Rodents.

Additional file 9: Prion-forming domain predictions in Mammals.

Additional file 10 Prion-forming domain predictions in Human.

Additional file 11: Significance over- or under-representation of
PrD predictions according to gene ontology Molecular Function
classifications. We tested the significance of the number of predictions
found in all taxa according to the belonging of proteins bearing putative
PrDs to different classifications in the molecular function ontology. We
compared the abundance of predictions in a given class with the
expected frequency obtained by randomly selecting a set of the same
size in the proteomes over a 106 randomizations. In each taxon we
represent the z-score for a number of representative GO terms. The GO
terms description might be trimmed in some cases to fit in the chart.

Additional file 12: Significance over- or under-representation of
PrD predictions according to gene ontology Biological Process
classifications. We tested the significance of the number of predictions
found in all taxa according to the belonging of proteins bearing putative
PrDs to different classifications in the biological process ontology. We
compared the abundance of predictions in a given class with the
expected frequency obtained by randomly selecting a set of the same
size in the proteomes over a 106 randomizations. In each taxon we
represent the z-score for a number of representative GO terms. The GO
terms description might be trimmed in some cases to fit in the chart.

Additional file 13: Significance over- or under-representation of
PrD predictions according to gene ontology Cellular Component
classifications. We tested the significance of the number of predictions
found in all taxa according to the belonging of proteins bearing putative
PrDs to different classifications in the cellular component ontology. We
compared the abundance of predictions in a given class with the
expected frequency obtained by randomly selecting a set of the same
size in the proteomes over a 106 randomizations. In each taxon we
represent the z-score for a number of representative GO terms. The GO
terms description might be trimmed in some cases to fit in the chart.

Additional file 14: Sequence of the prion forming domains and
PrD-cores as predicted using a HMM model. These proteins were
predicted using a HMM model reported in the work by Alberti et al. [38]
and were then studied experimentally to test their aggregation

http://www.biomedcentral.com/content/supplementary/1471-2164-14-316-S1.pdf
http://www.biomedcentral.com/content/supplementary/1471-2164-14-316-S2.pdf
http://www.biomedcentral.com/content/supplementary/1471-2164-14-316-S3.pdf
http://www.biomedcentral.com/content/supplementary/1471-2164-14-316-S4.pdf
http://www.biomedcentral.com/content/supplementary/1471-2164-14-316-S5.pdf
http://www.biomedcentral.com/content/supplementary/1471-2164-14-316-S6.pdf
http://www.biomedcentral.com/content/supplementary/1471-2164-14-316-S7.pdf
http://www.biomedcentral.com/content/supplementary/1471-2164-14-316-S8.pdf
http://www.biomedcentral.com/content/supplementary/1471-2164-14-316-S9.pdf
http://www.biomedcentral.com/content/supplementary/1471-2164-14-316-S10.pdf
http://www.biomedcentral.com/content/supplementary/1471-2164-14-316-S11.pdf
http://www.biomedcentral.com/content/supplementary/1471-2164-14-316-S12.pdf
http://www.biomedcentral.com/content/supplementary/1471-2164-14-316-S13.pdf
http://www.biomedcentral.com/content/supplementary/1471-2164-14-316-S14.doc
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propensity and prionogenicity. In the upper side of the table we include
the 29 proteins and the corresponding prion domains (PrD) that were
used in our work as the training set for obtaining the amino acid
propensities in prion domains and in the second part of the table we
include the 18 proteins which resulted as negatives in all four
experimental tests and in accordance were used as the negative dataset
for estimating the predictive performance of our methodology.

Additional file 15: Perl script (prion_parse_proteome.pl) used to
predict prionogenic domains in the complete proteomes of
organisms. This ad hoc script comes with a man page (run
[./prion_parse_proteome.pl –man] in a UNIX/Linux console) which
explains the functionality and parameters needed for running in a Linux
environment and the required libraries dependencies. It is designed to
read genomes in a Swissprot format and to run in a multicore
environment to speed up the prediction in large protein sequence sets
as those distributed in Uniprot.
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