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Abstract

Background: The antifungal therapy caspofungin is a semi-synthetic derivative of pneumocandin B0, a
lipohexapeptide produced by the fungus Glarea lozoyensis, and was the first member of the echinocandin class
approved for human therapy. The nonribosomal peptide synthetase (NRPS)-polyketide synthases (PKS) gene cluster
responsible for pneumocandin biosynthesis from G. lozoyensis has not been elucidated to date. In this study, we
report the elucidation of the pneumocandin biosynthetic gene cluster by whole genome sequencing of the G.
lozoyensis wild-type strain ATCC 20868.

Results: The pneumocandin biosynthetic gene cluster contains a NRPS (GLNRPS4) and a PKS (GLPKS4) arranged in
tandem, two cytochrome P450 monooxygenases, seven other modifying enzymes, and genes for L-homotyrosine
biosynthesis, a component of the peptide core. Thus, the pneumocandin biosynthetic gene cluster is significantly
more autonomous and organized than that of the recently characterized echinocandin B gene cluster. Disruption
mutants of GLNRPS4 and GLPKS4 no longer produced the pneumocandins (A0 and B0), and the Δglnrps4 and
Δglpks4 mutants lost antifungal activity against the human pathogenic fungus Candida albicans. In addition to
pneumocandins, the G. lozoyensis genome encodes a rich repertoire of natural product-encoding genes including
24 PKSs, six NRPSs, five PKS-NRPS hybrids, two dimethylallyl tryptophan synthases, and 14 terpene synthases.

Conclusions: Characterization of the gene cluster provides a blueprint for engineering new pneumocandin
derivatives with improved pharmacological properties. Whole genome estimation of the secondary metabolite-
encoding genes from G. lozoyensis provides yet another example of the huge potential for drug discovery from
natural products from the fungal kingdom.
Background
Fungi frequently cause deadly infections in immunocom-
promised patients resulting from HIV infection, cancer
chemotherapy, and organ transplantation [1]. Until the
introduction of caspofungin (CANCIDAS™) in 2001, anti-
fungal therapy was limited to the use of polyenes
(amphotericin B), azoles, and flucytosine which have high
failure rates during management of fungal infection,
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while experiencing increasing clinical resistance [1].
The echinocandins are a class of antifungal lipopeptides
targeting fungi via noncompetitive inhibition of the
β-1,3-D-glucan synthase enzyme complex, leading to
glucan polymer depletion in the fungal cell wall and
resulting in osmotic instability and fungal cell lysis
[1]. Human side effects to these chemicals are minimal
because the target is absent in mammalian cells, and low
dosing is used due to the drug’s potent efficacy [1,2]. Thus
far, three echinocandin-based agents have been approved
for clinical use [1]. Caspofungin, a semi-synthetic derivative
of pneumocandin B0 (Figure 1a) which is a lipohexapeptide
produced by the filamentous fungus Glarea lozoyensis
(Figure 1b), was the first member of this class approved for
human therapy; its registration was followed by micafungin
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Figure 1 Pneumocandin structures and morphology of Glarea lozoyensis. (a) Chemical structures of pneumocandins. (b) Colony of G.
lozoyensis on malt yeast agar (left panel); conidiophores and conidia of G. lozoyensis (right panels).
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(MYCAMINE™) derived from FR901370 (WF11899A),
a sulfonated hexapeptide produced by the fungus
Coleophoma empetri [3], and lastly anidulafungin
(ERAXIS™) derived from echinocandin B produced by the
fungus Aspergillus rugulosus [4]. The three fungal metabo-
lites share a common chemical structure of cyclic lipohexa-
peptide with N-acylated to either 10,12-dimethylmyristoyl
(pneumocandins) or palmitoyl (FR901370) or linoleoyl
(echinocandin B); their hexapeptide cores differ from each
other by modifications on 4-hydroxyproline or dihydroxy-
homotyrosine (FR901370 and pneumocandins possess 3-
hydroxyglutamine, while echinocandin B has threonine
substituted in the same position) [5-8]. Because of their
high efficacy, they have become the first-line therapy for
the treatment of invasive fungal infections [1].
Several cases of in vivo caspofungin resistance have been

reported for Candida and Aspergillus species caused by
mutations that reduce the drug sensitivity of the glucan
synthase by several thousand-fold [9-12]. A compensatory
cell wall remodeling mechanism elevating the chitin
content has been found to be associated with caspofungin
resistance in C. albicans [13-15]. Generation of pneumo-
candin derivatives with more desirable pharmacological
properties via medicinal chemistry approaches has proven
difficult [16,17]. Elucidation of the biosynthetic pathway to
pneumocandins is the first step in applying pathway ma-
nipulation and biocombinatorial chemistry approaches to
engineer new derivatives with broader spectra of activity
and improved physiochemical characteristics to meet the
challenges of broader efficacy and clinical resistance.
Based on the structure of pneumocandin, participation of

a nonribosomal peptide synthetase (NRPS) and a polyketide
synthase (PKS) are predicted for biosynthesis of the cyclic
hexapeptide and the 10,12-dimethylmyristoyl side chain
[18,19], respectively. Previous attempts to clone the NRPS
and PKS gene cluster responsible for pneumocandin
biosynthesis from G. lozoyensis have been unsuccessful
[20,21]. Whole genome sequencing has proven to be
an efficient approach in the identification of gene
clusters of fungal secondary metabolites, such as
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PKSs and NRPSs [22]. A recent genomic sequencing
project of a pneumocandin B0-overproducing mutant
(ATCC 74030) derived from the wild-type (WT)
strain of G. lozoyensis was inconclusive in identifying the
pneumocandin biosynthetic cluster due to insufficient gen-
ome coverage [23]. In this study, we report the elucidation
of the pneumocandin biosynthetic gene cluster by genome
sequencing of the G. lozoyensis WT strain ATCC 20868.
We also compare gene cluster organization with that of the
recently published echinocandin B biosynthetic cluster
[8,24]. In addition, analysis of the G. lozoyensis genome
revealed a rich repertoire of secondary metabolite-encoding
genes that once again illustrates the huge potential for drug
discovery from natural products from the fungal kingdom.

Results
The genome characteristics of G. lozoyensis
Sequencing of the G. lozoyensis WT strain ATCC 20868
with an 80× genome coverage revealed a high resolution
39.6-megabase (Mb) genome with 0.5% repeat content.
Reads were assembled into 22 scaffolds (>2 kb; N50, 2.45
Mb) incorporating more than 99% of the total genomic
base pairs (Figure 2a). The average gene density was 330
genes per Mb (Table 1). The 13,103 putative coding
genes were assigned to different functional categories
(Figure 2b). Consistent with previous studies by our group
[25,26], a combined phylogenomic and phylogenetic
analysis confirmed that G. lozoyensis belonged the same
major phylogenetic lineage as the plant pathogenic fungi,
Sclerotinia sclerotiorum and Botrytis cinerea [27], and the
wood endophytic fungus, Ascocoryne sarcoides, the
Helotiales [28] (Figure 3). A total of 4931 predicted
proteins were assigned by the Kyoto Encyclopedia of
Genes and Genomes (KEGG) database. The top four
categories in the KEGG functional classification were
“Carbon Metabolism, Energy Metabolism, Amino Acid
Metabolism, and Infectious Diseases” (Figure 4).
Strains of Glarea lozoyensis have been isolated from

water, plant litter or soil samples [25,26]. However, the fun-
gus has never been observed in nature, therefore its eco-
logical role and trophic relationships remain unknown. It
has been speculated that the fungus may be a plant or plant
litter saprobe for the following reasons [25,26]. The fungus
belongs to the same phylogenetic lineage as Cyathicula or
Crocicreas, an inconspicuous group of fungi that are weak
parasites, endophytes of living plants or saprobes of senes-
cent plants and plant litter. In the laboratory, the fungus
readily colonized and sporulated on sterilized hardwood
[25]. Its asexual sporulation (Figure 1b) resembled that of a
heterogeneous group of asexually reproducing fungi known
as aero-aquatic fungi that often colonize plant debris in
periodically inundated habitats [29,30]. Several recent stu-
dies have demonstrated a strong relationship between
the suite of carbohydrate active enzymes (CAZymes,
http://www.cazy.org) in fungal genomes and their
saprobic, parasitic or necrotrophic life strategies [31-33].
Such investigations have focused on those CAZymes in-
volved in polysaccharide degradation and have contributed
to a thorough understanding of the ecological role of a fun-
gus. To infer whether G. lozoyensis might be a biotroph,
saprotroph or necrotroph, we analyzed its complement of
CAZy gene families and genes. The putative CAZymes in
G. lozoyensis were identified using the CAZy annotation
pipeline (http://mothra.ornl.gov/cgi-bin/cat.cgi) [34,35] and
were compared to a selection of ascomycete and basidio-
mycete fungi (Figure 5a and 5b). At least 345 CAZymes in
the five principal category families were identified in the
genome (Figure 5a). This value is similar to the number of
CAZymes found in known plant cell wall degrading asco-
mycetes, including the wood-inhabiting endophyte A.
sarcoides, but significantly higher than the yeast Saccharo-
myces cerevisiae, and the plant biotrophic symbionts
Laccaria bicolor, Epichloë festucae, and Tuber melanos-
porum (Figure 5a). A total of 180 glycoside hydrolases
(GH) in 70 families were found in the G. lozoyensis genome,
which is slightly less than average compared to other fila-
mentous plant associated ascomycetes [36]. Likewise, the
number of 67 glycosyl transferases (GT) in 35 families was
also comparable to other plant inhabiting ascomycetes
(Figure 5b). Average numbers of polysaccharide lyases
(PL, 5), carbohydrate esterases (CE, 22) were found. How-
ever, a relatively abundant number of carbohydrate bind-
ing modules (CMB, 71) were identified. Therefore, its
complement of genes associated with carbohydrate deg-
radation and metabolism were consistent with those of
other plant-associated ascomycetes.

G. lozoyensis genome revealed a rich repertoire of
secondary metabolite-encoding genes
To identify the pathways involved in the synthesis of
secondary metabolites in G. lozoyensis, we searched the
genome for genes encoding key enzymes such as NRPS,
PKS, terpene synthase (TS), and dimethylallyl tryptophan
synthase (DMATS), which are essential for the biosynthesis
of peptides, polyketides, terpenes, and alkaloids, respect-
ively. The following secondary metabolite-encoding genes
were dispersed among 49 gene clusters: six NRPSs, 24
PKSs, five polyketide synthase-nonribosomal peptide syn-
thase hybrids (PKS-NRPS hybrids), 14 TSs, two DMATSs,
13 NRPS-like, one PKS-like, and one chalcone/stilbene
synthase gene (Table 1). In addition to genes encoding the
core enzyme(s), the majority of the 49 secondary metabol-
ism gene clusters in G. lozoyensis contained genes encoding
other biosynthesis enzymes, transcription regulators, and
transporters. For example, about half of the gene clusters
contained a gene encoding a Zn2/Cys6 or a C2H2 and
C2HC zinc transcriptional factor that could control the
expression of genes within of its own cluster. Also, about
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Figure 2 Genome features of Glarea lozoyensis. (a) General genome features of G. lozoyensis. I, 22 scaffolds (> 2 kb); II, gene density
represented as number of genes per 100 kb; III, percentage of coverage of repetitive sequences; IV, GC content was estimated by the percent
G + C in 100 kb. (b) Functional classificaton of proteins in the G. lozoyensis genome based on InterproScan analysis.
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60% of the secondary metabolism clusters contained a gene
encoding an ABC or a MFS transporter(s) that could export
the metabolites produced by the enzymes encoded by the
gene cluster (Additional file 1: Figure S1).

Biosynthetic capabilities of G. lozoyensis
An unexpected feature of the G. lozoyensis genome
was its remarkable diversity of polyketide biosynthetic
pathways and having at least 29 recognizable core PKS
genes (Figure 6). Domain structure analysis revealed
eight non-reducing PKSs, one partially-reducing PKS,
four PKS-NRPS hybrids encoding partially reducing
polyketides [37] and 16 PKSs encoding for highly redu-
cing polyketides, including GLPKS4 and one PKS-NRPS
hybrid (GLPKS3-NRPS) (Figure 6). A phylogenetic tree
based on amino acid sequences of the ketosynthase



Table 1 General features of the G. lozoyensis genome

Features

Assembly size (Mb) 39.6

Scaffold N50 (kb) 2453

Coverage (fold) 80

G + C content (%) 45.8

GC exonic (%) 49.06

GC intronic (%) 41.98

Repeat rate (%) 0.5

Protein-coding genes 13103

Gene density (per Mb) 330.38

Exons per gene 2.98

tRNAs 131

rRNAs 22

NRPSs 6

PKSs 24

PKS-NRPS hybrids 5

DMATSs 2

Terpene synthases 14

NRPS-like 13

PKS-like 1

Chalcone or stilbene synthase gene 1

Secondary metabolite gene clusters 49

Mb mega bases, PKS polyketide synthase, NRPS nonribosomal peptide
synthetase, PKS-NRPS hybrid polyketide synthase-nonribosomal peptide
synthetase hybrid, DMATS dimethylallyl tryptophan synthase, tRNAs transfer
RNA, rRNA ribosomal RNA.
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domains (KS) was constructed for the 24 PKSs and five
PKS-NRPS hybrids in G. lozoyensis and 71 functionally
characterized fungal PKSs encoding the products with
known chemical structures (Figure 6, Additional file 2:
Table S3). All four fungal-type PKS-NRPS hybrids
(GLPKS26-NRPS, GLPKS27-NRPS, GLPKS28-NRPS, and
GLPKS29-NRPS) were grouped with similar PKS-NRPS
hybrids, such as those involved in the biosynthesis of
the tetramic acids and HIV-1 integrase inhibitor equisetin
(EqiS). Interestingly the four PKS-NRPS hybrids were also
clustered with the HMG-CoA reductase inhibitor lovastatin
(LDKS = LovB) which is proposed to be a truncated
PKS-NRPS hybrid [38,39]. GLPKS8 and GLPKS9 were
predicted to be non-reducing PKSs related to the
PKSs responsible for biosynthesis of the metabolites
mycophenolic acid and citrinin. GLPKS13 and three
other G. lozoyensis PKSs (GLPKS10, GLPKS18, and
GLPKS24) were grouped with the PKSs of lovastatin
side chain (LNKS = LovF) [40] and the tetraketide acyl
side chain of zaragozic acid A [41]. GLPKS19 and
GLPKS11 shared significant homology with the T-toxin
encoding gene CHPKS1 of Cochliobolus heterostrophus
[42,43]. Six more G. lozoyensis PKSs (GLPKS4, GLPKS25,
GLPKS12, GLPKS7, GLPKS14, and GLPKS21) clustered
with the hepato- and nephro-toxic fumonisin B1 produced
by Gibberella fujikuroi [44] and the solanapyrone
Sol1 PKS of Alternaria solani [45]. The previously
characterized GLPKS2, encoding for the biosynthesis
of 6-methylsalicylic acid [20], grouped tightly with two
other fungal 6-methylsalicylic acid PKSs, ATATX from A.
terreus and MSAS from Penicillium patulum [46,47].
GLPKS1 has been previously identified as the G. lozoyensis
melanin biosynthesis gene [21], and it clustered with other
fungal di- and tetra-hydroxynaphthalene melanin biosyn-
thesis genes, e.g. Hypoxylon pulicicidum (formerly
Nodulisporium sp.) (NSPKS1) [48] and Colletotrichum
lagenarium (CLPKS1) [49]. The ketosynthase sequence of
G. lozoyensis GLPKS20 exhibited sequence similarities to
genes involved in the biosynthesis of viridicatumtoxin [50].
Adjacent to the large groups of melanin and conidial pig-
ment genes were the mycotoxin sterigmatocystin PKS
(ANST) from A. nidulans [51] and the GLPKS5 from G.
lozoyensis. Distantly related to the pigment PKSs was the A.
nidulans orsellinic acid PKS protein OrsA [52,53], and
GLPKS23 shared the same domain structure with
OrsA. We speculated that orsellinic acid or related
compounds may be produced by G. lozoyensis, and analysis
of fermentations of G. lozoyensis confirmed that it
produced isolecanoric acid (an orsellinic acid dimer) and
pseudogyrophoric acid (a new orsellinic acid trimer) in
certain culture media (Additional file 1: Figure S2).
Therefore, we propose that GLPKS23 is responsible
for orsellinic acid biosynthesis in G. lozoyensis. Cluster
analysis revealed that a highly reducing PKS (GLPKS17)
was proximal to a non-reducing PKS (GLPKS16) in the
same cluster (Additional file 1: Figure S1). This tandem
PKS structure was similar to that of the PKSs responsible
for the biosynthesis of resorcylic acid lactones, e.g. radicicol
and hypothemycin, and in fact, GLPKS16 appeared to be
an ortholog of Hpm3 and RDC1 (Figure 6) [54,55].
NRPSs include modules that incorporate amino acids

into the final peptide product. Each module minimally con-
tains three domains, the adenylation domain (A domain),
the thiolation domain (T domain), and the condensation
domain (C domain). In addition to its abundant and diverse
PKS pathways, the G. lozoyensis genome harbored
six NRPS genes. Three NRPSs (GLNRPS2, GLNRPS3,
GLNRPS5), contained a single module, encoding products
with a single amino acid, the other three NRPSs
(GLNRPS1, GLNRPS4, GLNRPS6), were multi-modular,
encoding products with more than one amino acids
(Figure 7). Gene cluster analysis revealed that GLNRPS1
(with two modules), GLNRPS2 and one NRPS-like genes
located in the same cluster flanked by three clavaminate
synthases (oxygenases) and MFS general substrate
transporter genes (Additional file 1: Figure S1). These data
indicated that a hydroxylation tetrapeptide product may
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be formed and excreted. GLNRPS4, with six modules that
encode a hexapeptide product and located in a cluster
bordered by various modifying enzymes, was proposed to
be responsible for pneumocandin biosynthesis (Figure 7
and Figure 8a). Domain analysis revealed that GLNRPS6
had five modules, and module 1, module 3, module 5
contain one epimerization (E) domain respectively. The
glnrps6 was located in a cluster flanked by one MFS
general substrate transporter gene, and thus suggested
that a pentapeptide with three D-amino acids may be
formed and excreted. Thirteen additional NRPS-like genes
clusters were identified in G. lozoyensis, and some of them
were located in clusters flanked by cytochrome P450,
methyltranferase and transporter genes, thus indicating
some hydroxylation and methylation products may be
formed and excreted (Additional file 1: Figure S1).
To detect the classes of terpene synthases (TSs) in G.
lozoyensis, the homologous sequences were analyzed by
using BLAST at NCBI (http://www.ncbi.nlm.nih.gov/)
(Additional file 2: Table S1). The richness of TSs, compared
to related genome-sequenced fungi [27], revealed a great
potential for G. lozoyensis to produce terpenoids. Three TS
genes (GLAREA03340, GLAREA04931, GLAREA10578)
encoded geranylgeranyl pyrophosphate synthase and
geranylgeranyl transferase, and indicated these genes
may be responsible for diterpene and carotenoid biosyn-
thesis [56]. Two genes (GLAREA04679, GLAREA02940)
encoding farnesyl pyrophosphate synthetase and farnesyl
transferase indicated that sesquiterpenes may be formed
[56]. Among these TS genes, only three (GLAREA11903,
GLAREA03340, GLAREA08044) were located in gene
clusters (Additional file 1: Figure S1). Two DMATS genes
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were found in the G. lozoyensis genome, and one gene
(GLAREA04251) was located in a cluster downstream
of another core PKS gene GLPKS9, signifying that a
polyketide linked with dimethylallyl tryptophan may
be the cluster’s end product.

Identification of GLNRPS4 involving in pneumocandin
biosynthesis in G. lozoyensis
The lipohexapeptide pneumocandin consists of two key
components: a six-amino acid cyclic peptide and a
10,12-dimethylmyristoyl polyketide side chain [57]. Even
though no such products are currently known from
functionally characterized PKS-PKS hydrids [38], it is
reasonable to consider that pneumocandins might be
encoded by one of the PKS-NRPS hybrid proteins.
However, in echinocandin B, the lipid side chain was
thought to be derived from the cytoplasmic fatty acid
pool [24]. Furthermore, domain analysis precluded the
five PKS-NRPS hybrid proteins from pneumocandin
biosynthesis because the hybrids contained only one
A-T-C module, which could only incorporate one
amino acid residue in the polyketide chain (Figure 7).
Domain analysis of the six NRPS proteins showed that
locus GLAREA10035 contained a NRPS with six A-T-C
modules (designated as glnrps4 and boxed) (Figure 7).
Therefore, locus GLAREA10035 was the only plausible
candidate. GLNRPS4, inferred to be responsible for the
biosynthesis of the cyclic-hexapeptide core of the
pneumocandins, comprised 7,192 amino acids and was
encoded by a gene with two introns (Additional file 1:
Figure S3). GLNRPS4 encompassed 20 domains grouped
into six modules each corresponding to one of the six
amino acid incorporated monomers (Figure 7). The first
module of GLNRPS4 had a unique T-C-A-T-C domain
structure that differed from the other five modules which
contained A-T-C domain structures. Two bioinformatics
programs were used for substrate prediction, and both
predicted that the third module encoded for proline
[58,59]. However, neither program consistently predicted
substrate specificities for the other five modules.

Analysis of the PKS-NRPS gene cluster for pneumocandin
biosynthesis
Gene analysis of 50 kb of DNA flanking GLNRPS4
revealed a typical gene cluster for fungal secondary
metabolite biosynthesis (Figure 8a). Immediately upstream
of GLNRPS4 was the glpks4 gene which encodes a PKS
of 2,531 amino acids with eight introns (Additional file 1:
Figure S3). Moreover, the PKS encoded by glpks4 contained
a methyltransferase domain that would be required for the
biosynthesis of methyl group-containing fungal polyketides;
the pneumocandin polyketide side chain contains two
methyl groups (Figure 1a, Additional file 1: Figure S3)
[5,57]. In addition to GLNRPS4 and GLPKS4, two other
genes in this cluster stood out, GLAREA10021 encoding an
acyltransferase and GLAREA10043 encoding an acyl-CoA
ligase (Figure 8a). Labeling experiments at Merck revealed
that GLPKS4 assembled a myristate from an acetyl starter,
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Figure 5 CAZymes (carbohydrate-active enzymes) analysis in the G. lozoyensis genome and other fungi. (a) Total number of CAZymes in
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whereas methionines provided two methyl groups to form
the 10,12-dimethylmyristoyl side chain [18]. Although
functional characterizations will be necessary to define
how each gene contributes to the biosynthetic mechanism,
based on the above analyses and those of the
echinocandin B and emericellamide pathways [24,60], a
hypothetical model of the pneumocandin biosynthetic
pathway can be formulated from the four genes,
GLNRPS4, GLPKS4, acyltransferase (GLAREA10021),
and acyl-CoA ligase (GLAREA10043). The model predicts
that 10,12-dimethylmyristoyl side chain is released from
GLPKS4 as a carboxylic acid that is converted to a CoA
thioester by the acyl-CoA ligase (GLAREA10043), and
then loaded onto the acyltransferase (GLAREA10021).
The polyketide intermediate could then be shuttled to the
first thiolation (T) domain of GLNRPS4, followed by its
acylation to 4,5-dihydroxyorinithine to trigger elongation
of the cyclic hexapeptide. Like other fungal NRPS and
PKS gene clusters, the glpks4 and glnrps4 are positioned
within a cluster that contains genes encoding for one or
more cytochrome P450s, clavaminate synthase-like
proteins (oxygenases), zinc finger transcription factors, and
an ABC transporter (Figure 8a). It has been demonstrated
that proline 3-hydroxylase and proline 4-hydroxylase,
which are members of the 2-oxoglutarate-dependent
dioxygenase class, can convert proline to 3-hydroxyproline
and 4-hydroxyproline [61]. Two of the four oxygenases
(GLAREA10033, GLAREA10041, GLAREA10042, and
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Figure 6 Domain prediction and phylogenetic analysis of polyketide synthases (PKSs) and polyketide synthases-nonribosomal peptide
synthetase hybrids (PKS-NRPS hybrids) in G. lozoyensis and other characterized fungal PKSs. PKS and PKS-NRPS domains from G. lozoyensis
were annotated by SMURF, anti-SMASH and SWISS-MODEL tools. SAT, starter unit acyltransferase domain; KS, ketosynthase domain; AT,
acyltransferase domain; PT, product template domain; DH, dehydratase domain; ER, enoylreductase domain; KR, β-ketoacylreductase domain; MT,
methyltransferase domain; ACP, acyl carrier protein; TE, thioesterase domain; A, adenylation domain; T, thiolation domain; C, condensation
domain; R, reductive domain. Genealogy of PKSs and PKS-NRPSs was inferred by neighbor-joining analysis of the aligned amino acid sequences
of the KS domains. Classification of PKSs and PKS-NRPSs sharing a common domain organization are highlighted by gray shading. Branch length
indicates number of inferred amino acid changes. Red dots indicate branch nodes with >60% support. PKSs from G. lozoyensis are marked in red.
See in Additional file 2: Table S3 for details of gene designations and their corresponding metabolites and references.
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GLAREA10044) in the gene cluster were presumed to be
involved in proline conversion. Two cytochrome P450
monooxygenases (GLAREA10030 and GLAREA10031)
were classified in the CYP 512A family by the P450
database (http://www.cyped.uni-stuttgart.de/) which might
be responsible for the hydroxylation of the amino acids.
These oxygenases were also presumably involved in an
oxidative mechanism for the conversion of leucine to
methyl proline [19]. The putative zinc finger transcription
regulator (GLAREA10050) belongs to the C2H2 and C2HC
zinc finger superfamily which are DNA-binding proteins
and transcription factors [62]. Some members of this family
are pathway-specific transcription regulators of secondary
metabolite biosynthesis, e.g., Rua1 that activates the
ustilagic acid biosynthesis gene cluster in Ustilago maydis
[63]. Therefore, the zinc finger protein GLAREA10050
most likely regulates transcription of the glpks4 and glnrps4
genes. ABC transporters are ubiquitous membrane proteins
with the ability to pump a variety of substrate specificities
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the toxicity to the producing cells.
Finally, a putative biosynthetic pathway for L-

homotyrosine, the non-proteinogenic amino acid in the
pneumocandin peptide core’s fourth position, sits down-
stream of GLNPRS4 (Figure 8a). This set of five contiguous
genes showed significant identity to the L-homotyrosine
pathway of E. rugulosa [24] (Figure 8b), although the
direction of transcription was inverted in two of the
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pathway of E. rugulosa, the cytochrome P450 oxygenase
gene corresponding to hytF, was absent (Figure 8b).

Functional analysis of glpks4 and glnrps4 in
pneumocandin biosynthesis
To verify whether the gene cluster was responsible
for pneumocandin biosynthesis, glnrps4 and glpks4
were knocked out by homologous replacement with
an Agrobacterium-mediated transformation protocol
developed previously for G. lozoyensis, and the deletions
were verified by PCR analysis (Additional file 1: Figure S4b
and S4c). Twelve and ten positive transformants were
recovered for the GLNRPS4 and GLPKS4 knockouts,
respectively. After growing the fungi in FGY medium and
comparative analysis of the extracts by HPLC-MS using
purified pneumocandin B0 as a standard, the two major
pneumocandins (A0 and B0) were produced by the G.
lozoyensis WT strain as expected, but the pneumocandins
were absent in the glnrps4 and glpks4 knockout mutants
(Figure 9a). Consistent with earlier observations [5], the
WT strain produced pneumocandin A0 in larger quantities
than pneumocandin B0 (Figure 9a, Additional file 1:
Figure S4d). Antifungal assays showed that crude extracts
from the WT strain caused zones of inhibition against the
yeast C. albicans, whereas the crude extracts from mutants
Δglnrps4 and Δglpks4 were inactive (Figure 9b). These
results demonstrated that both glnrps4 and glpks4 were
essential for biosynthesis of the pneumocandin core
structure as predicted.

Discussion
Sequenced genomes are yielding substantial evidence for
a richness of secondary metabolite pathways among the
major kinds of fungi, well beyond that imagined to
date, and the number of sequenced genomes is growing
exponentially [66,67]. With the advance of next-generation
sequencing technology, genome sequencing is evolving as
an essential tool to decipher novel genes and gene clusters
involved in biosynthesis of different metabolites in fungi
[22,68]. For example, the biosynthetic pathway of the
insecticidal cyclodepsipeptide destruxins was recently
elucidated in the insect fungal pathogen Metarhizium
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robertsii by genomic sequencing [69]. Genomic mining of
several Aspergillus spp. has led to the elucidation of biosyn-
thetic pathways of multiple bioactive compounds, including
terrequinone A [70], emericellamide [60], aspyridones [71],
pyripyropene A [72] and echinocandin B [24].
Genomic sequence analysis showed that G. lozoyensis

has the potential to produce a diverse array of natural
products. The genome was predicted to encode 49 gene
clusters that contribute to its secondary metabolome,
significantly higher than that of A. sarcoides, also of the
Helotiaceae [28], and in the same order of magnitude as
that of B. cinerea, S. sclerotiorum, and other sequenced
Leotiomycetes [27,73]. Most of the ketosynthase domains
of the 24 PKSs and five PKS-NRPS hybrids could be
clustered with PKSs that were responsible for the biosyn-
thesis of bioactive polyketides and polyketide-nonribosomal
peptide hybrids (Figure 6). However, biosynthetic functions
for only two of the 49 secondary metabolite-encoding genes
in G. lozoyensis were previously validated (GLPKS1 for
melanin and GLPKS2 for 6-methylsalicylic acid) [20,21].
Many secondary metabolites are fusions of nonribosomal
peptides and polyketides, in which a PKSs and NRPSs
interface and contribute to the same pathway end product
[38,60,74]. Because the NRPS portion in each of the five
PKS-NRPS hybrids in G. lozoyensis genome contains only
one A-T-C module, one amino acid is predicted to be added
to the polyketide produced by the PKS portion of the
cluster, similar to ApdA in A. nidulans and ATEG00325 in
A. terreus, which are involved in the biosynthesis of
aspyridones and flavipucine, respectively [71,75].
Comparing the rich genetic potential for secondary me-

tabolites in the G. lozoyensis genome, only pneumocandins
were previously identified from the fungus. In an attempt
to find additional chemistries, we identified isolecanoric
acid and pseudogyrophoric acid as two new fermentation
products of G. lozoyensis (Additional file 1: Figure S2).
Therefore, majority of the secondary metabolites in G.
lozoyensis remain to be characterized. Despite the
advances in the field of microbial secondary metabolite
biosynthesis, how the basic biology, ecology, and trophic
strategies of microorganisms relate to their secondary
metabolite production remains poorly understood.
Application of efficient strategies to mine the metabolite-
encoding gene clusters in G. lozoyensis and other
poorly known fungi, while identifying their corresponding
metabolites, presents a challenge and opportunity for
natural products discovery.
GLNRPS4 and GLPKS4 are centrally located in the

pneumocandin biosynthetic gene cluster, and how
they cooperate with other genes in the cluster is still
speculative. Even though they are independently tran-
scribed and translated, their transcription is likely to
be synchronized or co-regulated. The first module in
GLNRPS4 has a unique T-C-A-T-C structure, and the
first T domain in the T-C-A-T-C module is suggest to
accept thiolated intermediates as found in emericellamide
biosynthesis [60] or adenylated substrates similar to
yersiniabactin biosynthesis [76]. Thus, the first T domain
in the T-C-A-T-C module of GLNRPS4 could be respon-
sible for accepting the incoming 10,12-dimethylmyristoyl
side chain intermediate, whereas the second T domain
would accept the 4,5-dihydroxyornithine adenylated by
the module’s A domain. Threonine, 4-hydroxyproline,
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4,5-dihydroxyhomotyrosine, 3-hydroxyglutamine and
3-hydroxyproline/3-hydroxy-4-methylproline would be
sequentially added to the growing chain consistent
with the in silico prediction that the A3 in GLNRPS4
is specific to proline [8,58,59]. Like many other
NRPSs [60,77,78], the carboxyl terminal of GLNRPS4
lacks a thioesterase (TE) domain, suggesting that a
dedicated TE is not required for pneumocandin
cyclization. The last C domain of GLNRPS4 is proposed
to be responsible for cyclization by condensation to form
the peptide bond between 4,5-dihydroxyornithine and
3-hydroxyproline/3-hydroxy-4-methylproline. This proposal
is consistent with the fact that the C domain has a HAEYD
motif similar to the active site signature in the terminal C
domain of cyclosporine synthetase (HSLYD) which is
responsible for cyclization of cyclosporine in Tolypocladium
inflatum and siderophore synthase SidC (HSLYD) involved
in cyclization of the siderophore ferricrocin in A. nidulans
[79,80]. The proposed biosynthetic sequence also parallels
that proposed for echinocandin B [8,24]. Five of the six
amino acids in the cyclic hexapeptide were hydroxylated,
and hydroxylations of the two proline residues in
pneumocandin B0 were catalyzed by a proline-3-hydoxylase
and a proline-4-hydoxylase [61]. The enzyme responsible
for hydroxylation of 4-methylproline derived from leucine
in pneumocandin A0 may also be a proline 3-hydroxylase
as 4-methylproline is an analogue of L-proline [19].
Other genes downstream of the GLNRPS4 that are likely

involved the biosynthesis are the putative acyl-CoA ligase
GLAREA10043 which shares 43% identity with EasD
which converts polyketide carboxylic acid to a CoA
thioester in emericellamide biosynthesis in A. nidulans
[60]. The putative acyltransferase GLAREA10021 in the
cluster shares more than 65% identity with the cholesterol
acyltransferases from Cordyceps militaris [81]. Existence of
these two genes suggests that the polyketide intermediate
was first synthesized by GLPKS4, and then shuttled to the
first T domain of GLNRPS4 mediated by the two enzymes,
in a fashion similar to the emericellamide biosynthetic
pathway [60]. Surprisingly and unlike the echinocandin B
pathway [24], the putative pathway for the homotyrosine
residue of the pneumocandin peptide core also sits
downstream, and presumably L-homotyrosine biosynthesis
is synchronized with the rest of the pathway.
The pneumocandin and echinocandin B pathways

have some striking commonalities, yet obviously differ in
their organization. The most obvious similarity is the
high degree of identity between ecdA and glnrps4 (60.8%
identity over 22.7 kb, 55.2% identity over 7218 aa), and
both have the same orientation in transcription and
functional modules (TCATCATCATCATCATCATCT).
Likewise, the genes of the L-homotyrosine pathway are
highly similar, although their physical proximities to the
core NRPS differ. Both pathways also contain a number
of oxygenases that, in the case of echinocandin B, tailor
the multiple hydroxyl or diol groups of the amino acid
core, but once again their physical location and order
are significantly rearranged. However, the inclusion a
PKS for side chain biosynthesis and its proximity for
immediate loading onto the first thiolation domain,
along with close proximity of the L-homotyrosine gene
cluster and a possible zinc finger regulatory protein
would likely confer greater metabolic autonomy to the
pneumocandin pathway. The remarkable similarity
between the echinocandin and pneumocandin pathways
and especially the high degree of sequence homology
between the amp-binding domains of GLNRPS4 and
EcdA raises questions about pathway acquisition through
horizontal gene transfer among fungi [82,83]. However,
with only two echinocandin type pathways characterized
thus far, speculation on why fungi from evolutionary
lineages, Eurotiomycete (E. rugulosa) versus Leotiomycete
(G. lozoyensis) that diverged 100s of millions of years ago,
would share or converge on such similar molecular
scaffolds is still premature. Elucidation of additional
echinocandin type pathways in the Eurotiomycete, e.g.,
aculeacin and mulundocandin, and in the Leotiomycetes,
e.g. FR901379 (WF11899A) and cryptocandin would
yield evidence to determine a possible echinocandin
progenitor and the probable directionality in gene
recruitment or losses during the evolution of the
echinocandin-pneumocandin gene clusters, as well as
the significance of these potent cell wall-modifying
metabolites to the fungi that produce them.
Elucidation of the pneumocandin biosynthetic pathway

in G. lozoyensis paves the way for designing experimental
procedures to enhance the production titer of the
pneumocandins or engineering analogues with improved
oral availability or broader spectrum of antifungal activities.
Deletion of other PKS and NRPS genes could potentially
reduce metabolic competition for substrates to GLPKS4
and GLNRPS4 and therefore increase the titers of
pneumocandin B0, in a manner similar to the disruption of
GLPKS1 melanin gene in G. lozoyensis which doubled
pneumocandin production titer [21]. Elimination,
inactivation, addition or modification of the specificity
of domains to GLPKS4 and GLNRPS4 could result in
new pneumocandin derivatives via biocombinatorial
chemistry approaches for the discovery and development
of improved antifungal therapy.

Conclusion
The Glarea lozoyensis genome was sequenced, completely
assembled and thoroughly annotated. The menu of
secondary metabolites encoding genes was predicted
from the genome, thus providing a greater understanding
the complexity of primary and secondary metabolism in
fungi from the yet poorly studied Leotiomycetes. The
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biosynthetic gene cluster responsible for pneumocandin
was predicted in silico and identified by core gene glpks4
and glnrps4 knockouts and bioassay experiments. The
data from this study will form the basis for a more
detailed functional analysis of pneumocandin biosynthetic
pathways and enable the identification of other antifungal
lipohexapeptide pathways in other fungi, of which both
will be essential for increasing pneumocandin production
and for generating new pneumocandin and echinocandin
derivatives via biocombinatorial chemistry approaches.

Methods
Fungal and bacterial strains, vectors, and other reagents
The original pneumocandin producing strain of G.
lozoyensis ATCC 20868 was obtained from American
Type Culture Collection (ATCC) and was used as the wild-
type recipient in Agrobacterium-mediated transformation
experiments. The Escherichia coli strain DH5α was used in
plasmid manipulations. Agrobacterium tumefaciens AGL-1
was described by Lazo et al. [84]. Plasmid pAg1-H3 was
described by Zhang et al. [21], pEASY-T3 vector was from
TransGen Biotech (Beijing, China), and pMD18-T
vector was from Takara Biotech (Dalian, China). The
pneumocandin B0 standard was from Molcan Corporation
(Ontario, Canada). LYCP-5 medium, FGY medium and
conditions for G. lozoyensis fermentation were described
by Connors et al. [85]. M-100 and IMAS mediums were
described by Wang et al. [69]. Potato dextrose agar (PDA)
and Sabouraud dextrose agar (SDA) were from Becton
Dickinson (Franklin Lakes, New Jersey, USA). E. coli and
A. tumefaciens AGL-1 were cultured as described by
Zhang et al. [21]. Restriction endonucleases and DNA
modifying enzymes were from New England Biolabs
(Beverly, Massachusetts, USA).

DNA isolation and sequencing
Genomic DNA of G. lozoyensis ATCC 20868 was
extracted as previously described by Zhang et al. [21].
Genomic DNA libraries with 500–800 bp inserts were
constructed and sequenced with a Roche 454 GS FLX at
the Chinese National Human Genome Center in Shanghai.
A library with 3 kb inserts was constructed and sequenced
with Illumina Genome Analyzer using the protocols as de-
scribed for genomic sequencing of Cordyceps militaris [81].
The genome sequences were assembled using Newbler
software (ver. 2.3) and SSPACE (http://www.baseclear.com/
dna-sequencing/data-analysis/bioinformatics-tools/).

G. lozoyensis genome annotation, orthology and
phylogenomic analyses
The G. lozoyensis genome was annotated with Augustus
(http://bioinf.uni-greifswald.de/augustus) by referencing
annotated genome of Botrytis cinerea. GeneID and
GeneMark-ES were additionally used for open reading
frames prediction in G. lozoyensis [86,87]. Repetitive
sequences in the genome were identified by BLAST against
the RepeatMasker library [88] and by de novo repetitive
sequence search using RepeatModeler (http://www.
repeatmasker.org/RepeatModeler.html). Transfer RNAs
(tRNAs) were identified with tRNAscan-SE [89]. Ribosomal
RNAs (rRNAs) were predicted by a BLAST search with
known rRNA modules from other fungal genomes. Whole
genome protein families were classified by InterproScan
analysis (http://www.ebi.ac.uk/interpro/) and BLASTagainst
Kyoto Encyclopedia of Genes and Genomes (KEGG)
database using KEGG Automatic Annotation Server
(KAAS: http://www.genome.jp/kegg/kaas/). Carbohydrate-
active enzymes from G. lozoyensis and reference fungi
(Additional file 2: Table S2) were classified by local Blastp
searching against a library of catalytic and carbohydrate-
binding module enzymes [90]. PKS, NRPS, DMATS and
related gene clusters were predicted by programs SMURF
and anti-SMASH [68] and by manual annotation.
A total of 878 common orthologous genes were identified

using the InParanoid pipeline in the selected fungal
genomes (Additional file 2: Table S2) [91], and aligned with
Clustal W (ver. 2.0). A maximum likelihood phylogenomic
tree was created using the concatenated amino acid
sequences in PAUP* 4.0 (beta 10 Win) with heuristic
searches [92]. Characters were treated as unordered and
gaps were regarded as missing data. Bootstrap support for
internal branches was estimated by analysis of 1,000 pseudo
replicates. Reference fungi used to construct the phylo-
genetic tree were described elsewhere (Additional file 2:
Table S2 and ref. [26]). All internal transcribed spacer (ITS)
sequences were aligned with Clustal W (ver. 2.0), and a
neighbor-joining phylogenetic tree was generated with the
program PAUP* 4.0 (beta 10 Win) using 1,000 bootstrap
replicates and a Jukes-Cantor substitution model with
pairwise deletion for gaps or missing data [92].

Phylogenetic analysis of PKS and PKS-NRPS genes
KS domains from fungi with PKS genes proven to be
responsible for metabolites biosynthesis (Additional file 2:
Table S3), PKSs and PKS-NRPS hybrids in G. lozoyensis
(Additional file 2: Table S4) were identified by the program
anti-SMASH [93] or visually in multiple alignments.
All KS domains from PKS were aligned with Clustal
X (ver. 2.0), and analyzed phylogenetically with
MEGA 5.0 using a Jones-Taylor-Thornton substitution
model, a pair-wise deletion for gaps or missing data, and a
1,000 bootstrap replications test [94]. The tree was rooted
with the KS domain of the rat fatty acid synthase (Figure 6).

Gene knockout of glnrps4 and glpks4
To verify function of the predicted pneumocandin gene
cluster, glnrps4 and glpks4 deletion were conducted using
method reported by Zhang et al. [21]. To verify function

http://www.baseclear.com/dna-sequencing/data-analysis/bioinformatics-tools/
http://www.baseclear.com/dna-sequencing/data-analysis/bioinformatics-tools/
http://bioinf.uni-greifswald.de/augustus
http://www.repeatmasker.org/RepeatModeler.html
http://www.repeatmasker.org/RepeatModeler.html
http://www.ebi.ac.uk/interpro/
http://www.genome.jp/kegg/kaas/
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of the predicted pneumocandin gene cluster, gene knock-
out constructs for glnrps4 and glpks4 were created. Briefly,
the flanking regions of the target genes were amplified
using different primer pairs (Additional file 2: Table S5)
and ligated into the binary vector of pAg1-H3 containing
the hygromycin resistance gene to form pAg1-H3-nrps4
and pAg1-H3-pks4. The constructs were introduced into
G. lozoyensis by Agrobacterium-mediated transformation
using method reported by Zhang et al. [21] with slight
modification. Conidia for transformation were harvested
into sterile 0.05% Tween-20 followed with 2 times of wash
with distilled water and then suspended into 0.5-1.0 mL
sterile water (106 spores mL-1). One hundred microliters
of G. lozoyensis and 100 μL of A. tumefaciens (OD660 nm =
0.6-0.8) were mixed and spread on the IMAS agar plate
and co-incubated at 28°C for 2 d. The co-culture of A.
tumefaciens and G. lozoyensis was covered with M-100
supplemented with 300 μg mL-1 cefotaxime and
100 μg mL-1 hygromycin B, and incubated at 25°C for
2–3 weeks before isolating hygB resistant colonies. The
transformants were purified by single conidium isolation
and the gene knockout transformants were verified by
PCR using multiple primers (Additional file 2: Table S5).

HPLC-MS analysis of pneumocandins
Fermentation and pneumocandin extraction protocols
were described by Petersen et al. [95]. HPLC separation
was performed on an Agilent Zorbax Extend-C18 1.8 μm
2.1 × 50 mm column using an Agilent 1200 Series system
(Agilent, USA). The total flow rate was 0.3 mL min-1;
mobile phase A was with 0.1% formic acid and mobile
phase B was acetonitrile. The total elution program was
25 min. Gradient elution began with 30% B for 0.5 min,
changed to 70% B over 3.5 min, changed to 100% B over 8
min, maintained at 100% B for 5 min, to 30% B over 0.5
min, and re-stabilized for 7.5 min prior the next injection.
The column temperature was maintained at 40°C. The
injection volume was 10 μL.
Mass spectra were acquired with an Agilent Accurate-

Mass Quadrupole–Time-of-Flight mass spectrometry
(Q-TOF/MS) 6520 system in the positive ionization
mode. For Q-TOF/MS conditions, fragmentor and capillary
voltages were kept at 130 and 3,500 V, respectively. Nitro-
gen was supplied as the nebulizing and drying gas.
Temperature of the drying gas was set at 30°C. The flow
rate of the drying gas and the pressure of the nebulizer
were 10 L min-1 and 25 psi, respectively. Full-scan spectra
were acquired over a scan range of m/z 80–1,200 at 1.03
spectra s-1.

Candida albicans zone of inhibition (ZOI) assays
Antifungal activity of the WT, glnrps4 and glpks4 gene
deletion mutants of G. lozoyensis was measured by a
zone of inhibition assay against the human fungal
pathogen Candida albicans SC 5314. Ten-mL liquid
culture of the wild-type or glnrps4 and glpks4 gene
deletion mutants of G. lozoyensis were lyophilized in
a vacuum freeze dryer, and 10 mL methanol were
added and thoroughly mixed. After 1 h of orbital
shaking, the mixtures were first centrifuged at low
speed, the supernatant was transferred to glass tubes,
and then DMSO (2 mL) was added to solubilize any
metabolites precipitated during evaporation. The samples
were concentrated to 2 mL under a warm N2 stream
during orbital shaking. The final samples were 5× whole
broth equivalents including 100% DMSO relative to
original culture volume.
Candida albicans SC 5314 cells grown on SDA plates

were inoculated into 10 mL of Sabouraud dextrose broth
and incubated overnight at 30°C. The C. albicans
suspension was adjusted to an optical density of 0.4
at 660 nm and added to SDA in the proportion of
30 mL L-1. Twenty-mL aliquots of the seeded agar
media were poured into 9-cm Petri plates.
Pneumocandin B0 (5 mg mL-1) and 100% DMSO
were used as positive and negative controls. The
extracts prepared from liquid culture of G. lozoyensis
and the controls (10 μL) were applied to paper discs
on the surface of the seeded assay plates. The plates
were incubated at 30°C for approximately 20 h and
ZOIs were measured and photographed.

Production, purification and identification of isolecanoric
and pseudogyrophoric acids
Isolecanoric acid and the new compound pseudogyrophoric
acid were isolated from the extract of G. lozoyensis ATCC
20868 grown in MV8 medium (V8 juice 200 mL, maltose
75 g, soy flour 1 g, L-proline 3 g, MES 16.2 g, distilled
H2O 800 mL) at 22°C on a rotary shaker at 220 rpm
for 14 d. The isolation procedure, mass spectra are
summarized in Additional file 1: Figure S2.
Additional files

Additional file 1: Figures that provide support information for the
main text. Figure S1. provides the 49 secondary metabolite biosynthetic
gene clusters in the G. lozoyensis genome. Figure S2 lists materials and
methods for purification and characterization of additional metabolites
from G. lozoyensis ATCC 20868 grown on MV8 medium. Figure S3 shows
gene structure of GLNRPS4 and GLPKS4. Figure S4 summarizes strategy
for the construction of GLPKS4 and GLNRPS4 gene deletion mutants.

Additional file 2: Tables that provide support information for the
main text. Table S1 shows the homologous analysis of terpene gene in
Glarea lozoyensis. Table S2 lists the fungal genomes used for
phylogenomic analyses and CAZymes analysis. Table S3 provides
supporting data for Figure 6 and the list of 71 functionally characterized
fungal PKSs and PKS-NRPSs hydrids, their gene designations, the principal
pathway end product, and references. Table S4 shows polyketide
synthases (PKSs) in the G. lozoyensis genome used for phylogenetic tree
construction. Table S5 summarizes primers used for genes deletion and
mutants verification.

http://www.biomedcentral.com/content/supplementary/1471-2164-14-339-S1.pdf
http://www.biomedcentral.com/content/supplementary/1471-2164-14-339-S2.pdf
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