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Abstract

Background: Hyperpigmentation of the visceral peritoneum (HVP) has recently garnered much attention in the
poultry industry because of the possible risk to the health of affected animals and the damage it causes to the
appearance of commercial chicken carcasses. However, the heritable characters of HVP remain unclear. The objective of
this study was to investigate the genetic parameters of HVP by genome-wide association study (GWAS) in chickens.

Results: HVP was found to be influenced by genetic factors, with a heritability score of 0.33. HVP had positive genetic
correlations with growth and carcass traits, such as leg muscle weight (rq = 0.34), but had negative genetic correlations
with immune traits, such as the antibody response to Newcastle disease virus (ry = —042). The GWAS for HVP using

39,833 single nucleotide polymorphisms indicated the genetic factors associated with HVP displayed an additive effect

rather than a dominance effect. In addition, we determined that three genomic regions, involving the 50.5-54.0 Mb
region of chicken (Gallus gallus) chromosome 1 (GGAT1), the 58.5-60.5 Mb region of GGA1, and the 10.5-12.0 Mb
region of GGA20, were strongly associated (P < 6.28 x 10”) with HVP in chickens. Variants in these regions explained
>50% of additive genetic variance for HVP. This study also confirmed that expression of BMP7, which codes for a bone
morphogenetic protein and is located in one of the candidate regions, was significantly higher in the visceral
peritoneum of Huiyang Beard chickens with HVP than in that of chickens without pigmentation (P < 0.05).
Conclusions: HVP is a quantitative trait with moderate heritability. Genomic variants resulting in HVP were identified

on GGAT and GGA20, and expression of the BMP7 gene appears to be upregulated in HVP-affected chickens. Findings
from this study should be used as a basis for further functional validation of candidate genes involved in HVP.

Background

Pigmentation is widespread amongst both plants and ani-
mals, and plays important roles in photosynthesis (in
plants), camouflage, sex selection, and protection from
sunburn. However, abnormal pigmentation in humans and
other animals, including hyperpigmentation (e.g. chloasma
[1] and melanoma [2,3]) and the absence of pigmentation
(e.g. albinism [4] and vitiligo [5,6]), can pose serious health
risks. Most pigmentation phenotype variants are affected
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by genetic factors in both humans [7-9] and animals
[10-17]. In chickens, a mutation of the melanocortin 1 re-
ceptor (MCIR) gene causes extended dark feathers [15],
and a complex genomic rearrangement on chicken (Gallus
gallus) chromosome 20 (GGA20) determines dermal
hyperpigmentation [14]. However, these studies have
mainly focused on pigmentation of the retina, skin, hair,
and feathers. Pigmentation of other tissues, including
muscular and visceral membranes, is also very import-
ant. Recently, more attention has been paid to the
hyperpigmentation of the visceral peritoneum (HVP)
in chickens, especially the colored chicken breeds, because
it affects the carcass appearance of commercial chickens,
resulting in economic losses, and may be associated with
certain diseases, including melanomas [18]. HVP is similar
to fibromelanosis, but the pigmentation is limited to the
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chicken peritoneum, so it may be peritoneal fibrosis. It is
characterized by intense pigmentation of connective tissue
in the visceral peritoneum, which results in a dark blue
appearance through the skin of the chicken abdomen, and
a black connective tissue layer when the skin is re-
moved (Figure 1). A preliminary study showed that
HVP was caused by an abnormal distribution of mel-
anin, and that the number of chickens with HVP can
increase in cold and humid environments (unpub-
lished data). HVP is distinct from fibromelanosis,
which results from a complex genomic rearrange-
ment involving the endothelin 3 (EDN3) locus [14].
In fact, the genetic causes of HVP remain unknown.

The development of molecular tools and strategies has
allowed the investigation of the genetic basis of HVDP.
Genome-wide association studies (GWAS) have become
an important strategy for investigating the genetic basis of
many human diseases, including diabetes, breast cancer,
pancreatic cancer, and hypertension, amongst others
(www.genome.gov/GWAStudies). Livestock breeders have
begun to implement GWAS to map economically import-
ant quantitative trait loci (QTLs) [19-22]. Significant loci
linked to chicken growth traits have been mapped to
GGA1 and GGA4 by GWAS [23,24]. Therefore, if HVP is
influenced by a major genetic factor, GWAS may be able
to dissect its genetic basis.

In this study, we estimated the genetic parameters of
HVP to illustrate the inheritance of HVP, and carried
out a GWAS analysis of HVP using the chicken 60K sin-
gle nucleotide polymorphism (SNP) panel in a commer-
cial chicken population with a rich diversity of HVP.

Results

Genetic parameters

HVP was found to have a moderate heritability (h*=0.33)
through estimating genetic parameters, suggesting that
HVP was significantly affected by genetic factors and was
not a simple Mendelian trait. As shown in Table 1, HVP
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had significantly positive genetic correlations with growth
and carcass traits in chickens (P <0.05), such as body
weight at day 91 (rg = 0.27), carcass weight (ry = 0.24), net
weight (rg = 0.27), breast muscle weight (r, = 0.17), and leg
muscle weight (ry=0.34). Moderately negative genetic
correlations were identified between HVP and immune
traits, especially the antibody response to Newcastle dis-
ease virus (ry = —0.42). These results indicated that the im-
mune capacity of chickens with HVP could be inferior to
that of normal non-pigmented chickens, but the growth
capacity of chickens with HVP might be greater.

GWAS detection of SNPs associated with HVP

A GWAS was used to dissect the genetic factors associated
with HVP. SNP additive effect analysis identified several re-
gions that were significantly (P<6.28 x 107) associated
with HVP on both GGAl and GGA20 (Figure 2A). As
shown in Table 2, 20 SNPs with additive effects with
genome-wide significance were detected for HVP
(P<6.28 x 107). Thirteen SNPs with additive effects were
located in the 50.5-54.0 Mb region of GGA1. In addition
to this GGALI region, seven SNPs with functional effects
reached genome-wide significance, including two SNPs in
the 58.5-60.5 Mb region of GGA1, and five SNPs in the
10.5-12.0 Mb region of GGA20. The extent of linkage dis-
equilibrium (LD) in both GGA1 and GGA20 was about 2
Mb (Additional file 1: Figure S1), which indicated that the
three significant regions represented three independent QTLs
for HVP. The risk alleles of the QTLs in the 50.5-54.0 Mb re-
gion of GGA1 and in the 10.5-12.0 Mb region of GGA20
were from the parent broiler sire line and Huiyang Beard
chicken line, respectively. The additive effect in the 50.5-54.0
Mb region of GGA1 was the greatest out of all the regions
identified for HVP. The most significantly associated SNP
(rs14822943) explained 13% of phenotypic variance for HVP.
Because the heritability of HVP reached 0.33, the additive
effect of this SNP covered 39% of additive genetic variance
for HVP. Together with the most significant SNP in each

of the visceral peritoneum, respectively.

Figure 1 Classification of the hyperpigmentation of visceral peritoneum. A, B, and C represent severe, mild, and absent hyperpigmentation
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Table 1 Genetic correlations (ry) between the
hyperpigmentation of visceral peritoneum and growth,
carcass, and immune traits in chickens

Traits® No.? Means® ry P-value
BW91, g 511 2,100+ 165 027+0.14 243x107
cw, g 511 1,847 + 145 024+0.14 483% 107
NW, g 511 1401+ 117 027+0.13 186% 107
DW, g 506 1674+13.7 021+0.16 947 x 107
BMW, g 511 1224109 0.17£0.10 384x107
LMW, g 511 168+ 195 034+0.10 450% 107
AFW, g 510 826+158 007+0.12 272x107
SIL, cm 510 129+ 059 —006+0.10 266x10"
Ab-NDV 511 363+007 -042+0.14 135% 107
Ab-AIV 511 1314005 ~-0.26+0.16 521% 107
HC 508 1344038 —025+0.18 824 %107

@ BW91 = body weight at day 91, CW = carcass weight, NW = net weight, DW =
dress weight, BMW = breast muscle weight, LMW = leg muscle weight, AFW =
abdomen fat weight, SIL = small intestine length, Ab-NDV = antibody response
to Newcastle disease virus, Ab-AlV = antibody response to avian influenza
virus, HC = heterophil count, representing heterophil to lymphocyte ratio.

P Number of samples for estimating genetic correlations.

€ Mean + standard error.

strongly significant chromosomal region, the three most
significant SNPs accounted for >50% of the additive gen-
etic variance for HVP. Unlike the additive effect, no SNP
dominance effect reached genome-wide significance
(P<6.28 x 107) for HVP (Figure 2B). This result indicated
that the genetic factors affecting HVP had much stronger
additive effects than dominance effects, and that at least
three major genes could influence HVP.

Positional candidate genes for HVP

As shown in the Table 2, there were 18 genes in close
proximity to the 20 significant genome-wide SNP
markers. The most significant effect was observed in the
promoter region (about 0.5 Kb upstream) of TGF-f acti-
vated kinase 1/MAP3K7 binding protein 1 (MAP3K7IPI),
located in the 50.5-54.0 Mb region of GGAL. Another
SNP, located 13.3 Kb downstream of MAP3K7IP1, also
had a genome-wide significant additive effect for HVP. Be-
cause HVP was associated with immune traits (Table 1),
and because MAP3K7IP1 is involved in some pathways
associated with energy metabolism and immunity, such as
the MAPK signaling pathway and the Toll-like receptor
signaling pathway, MAP3K7IPI was identified as a poten-
tial positional candidate gene for HVP. The most signifi-
cant effect of the other QTLs linked to HVP on GGA1
was at 55.3 kb upstream of the homeodomain interacting
protein kinase 2 (HIPK?2) locus. HIPK?2 participates in cell
development, growth, and apoptosis, such as in the Wnt
pathway, and was associated with HVP and chicken
growth (Table 1), so was therefore also identified as a can-
didate gene for HVP. The most significant SNP on

Page 3 of 10

GGA20 was located nearest to bone morphogenetic pro-
tein 7 (BMP7), which can effect melanocyte growth and
melanoma cell metastasis, and therefore BMP7 was also
chosen as one of the most important positional candidate
genes for HVP. In addition, according to information from
the Kyoto Encyclopedia of Genes and Genomes
(KEGG), Gene Map Annotator and Pathway Profiler
(GenMAPP), and Biocarta databases, MAP3K7IPI,
HIPK2, and BMP7 can all regulate mitogen-activated
protein kinase kinase kinase 7 (MAP3K7) expression
(Additional file 2: Figure S2), suggesting that each of
these genes might affect HVP by mediating MAP3K7
expression.

Expression of chicken MAP3K7IP1, HIPK2, BMP7, and
MAP3K7

As shown in Figure 3, MAP3K7IP1, HIPK2, BMP7, and
MAP3K7 were all expressed in the visceral peritoneum
tissue of normal Huiyang Beard chickens as well as in
chicken with HVP. BMP7 mRNA expression was the low-
est, only slightly greater than zero in the normal Huiyang
Beard chickens, while MAP3K7 mRNA expression was
the highest. The mRNA expression of both BMP7 and
MAP3K7 in the visceral peritoneum tissue of Huiyang
Beard chickens with HVP was significantly higher than
that in normal Huiyang Beard chickens (P < 0.05). How-
ever, the mRNA expression of MAP3K7IP1 and HIPK2
was not significantly different between the visceral peri-
toneum tissue of normal Huiyang Beard chickens and
those with HVP (P > 0.05).

Discussion

Interestingly, chickens with HVP showed no reduction
in body weight, and were actually associated with im-
proved production efficiency. This finding deviated from
our hypothesis that HVP was likely associated with dis-
ease phenotypes, which could decrease chicken growth.
However, HVP-affected birds still had greater health
risks because of the observed negative genetic correla-
tions with immune traits (Table 1). The birds with HVP
had decreased antibody responses, indicating that they
may be more likely to suffer from pathogen infections.
In addition, the birds with HVP had larger heterophil
counts, resulting in higher heterophil to lymphocyte ra-
tios (H/L). High H/L values in chickens are associated
with decreased tolerance of environmental stress [25].
Taken together, our results indicated that birds with
HVP should grow faster in a favorable environment, but
stressful environmental conditions would more adversely
affect the development and growth of birds with HVP
compared with those of normal birds. We therefore in-
ferred that the increased emergence of birds with HVP
indirectly results from the selection of birds with higher
production efficiency in the modern broiler industry.
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Figure 2 (See legend on next page.)
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(See figure on previous page.)

Figure 2 Manhattan plot of the genome-wide association study for the hyperpigmentation of visceral peritoneum (HVP) in chickens.
The green line indicates the threshold P value of the 5% Bonferroni genome-wide significance (P=6.28 x 107). A. Additive effects of GWAS for

HVP. B. Dominance effects of GWAS for HVP.

During our investigation of HVP in chickens, we did
not observe this HVP phenomenon in fast-growing birds
with white feathers, such as Ross 308 broilers; HVP
appeared to be limited to colored chicken breeds, such
as Huiyang Beard chickens (unpublished data). The lack
of the HVP phenotype in Ross 308 broilers may result
from interference of the white dominance or recessive
locus with the pigmentation in the abdominal septa of
areolar connective tissues. A white recessive locus with a
retroviral insertion in the tyrosinase (TYR) gene changes
the expression of TYR to interrupt melanin biosynthesis
[11,26,27], while a white dominance locus with a muta-
tion in the premelanosome protein gene alters melano-
some shape to influence pigmentation [10,28]. In
addition, birds with runting and stunting syndrome
(RSS) usually also have the HVP phenotype in Chinese
farms (personal communication). One of reasons behind
RSS may be the fact that birds with HVP have less

resistance to pathogens and environmental stress, such
as cold temperatures. Therefore, HVP may be one of the
traits that mirror non-balance allocation of energy be-
tween production and immunity during chicken growth.
However, this hypothesis required further experimental
validation.

A GWAS was implemented for HVP in this study to
attempt to validate the above hypotheses. GWAS are
useful for exploring the genetic basis of some special ap-
pearance traits, such as pigmentation [29,30]. This was
the first study aimed at uncovering the genetic basis of
pigmentation of connective tissues in chickens based on
a high-density SNP chip panel. We hoped that the find-
ings would increase the genetic knowledge of HVP, and
allow us to validate potential HVP candidate genes.

The GWAS identified 20 SNP markers that were sig-
nificantly (P < 6.28 x 10”7) associated with HVP (Table 2).
Based on the extent of LD on GGA1 (Additional file 1:

Table 2 SNPs with statistical significance in the genome-wide association study for hyperpigmentation of visceral

peritoneum (HVP)

SNP GGA? Position (bp) Nearest geneb Alleles RAS FAW P-value AE r?
rs14822943 1 52,576,468 05 Kb U MAP3K7IP1 T T 021 265x10™ 005 0.13
GGaluGA017356 1 52,358,970 CACNATI T/C T 0.24 295% 102 0.06 0.10
GGaluGA017598 1 52,940,122 PLA2G6 T/C C 043 903x107"? 008 0.09
GGaluGA018011 1 53,833,467 70.8 Kb U MYH9 G/A G 0.24 103x10™" 0.05 0.10
rs13865536 1 52,554,283 13.3 Kb D MAP3K7IP1 T C 0.24 507x 10" 0.05 0.10
GGaluGA017030 1 51,619,588 0.8 Kb U RANGAP] G/A A 049 580x 107" 008 008
rs13652125 1 50,923,554 TTC26 AG A 0.15 197x107° 0.04 0.06
GGaluGA016761 1 51,087,457 SERHL2 T/C C 048 462% 107 007 006
GGaluGA016965 1 51,488,752 25 Kb D ACO2 T/C C 0.25 575%107 005 007
GGaluGA017484 1 52,642,092 PDGFB G/A G 0.26 152x10° 0.05 0.09
GGaluGA017730 1 53,094,788 56 Kb U TRIOBP T/C T 0.64 474x10° 0.11 009
GGaluGA019336 1 58,058,352 55.3 Kb U HIPK2 G/A G 0.70 155% 107 0.10 004
rs13873173 1 60,462,801 SLCI13A4 G/T T 075 237%107 0.10 005
rs13865344 1 52,399,455 CACNATI T/C T 027 485x107 0.04 003
rs13865892 1 53,177,756 LGALS2 G/A G 061 579% 107 008 006
rs16174305 20 11,707,312 30.0 Kb D BMP7 ) C 042 244x10° 006 005
GGaluGA180727 20 11,075,280 369 Kb U STX16 G/A A 036 925%x10°® 0.06 005
rs14278900 20 10,911,015 GNAS G/A A 037 1.24% 107 005 005
GGaluGA180980 20 11,591,655 35 Kb U RBM38 G/A A 044 259% 107 006 003
GGaluGA181122 20 11,874,967 27.0 Kb D TFAP2C T/C C 048 398x 107 0.06 005

# GGA = chicken (Gallus gallus) chromosome;
® Gene information from NCBI, 06 July 2011;

¢ RA =risk allele related to HVP; FAW = frequency of the allele related to HVP in F, population; AE = additive effect of SNP markers; r* = contribution of each SNP

to HVP.
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Figure 3 Expression of chicken MAP3K7IP1, HIPK2, BMP7, and MAP3K7. * and ** indicate significant differences at P < 0.05 and P < 0.01,
respectively, in gene expression between the visceral peritoneum of the normal Huiyang Beard chickens and Huiyang Beard chickens with
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Figure S1), these SNP markers were determined to be-
long to three different QTLs. The detection of more
than one QTL indicates that the causal genes or muta-
tions in these QTLs can affect the same pathway or gene
to generate the same phenotype. The MAP3K7IPI,
HIPK2, and BMP7 genes were the closest loci to the
most significant SNP marker in each of the three QTL
regions. MAP3K7IP1, HIPK2, and BMP7 genes are not
traditional pigmentation genes, which are generally con-
sidered to include MCIR, TYR, tyrosinase-related pro-
tein 1, microphthalmia-associated transcription factor
(MITF), agouti signaling protein, SRY (sex determining
region Y)-box 10 (SOX10), myosin VA (heavy chain 12,
myoxin), solute carrier family 45, and member 2
[8,31,32]. Therefore, we hypothesized that HVP does not
directly result from mutations in the traditional pigmen-
tation genes, but originates from the upstream genes
that can indirectly change pigmentation pathways.
GWAS of human pigmentation traits have produced some
similar results [33]. Previous studies also suggested that
MAP3K7IPI, HIPK2, and BMP7 could influence some
pigmentation pathways. For example, Liang et al. found
that down-regulation of HIPK2 expression suppressed the
expression of MITE, resulting in melanocyte differenti-
ation suppression by increasing C-terminal binding pro-
tein 2 levels [34]. BMP7 could inhibit normal melanocyte
growth and tumor growth of human uveal melanomas
[3536], and could inhibit metastasis by inducing
mesenchymal-to-epithelial transition in melanoma cells
[37]. However, evidence indicates that BMP7 is
upregulated in the development of melanoma [38,39].

This study also found that upregulation of BMP7 was as-
sociated with HVP in Huiyang Beard chickens (Figure 3).
In addition, BMP7 could affect pheomelanin generation
by interacting with proopiomelanocortin in brown adipo-
cyte differentiation and thermogenesis [32,40].

More interestingly, the MAP3K7 gene was found to be
a node linking the MAP3K7IP1, HIPK2, and BMP7
genes according to the pathway maps involving these
genes in the KEGG, GenMAPP, and BioCarta databases
(Additional file 2: Figure S2). MAP3K7 can also interact
with many genes affecting melanocyte development
[31,32], such as MITF [41], KIT ligand, B-cell leukemia/
lymphoma 2 [42,43], lymphoid enhancer binding factor
1 [44], and epidermal growth factor receptor [45,46].
MAP3K7IP1 is one of the MAP3K7 binding proteins.
The MAP3K7IP1 protein interacts with and thus acti-
vates MAP3K?7 kinase, and may also function as a medi-
ator between TGF- receptors and MAP3K7 [47-49],
suggesting that MAP3K7IP1 can influence the function
of the downstream genes of the pathways involving in
MAP3K7. Besides the interaction of MAP3K7IP1 and
MAP3K7, BMP7 also contacts MAP3K7 in some path-
ways. Yamaguchi et al. reported that BMP7 activated
MAPK signaling through MAP3K7 [50]. Blank et al
verified that BMP7 activated the JNK signaling pathway,
and MAP3K7 was required for BMP7-mediated JNK ac-
tivation [51]. In addition, BMP7 could activate MAP3K7
and enhance Wnt-dependent transcription [52]. Expres-
sion of BMP7 was indeed consistent with that of
MAP3K7 in this study (Figure 3). It is possible that a
specific mutation upregulates expression of BMP7 to
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result in MAP3K7 upregulation in Huiyang Beard chick-
ens with HVP. Additionally, the MAP3K7-HIPK2 path-
way can inhibit c-Myb activity upon Wnt-1 stimulation,
affecting the immune response, because c-Myb plays an es-
sential role in the proliferation of immature hematopoietic
cells and early T-cell development [53-55]. This is consist-
ent with the fact that this study identified a strong genetic
relationship between HVP and the antibody response to
Newcastle disease virus (ry = -0.42, Table 1). Importantly,
MAP3K?7 participates in several pathways related to the
immune response, such as the B cell receptor signaling
pathway, the toll-like receptor signaling pathway and the
IL-6 signaling pathway (http://www.wikipathways.org/
index.php/WikiPathways). These findings indicate that
MAP3K7IP1, HIPK2, and BMP7 could be candidate genes
for HVP, and might affect the development of HVP by
regulating the expression of the MAP3K7 gene. Further
studies are needed to validate this hypothesis.

Conclusions

HVP was found to be a quantitative trait with moderate
heritability. Three independent QTLs for HVP were
detected by GWAS on GGAl and GGA20, and the
BMP7 gene was identified as a likely candidate gene for
HVP.

Methods

Ethics statement

This study was approved by the Animal Care Committee
of the Institute of Animal Science, Guangdong Academy
of Agricultural Sciences (Guangzhou, People’s Republic
of China), with approval number GAAS-IAS-2009-73.
Animals involved in this study were humanely sacrificed
as necessary to ameliorate their suffering.

Animals and data collection

A total of 585 commercial chickens were used in this
study, consisting of three generations (23 P, 51 F;, and
511 F, individuals) with an accurate pedigree. All birds
were immunized with a commercial avian influenza-
inactivated H9 strain vaccine at day 40, and a commer-
cial Newcastle disease virus live LaSota strain vaccine at
day 50. At day 91, 511 F, individuals from six hatches
were slaughtered. At this time point, vein blood was col-
lected and a portion transferred into centrifuge tubes
containing ethylenediaminetetraacetic acid disodium salt
solution, and then stored at —80°C. The remainder was
used to prepare serum for measuring antibody responses
(S/P values) to Newcastle disease virus and avian influ-
enza virus by enzyme linked immunosorbent assay. At
day 91, body weight, carcass weight, net weight, dress
weight, breast muscle weight, leg muscle weight, and ab-
domen fat weight were measured, as was small intestine
length. Heterophil count, representing H/L, was measured
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following the method of Vleck et al. [56]. A higher hetero-
phil count is consistent with a higher H/L value. Because
HVP was thought to be a quantitative trait, HVP was clas-
sified into three levels, absent, mild, and severe hyperpig-
mentation, represented by 0, 1, and 2 (Figure 1),
respectively, to control for false positives. The absent,
mild, and severe hyperpigmentation groups had 352, 132,
and 27 individuals, respectively.

SNP genotyping and selection

Genomic DNA extraction from venous blood was
performed using the phenol/chloroform method. The
quality and concentration of genomic DNA from 511 F,
individuals fulfilled the requirements for the Illumina
Infinium SNP genotyping platform. Genotyping using
the Illumina 60K Chicken SNP Beadchip [57] was car-
ried out at the Illumina-certified service provider, DNA
LandMarks, Saint-Jean-sur-Richelieu, Canada. Quality
control was assessed in GenomeStudio v2008.1 [58]. Six
samples were excluded as more than 5% of their SNPs
had missing genotypes. The final SNP set included
39,833 SNPs for this GWAS under the following SNP
selection criteria: low call frequency (>95%), low hetero-
zygosity cluster intensity and separation value (>0.4),
and low minor allele frequency (>0.1). Information on
the SNP markers on each chicken chromosome is sum-
marized in Additional file 3: Table S1.

Gene expression

The visceral peritoneum tissue from eight normal and
eight HVP-positive, 21-day-old Huiyang Beard chickens
(a Chinese native chicken breed from Guangdong prov-
ince) was collected and transferred into RNAlater solution
(Life Technologies, Carlsbad, CA, USA) and stored
at —80°C. Total RNA was isolated by grinding the tis-
sues to powder under liquid nitrogen and extracting with
RNA TRIzol reagent (Life Technologies, Rockville, MD,
USA). The RNA was reverse transcribed into cDNA with an
M-MLV RTase cDNA Synthesis Kit (Takara Biotechnology
Co., Dalian, China). Quantitative real-time polymerase chain
reaction (QRT-PCR) analysis was performed to test the ex-
pression of MAP3K7IP1, HIPK2, BMP7, and MAP3K7 in
the visceral peritoneum tissue of the birds. The primers used
for qRT-PCR were designed using Primer Express 2.0 soft-
ware (Applied Biosystems, Foster City, USA) and their
sequences are shown in Table 3. qRT-PCR reactions
used SYBR Green Real Time PCR Master Mix (Toyobo
Co., Osaka, Japan) according to the manufacturer’s
instructions, and contained a passive reference dye,
Rox, to correct for well-to-well variation. Reactions
were run on a LightCycler 480 Real-Time PCR System
(Roche Applied Science, Indianapolis, IN, USA) with the
following parameters: 3 min at 95°C, followed by 40 cy-
cles of 30 s at 95°C, 30 s at 60°C, and 34 s at 72°C. The
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Table 3 Sequences of primers used for qRT-PCR
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Genes Forward primers (5'-3) Reverse primers (5'-3)
BMP7 GAGAACAGCAGCAGCGACC CAAAATAGAGCACTGAGATGGC
MAP3K7IP1 CCCCACCCTCACTAACCAA TCCCTCCTCAGTCTTTTCTCAC
HIPK2 CATCCTCGGTTTACCATTTTG CGGTGAGTCTGTATCCCTGTT
MAP3K7 CCAGGAAACGGACAGCAG CTTTGGAGTTCGGGCATG
B-actin CCCCAAAGCCAACAGAGAGA GGTGGTGAAGCTGTAGCCTCTC

relative mRNA expression of the target genes was mea-
sured as the number of cycles of PCR required for ex-
ceeding threshold fluorescence, and was normalized
against that of S-actin, according to the quantitation
procedures recommended by Roche Applied Science.

Statistical analysis

Variance and covariance components were estimated
using the average information restricted maximum likeli-
hood algorithm [59] implemented by the DMU package
[60]. The variance component estimated model was:

y=Xb+Za+e

where y was the vector of observations of HVD, e.g. body
weight at day 91(a total of nine phenotypes, Table 1); b
was the vector of fixed effects, including sex (two levels)
and hatch (six levels); a2 was the vector of animal addi-
tive genetic effects; e was the vector of random residuals;
and X and Z were corresponding incidence matrices.

Statistical tests of SNP-phenotype association were
implemented using the generalized least square version
of the epiSNP computer package, which considered sib
correlation within each family [61,62]. The statistic
model was

Y=u+S+H+f+SNP+e,

where Y was the phenotypic value of HVP, y was the
common mean of HVP, S was the fixed gender effect, H
was the fixed hatch effect, f was the random family ef-
fect, SNP was the single-locus SNP genotypic effect, and
e was the random residual. Additive and dominance ef-
fects were tested using linear contrasts of the single-
locus SNP genotypic effect [62]. The threshold P value
of the 5% Bonferroni genome-wide significance was
6.28 x 107 (0.05/39833/2), based on the total number of
SNP markers and two SNP genotypic effects (additive
and dominance effects) in GWAS. Manhattan plots were
produced using SNPEVG version 2.1 [63] to demon-
strate the overview of SNP effects.

To evaluate the extent of LD and identify potential re-
gions of causal mutation for HVP, pairwise LD, mea-
sured by r* values for the F, population, was calculated
for GGA1l and GGA20 using Haploview [64]. Pathway

analysis was performed using KEGG (www.genome.jp/
kegg/), GenMAPP (http://genmapp.org/), and BioCarta
(http://genmapp.org/) databases.

Differential expression of MAP3K7IP1, HIPK2, BMP7,
and MAP3K?7 in the visceral peritoneum tissue, between
the normal birds and the birds with HVP, was deter-
mined using a ¢-test with SAS 8.0 software (SAS Insti-
tute, Cary, NC, USA).

Additional files

Additional file 1: Figure S1. Pattern of linkage disequilibrium (LD) on
chicken (Gallus gallus) chromosomes. A. LD on Chromosome 1. B. LD on
Chromosome 20.

Additional file 2: Figure S2. Interaction of genes. Blue, green, and red
figures indicate the number of pathways that the genes are involved in,
based on KEGG, GenMAPP, and BioCarta, respectively. BMP7 interacts
with MAP3K7 via the ALK pathway in cardiac myocytes according to the
BioCarta database. HIPK2 interacts with MAP3K7 via an enzyme linked
receptor protein signaling pathway and Wnt netPath 8 according to the
GenMAPP database. MAP3K7IP1 interacts with MAP3K7 via the MAPK and
Toll-like receptor signaling pathways according to the KEGG database, by
the NF-kB signaling pathway, signal transduction through IL1R, the TGF-3
signaling pathway, and the WNT signaling pathway according to the
Biocarta database, and by receptor signaling protein activity, the MAPK
signaling pathway, and TGF-B-receptor netPath 7 according to the
GenMAPP database.

Additional file 3: Table S1. Basic information on the 39,833 SNP
markers on the chicken physical map.
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