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Abstract
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Background: Hessian fly (Mayetiola destructor) is one of the most destructive pests of wheat. The genes encoding
12-oxo-phytodienoic acid reductase (OPR) and lipoxygenase (LOX) play critical roles in insect resistance pathways in
higher plants, but little is known about genes controlling resistance to Hessian fly in wheat.

Results: In this study, 154 Fgg recombinant inbred lines (RILs) generated from a cross between two cultivars,
‘Jagger’ and 2174' of hexaploid wheat (2n =6 x =42; AABBDD), were used to map genes associated with resistance
to Hessian fly. Two QTLs were identified. The first one was a major QTL on chromosome TA (QHf.osu-1A), which
explained 70% of the total phenotypic variation. The resistant allele at this locus in cultivar 2174 could be
orthologous to one or more of the previously mapped resistance genes (H9, H10, H11, H16, and H17) in tetraploid
wheat. The second QTL was a minor QTL on chromosome 2A (QHf.osu-2A), which accounted for 18% of the total
phenotypic variation. The resistant allele at this locus in 2174 is collinear to an Yr17-containing-fragment
translocated from chromosome 2N of Triticum ventricosum (2n =4 x =28; DDNN) in Jagger. Genetic mapping results
showed that two OPR genes, TaOPR1-A and TaOPR2-A, were tightly associated with QHf.osu-1A and QHf.osu-2A,
respectively. Another OPR gene and three LOX genes were mapped but not associated with Hessian fly resistance

Conclusions: This study has located two major QTLs/genes in bread wheat that can be directly used in wheat
breeding programs and has also provided insights for the genetic association and disassociation of Hessian fly

Keywords: Hessian fly resistance, Insect resistance pathway, lipoxygenase (LOX), 12-oxophytodienoic acid reductase

Background

Hessian fly [Hf, Mayetiola destructor (Say)] is one of the
most destructive pests of hexaploid wheat (7. aestivum
L., AABBDD, 2n=6x =42) in the United States and
worldwide [1]. Hessian fly larvae live between leaf-
sheaths at seedling stage in fall, inhibit wheat growth ir-
reversibly, and the infested plants lose vigor and die after
larvae become pupae. Hessian fly larvae also attack
stalks in spring, and the attacked plants may break easily
before harvest. Deployment of natural and genetic resist-
ance in locally adapted wheat cultivars is the most effect-
ive, economical, and environmentally safe method to
control this devastating insect.
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At least 33 Hessian fly resistance genes have been identi-
fied, designated as HI to H32 and Hdic [2]. Among these
Hessian fly resistance genes, however, only 8 genes (HI-
HS5, H7, H8, and H12) were identified in hexaploid wheat
[3-8]. The remaining 25 genes were identified in distant
and close relatives of hexaploid wheat. There are 15 genes
(H6, H9-H11, H14—-H20, H28, H29, H31, and Hdic) iden-
tified in tetraploid wheat species Triticum turgidum subsp.
durum (AABB, 2n =4 x =28) [9-19], and 6 of them (H6,
H9-HI11, H31, and Hdic) have been introgressed from
tetraploid to hexaploid wheat [7,18-20]. Other genes ori-
ginating in wild diploid wheat or other relatives and
introgressed to hexaploid wheat include six genes (H13,
H22, H23, H24, H26, and H32) from Aegilops tauschii
(DD, 2n = 2 x =14) [21-25], two genes (H21 and H25) from
Secale cerale L. (RR, 2n =2 x =14) [26,27], one gene (H27)
from Aegilops ventricosa (D'D'M'M", 2n = 4 x =28, [28]),
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and one gene (H30) from Aegilops triuncialis (CCUU,
2n =4 x =28) [29]. These genes provide important resist-
ance sources but are problematic in variety development
programs when they are associated with alien linkage drag.

Simple sequence repeat (SSR) or microsatellite
markers were used to map Hessian fly resistance genes
in previous studies. Seven genes (H5, H9, H10, H1lI,
HI6, H17, and Hdic) were mapped on chromosome 1A,
and these genes may comprise a cluster (or family) of
Hessian fly resistance genes in the distal gene-rich re-
gion of wheat chromosome 1AS [19,20,30,31]. The
remaining mapped genes include eight genes (H3, H6,
HI2, HI4, H15, H19, H28, and H29) on chromosome 5A
[10,17,32,33], three genes (H24, H26, and H32) on
chromosome 3D [23-25], three genes (HI8, H20 and
H21I) on chromosome 2B [16,26,29], two genes (H13 and
H23) on chromosome 6D [23,34], H7 on chromosome
5D [35], H22 on chromosome 1D [22], H25 on chromo-
some 6B [27], H31 on chromosome 5B [18], and H27 on
chromosome 4D [28]. Current understanding of SSR
markers is that they can be effectively applied to
marker-assisted selection (MAS) due to their relative
simplicity. However, the ‘repeat’ feature of an SSR
marker results in multiple and inconsistent locations of
the same marker among divergent wheat cultivars [36].
Only a gene marker that is developed for the specific
functional polymorphism of a gene responsible for a
given trait can provide the ultimate resolution needed
for selection of the trait [37].

The best strategy to find the regulatory sites of a gene
is to clone the gene/QTL. The cloned gene is then used
to develop perfect gene markers for use in conventional
breeding programs or to manipulate transgenic wheat.
To date, 14 genes have been cloned from wheat using
the positional cloning strategy [38,39], but no gene has
been cloned for resistance to Hessian fly. To clone a
gene from hexaploid wheat using the map-based cloning
approach remains a challenge because of the complexity
imparted by three homoeologous genomes, the large
genome size (17 Gb), high content of repetitive se-
quences (>80%), and the low polymorphism rate [40-43].
In recent studies, genetic association is also use to iden-
tify functional genes for important traits in wheat [44].

Recent progress in the application of high-throughput
sequencing technologies and development of sophisti-
cated genomic mapping tools has accelerated identi-
fication of agriculturally important genes in wheat. Nu-
merous wheat ESTs assigned to wheat deletion bins have
facilitated the physical mapping of a gene [45,46]. The
availability of genomic sequences from the model species
rice [45] and Brachypodium distachyon [47], and synteny
conservation in certain genomic regions between these
species and wheat [48,49] have allowed more precise
determination of the physical distance between two
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markers flanking the target gene by a comparative gen-
omics analysis. Newly available wheat genomic se-
quences, though at low coverage (http://www.cerealsdb.
uk.net/), are useful for designing primers specific to a
homoeologous gene for genomic mapping. With the
integration of these techniques and tools, mutants of
several genes including VRN-AI [50], VRN-D3 [50],
PPD-D1 [50], Lr34-D [51], Yr17 [52], and Pm3 [37] have
been identified in cultivated bread wheat. These genes
each were initially mapped under the peak of a QTL for
a relevant trait and their mutants were eventually con-
firmed. In this study, we aimed to determine if any genes
known to confer insect resistance in plants are associ-
ated with a QTL for resistance in our mapping popula-
tions or in a genomic region where a QTL has been
reported in published mapping populations.

Plants possess multiple defense mechanisms in response
to mechanical damage due to insect attack. Jasmonic acid
(JA) and its conjugates, jasmonates, play a central role in
regulating defense responses of plants to insect herbivores
[53]. In higher plants, JA is synthesized via the octade-
canoid pathway consisting of several enzymatic steps. The
early steps of this pathway occur in chloroplasts where
linolenic acid is converted to 12-oxo-phytodienoic acid
(OPDA) by means of three enzymes, lipoxygenase (LOX),
allene oxide synthase (AOS), and allene oxide cylase
[54-56]. OPDA is subsequently reduced in a cyclopen-
tenone ring by a peroxisome-localized enzyme, 12-oxo
-phytodienoic acid reductase 3 (OPR3). The reaction
product then undergoes three cycles of oxidation in the
peroxisome, generating JA [57-59].

In this study, we mapped 3 OPR genes and 3 LOX
genes in a population of recombinant inbred lines (RILs)
that was generated from a cross between two locally
adapted winter cultivars, ‘Jagger’ and 2174, and showed
demonstrable segregation for resistance to Hessian fly.
The implication in association and disassociation of the
QTLs for resistance to Hessian fly with these OPR and
LOX genes is discussed.

Results

QTLs mapped for wheat resistance to Hessian fly

Jagger was highly susceptible and 2174 was highly resist-
ant to Hessian fly biotype GP when the two parental
lines were tested with susceptible (Karl 92) and resistant
(WGRC42) cultivars as controls (Figure 1). Hence vari-
ation in Hessian fly resistance between the two parental
lines should facilitate mapping the resistance trait based
on segregation in the available population of Fgg RILs
generated by crossing the parental cultivars.

Using 154 RILs of the Jagger x 2174 population and
genome-wide SSR markers [52], we mapped two QTLs
linked with Hessian fly resistance. The first one was a
major QTL on the distal end of chromosome 1AS (QHf.
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Figure 1 Comparative analysis of Hessian fly resistance among
hexaploid wheat cultivars. Ratings were scored [67] for two-years for
Jagger and 2174 used as the parental lines to generate RILs. Karl 92 and
WGRC42 were used as susceptible and resistant controls, respectively.

osu-1A) (Figure 2A), when the population was infested
with the same biotype as the parental lines. QHf.osu-1A
was mapped in tight linkage with the powdery mildew
gene Pm3a previously identified [37]. The LOD value
for QHfosu-1A was 28.7, which explained 70% of the
total phenotypic variation. Phenotypic data showed that
those RILs which carried the Jagger allele had resistance
at the level of 6%, whereas those RILs that carried the
2174 allele had resistance at the level of 59%. 2174 has a
resistant allele for both Hessian fly and powdery mildew
(Pm3a) genes.

The second QTL was a minor QTL on chromosome 2A
(QHfosu-2A) (Figure 2B). The peak of this QTL was asso-
ciated with a group of several tightly linked SSR markers
and the marker for Yri7 that was translocated from
chromosome 2N of Triticum ventricosum (2n =4 x =28;
DDNN) in Jagger [52,60]. The LOD value for QHfosu-2A
was 3.5 and this QTL accounted for 18% of the total
phenotypic variation. Phenotypic data showed that those
RILs which carried the Jagger allele had resistance at the
level of 23.1%, whereas those RILs that carried the 2174 al-
lele had resistance at the level of 51.9%. The resistant allele
at this locus in 2174 is collinear to an YrI7-containing-
fragment translocated from chromosome 2N in Jagger.
Jagger attained the translocated chromosome 2N fragment
conferring resistance to stripe rust [52]. If the translocated
fragment in Jagger was introgressed into a breeding line or
a cultivar such as 2174, the novel breeding line could lose
approximately 60% of Hessian fly resistance conferred by
the OPR2-A gene on chromosome 2A in 2174.

Associations of QTLs for Hessian fly resistance with two
OPR genes

The peak of QHfosu-1A was centered with SSR marker
Xcfa2153 (Figure 2A), which was physically located in a
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Figure 2 Mapping of two QTLs for resistance to Hessian fly.
Response to Hessian fly for each of 154 RILs was scored in the
Jagger x 2174-derived RIL population using the method previously
described [67]. QTL analysis was performed with composite interval
mapping (CIM) using WinQTLCart 2.5. The positions of marker loci
are shown on the x-axis in centiMorgan (cM) distances. The
horizontal dotted line indicates the logarithm of the odds (LOD)
significance threshold of 2.5. The vertical dash line indicates the
gene markers associated with the QTLs.
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deletion bin of 1AS-3 (FL 0.86), or the distal 14% of
the short arm of chromosome 1A [61]. Wheat EST
BE403717 encoding an OPR protein was also found
present in this 1AS-3 FL 0.86 deletion bin. It is thus in-
tuitive to hypothesize that this OPR gene may be a can-
didate gene for QHfosu-1A if it is mapped under the
peak of this QTL. The BE403717 sequence was used to
blast against the wheat genomic DNA databases (http://
www.cerealsdb.uk.net), and the wheat sequences re-
trieved from the databases were grouped based on se-
quence alignments of the homoeologous and paralogous
OPR genes. Primers were designed for each group of
these genes and tested for specificity to N1ATID,
N1BT1D, and NIDT1B of ‘Chinese Spring’ (CS)
nullisomic—tetrasomic (N'T) lines [62]. Primers OPRC1-
ABD-F2 and OPRC1-R8 for one of the OPR genes were
identified specific to chromosome 1A (Figure 3A).

A PCR marker, using primers OPRC1-ABD-F2 and
OPRC1-R8, was developed for the OPR gene TaOPRI-A,
the first OPR gene to be mapped on chromosome 1A of T.
aestivum. The primers amplified a 337-bp fragment that
was digested with Kpnul into 213 bp and 124 bp for the
Jagger allele (GenBank: KF035075) and into 36 bp, 177 bp,
and 124 bp for the 2174 allele (GenBank: KF035076)
(Figure 4A). TuOPRI-A was mapped under the peak of
QHfosu-1A and 2.4 cM in genetic distance to Xcfa2153
(Figure 2A) in the RIL population of Jagger x 2174.

The second OPR gene, TaOPR2-A, which showed 79%
identity (Additional file 1) to 7aOPRI-A within a range
of 584 bp (E=2e-112), showed complete linkage with
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a group of markers for YrI7 translocated from chromo-
some 2N and under the peak of QHfosu-2A. The wheat
EST BE403717 that was mapped in 1AS-3 FL 0.86 dele-
tion bin was used to blast against GenBank Nucleotide
Collection (nr/nt) databases, and it showed 82% identity
within a range of 318 bp (E = 1e-83) to an orthologous
OPR gene in rice BAC from chromosome 6 (GenBank:
AP004741). Specific primers were designed based on the
grouped sequences retrieved from the wheat genomic
DNA databases. The primers OPR22-C1-F3 and OPR-
R2 amplified a 634 bp fragment that was digested with
Hincll into 20 bp, 321 bp and 292 bp for the Jagger allele
(GenBank: KF035084) and into 342 bp, 215 bp, and 77
bp for the 2174 allele (GenBank: KF035085) (Figure 4B).

Disassociations of OPR and LOX genes with mapped QTLs
for Hessian fly resistance

In addition to the mapped associations of TaOPRI-A
and TaOPR2-A with the two QTLs for Hessian fly resist-
ance, another OPR gene TaOPR7-B was linked with
Xbarcl76 on chromosome 7B (Figure 5A). Initially, an
OPR gene present in rice BAC (GenBank: AP004707)
was analyzed and used to search for the wheat
orthologous OPR genes, because the rice BAC could be
in a collinear region to wheat chromosome 1A. Specific
forward primer OPR1-C1F1 was used to combine with
conserved reverse primer OPR-R1 to amplify a single
copy of the OPR gene mapped on chromosome 7B
(TaOPR7-B). The chromosomal location of 7aOPR7-B
was confirmed by using CS nullisomic-tetrasomic lines

A 500bp
300 bp

100 bp

B 500 bp
400 bp

C 4kb
2kb

1kb

M 1 2 3 4 5

Figure 3 Gene markers tested on N1AT1D, N1BT1D, and N1DT1B of CS nullisomic-tetrasomic lines. PCR products amplified for TaOPR1-A,
TaLOX1-A, and TaOPR7-B. Lanes: 1 N1AT1D, 2 N1BT1D, 3 N1DT18B, 4 Jagger, 5 2174. M Molecular marker. A) TaOPR1-A marker. PCR was performed
using primers OPRC1-ABD-F2 and OPRC1-R8. B) TaOPR7-B marker. PCR was performed using primers OP1-C1F1 and OP1-R1. €) TaLOX1-A marker.
PCR was performed using primers LOX-C5-F5 and LOX-C5-R6. Expected size of PCR products was indicated in Table 1.
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Figure 4 PCR markers for six OPR and LOX genes, TaOPR1-A, TaOPR2-A, TaLOX1-A, TaOPR7-B, TaLOX6-B, and TaLOX2-B. A-F) Lanes: 1
undigested Jagger 2 undigested 2174 3 digested Jagger 4 digested 2174. M Molecular marker. A) TaOPR1-A marker. Digestion with Kpnl shows
polymorphic band patterns for Jagger (213 bp + 124 bp) and 2174 (36 bp + 177 bp + 124 bp) (the 36 bp band was run out of the gel). B) TaOPR2-
A marker. Digestion with Hincll shows polymorphic band patterns for Jagger (20 bp + 321 bp + 292 bp) and 2174 (342 bp + 215 bp + 77 bp) (the
20 bp and 77 bp bands were run out of the gel). C) TaLOX1-A marker. Digestion with ScrFI shows polymorphic band patterns for Jagger and
2174, in which 2174 has an extra ~250 bp fragment. D) TaOPR7-B marker. Digestion with Ddel shows polymorphic band patterns for Jagger (487
bp) and 2174 (35 bp + 452 bp) (the 35 bp band was run out of the gel). E) TaLOX6-B marker. PCR products show polymorphic band patterns for
Jagger and 2174 with 8-bp indels. F) TaLOX2-B marker. PCR products show polymorphic band patterns for Jagger and 2174 with an extra lower
band in Jagger. PCR products were separated in a 2% agarose gel (A-D and F) or 6% acrylamide gel (E).

F
800 bp

600 bp

M 1 2

(Figure 3B). The primers OPR-C1F1 and OPR-CIR1
amplified a 487 bp fragment that was digested with Ddel
for the 2174 allele into 35 bp (GenBank: KF035087) and
452 bp but was not digested for the Jagger allele
(GenBank: KF035086) (Figure 4D).

Three LOX genes were mapped in this study. Initially,
a wheat EST (GenBank: BF482663) that was mapped in

the 1AS-3 FL 0.86 deletion bin was used to blast against
wheat gDNA databases (http://www.cerealsdb.uk.net)
and GenBank EST databases for the homoeologous and
paralogous LOX genes. This wheat EST was expected to
reside in a region collinear with rice chromosome 5[45].
It showed 86% identity within a range of only 43 bp
(E=7e-05) to an orthologous gene in rice BAC from
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Figure 5 Genetic maps of the TaOPR7-B, TaLoX2-B, and TaLOX6-B genes. TaOPR/-8 was mapped on chromosome 7B (A), TaLOX2-8 was
mapped on chromosome 2B (B), and TaLOX6-8 was mapped on chromosome 6B (C). Approximate distances in centi-Morgans (cM) and molecular

chromosome 5 (GenBank: AC136525), but it was more
likely orthologous to other LOX genes in rice, with 87%
identity in a range of only 294 bp (E = 5e-96) to one in
chromosome 2 (GenBank: AP004184), with 72% identity
(E =2e-38) to two genes on chromosome 8 (GenBank:
AP005816). Homoeologous chromosomes of hexaploid
wheat could have three genes for each orthologous gene
in rice. Primers were designed specifically to each of the
groups retrieved from the sequences by BF482663.

The first LOX gene was mapped using primers LOX-
C5-F5 and LOX-C5-R6 specific to chromosome 1A
(Figure 3C). The primers amplified a fragment of ap-
proximately 2,500 bp that was digested with ScrFI into
several fragments, distinguishable by an extra fragment
of approximately 250 bp for the 2174 allele (GenBank:
KF035089) compared with the Jagger allele (GenBank:
KF035088) (Figure 4C). This LOX gene was mapped on
chromosome 1A (TaLOXI-A) but outside of the QHf.
osu-1A region (Figure 2A).

The second LOX gene was mapped using primers
LOXO0-F4 and LOX0-R6 that amplified a common band
in both Jagger and 2174 and an additional lower band in
Jagger (Figure 4F). PCR products from Jagger were puri-
fied from the agarose gel, and direct sequence analysis
showed that it was part of a LOX gene (Additional file 2).
The high quality sequence result indicated that it was
from a pseudo gene in Jagger (GenBank: KF035090). The
dominant marker for the LOX gene in Jagger was
mapped with a linkage group of SSR markers on
chromosome 2B (Figure 5B), and this gene was thus
designed TaLOX2-B.

The third LOX gene was mapped using primers LOX-
F4 and LOX-R6 that amplified PCR products of poly-
morphic size with approximately 264 bp in Jagger
(GenBank: KF035091) and 272 bp in 2174 (GenBank:
KF035092). The sequencing results confirmed that these

PCR products were derived from part of a LOX gene,
with an 8 bp deletion for the Jagger allele or an 8 bp in-
sertion for the 2174 allele (Figure 4E). This LOX gene
was mapped with a linkage group of SSR markers on
chromosome 6B (Figure 5C), and this gene was thus
designed Tul OX6-B.

Fine collinearity at the QHf.osu-1A locus between wheat,
rice and Brachypodium

TaOPRI-A was used to screen the T. durum BAC library,
and one positive clone (73]J24) was sequenced with low
coverage to find genes that could be used to determine
collinear regions of rice and Brachypodium. Four OPR
genes (GenBank: KF035074, KF035077, KF035080, and
KF035081), and three genes encoding stress-induced
receptor-like kinase (Srk) (GenBank: KF035093), cata-
lytic domain of protein kinases (Pkc) (GenBank:
KF035099), and calcineurin-like phosphoesterase-like
(Clp) (GenBank: KF035096) respectively, were present in
the wheat BAC clone (Figure 6C). Allelic variation was
observed in the Srk gene for the Jagger allele (GenBank:
KF035094) and the 2174 allele (GenBank: KF035095),
the Clp gene for the Jagger allele (GenBank: KF035097)
and the 2174 allele (GenBank: KF035098), and the Pkc
gene for the Jagger allele (GenBank: KF035100) and the
2174 allele (GenBank: KF035101). Howerver, no cross-
over was found between the OPR genes and these linked
genes in the the QHf osu-1A region.

TaOPRI-A displayed the highest identity to ortho-
logous OPR genes in a rice BAC from chromosome 6
(GenBank: AP004741), which contains 7 OPR genes ar-
ranged in tandem (Figure 6A). Except for the wheat OPR
genes, however, the other wheat genes (Srk, Clp, and
Pkc) were not present in the flanking regions of the OPR
genes in the two BAC clones shown in Figure 6A or in
other BAC clones containing OPRs in rice. TaOPRI-A
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Figure 6 Comparative map of the wheat OPR region on chromosome 1AS and in collinear regions from Brachypodium and rice. The
flanking genes for the OPR region in rice and Brachypodium are colored in white and grey, respectively. Flanking genes, Srk, Pkc, and Clp in
wheat, are colored in green, blue, and yellow, respectively. Dotted lines indicate synteny of genes among wheat, rice, and Brachypodium.

displayed the highest identity to three orthologous
OPR genes in Brachypodium (GenBank: NCO016131,
Figure 6B), but again, except for the wheat OPR genes
and Srk gene, the other wheat genes (Clp and Pkc) were
not observed in the collinear region of Brachypodium.
The orthologous genes in Brachypodium were not
present in the flanking regions of the OPR genes in
rice either.

Discussion

A resistance gene against Hessian fly has been repeatedly
mapped to the end of the short arm of chromosome 1A
in previous studies, and it was suggested that this gen-
omic region contained a cluster of major dominant re-
sistance genes against multiple Hessian fly biotypes,
including HS5, H9, H10, HI11, HI6, H17, and Hdic
[19,20,30,31]. However, all of the previous studies were
performed in the tetraploid wheat T. durum. Our study
is the first report that a resistance gene against Hessian
fly exists in the short arm of chromosome 1A in bread

wheat. The resistance gene at the QHfosu-1A locus ob-
served in hexaploid wheat cv. 2174 could be orthologous
to one or more of the previously mapped resistance
genes in tetraploid wheat. This study provides an effect-
ive resistance source to manage biotype GP that fre-
quently damage bread wheat cultivars in the southern
Great Plains. Further studies need to test if the QHf osu-
1A gene is allelic to genes H16 and HI17 that confer re-
sistance against Hessian fly biotype L, the most virulent
and prevalent biotype in the eastern USA [31]. The re-
sistance gene at QHfosu-1A in 2174 and its derived cul-
tivars can be immediately utilized to control Hessian fly
biotype GP in winter wheat improvement programs in
the southern Great Plains in USA. The gene may also be
useful for pyramiding to prolong the effective periods of
other resistance genes.

Mapping of QHfosu-IA showed that it is closely
linked with Pm3a. Previous studies indicated that Pm3
was linked to H9 at a genetic distance of 4.5 cM [61].
Several alleles have been characterized for the Pm3 gene
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[63]. Leaf rust resistance gene Lr10, which has three par-
alogous genes and is effective against Puccinia triticina
Eriks, was also mapped in the same chromosomal region
on 1AS [64,65]. The presence of a resistance gene clus-
ter in the gene-rich distal region of 1AS in bread wheat
has made it difficult to determine which gene is the can-
didate for QHf.osu-1A. An effort was made to construct
a fine physical map for QHf.osu-1A. However, low collin-
earity of the gene order in this region among wheat, rice,
or Brachypodium indicates that the fine physical map
for QHfosu-1A cannot be established by using genome
information from rice or Brachypodium only. The recent
sequencing of wheat genomes may provide a powerful
tool in cloning QHf.osu-1A.

Two OPR genes were identified in association with two
QTLs for resistance against Hessian fly, but we cannot yet
decisively conclude if either of the candidate OPR genes is
responsible for QHf.osu-1A. The two QTLs were discov-
ered in the same population, and resistance to Hessian fly
is inseparable between the two QTLs. Two specific RIL
lines (#23 and #26) have been selected to backcross with
the 2174 parental line to generate progeny that will segre-
gate for a single Hessian fly gene. In these backcross popu-
lations, QHfosu-1A will occur in the heterozygous state,
whereas QHf.osu-2A will be fixed in a homozygous genetic
background. We expect that the two alleles of QHf.osu-1A
will produce clear segregation for resistance to Hessian fly.
BC,F,_ 3 populations will be used also to determine degree
of dominance for the Hessian fly gene.

TaLOX6-B was mapped between Xwmc398 and
Xbarc198 toward the centromere of wheat chromosome
6B. It was reported that H25 was translocated from rye
to the long arm of chromosome 6B of wheat [27], and
thus, 7aLOX6-B is not allelic to H25. TaLOX2-B is lo-
cated between Xwms388 and Xwms120 on the long arm
of chromosome 2B. H20 was transferred from T. durum
to chromosome 2B, and H21 was translocated from rye
to chromosome 2B in wheat. However, more informa-
tion is needed to further clarify any allelic relationship of
TaLOX6-B with either H20 or H21. A recent study indi-
cates that a novel wheat gene encoding a lectin-like pro-
tein (Hfr-3) was associated with response to Hessian fly
[66]. The homoeologous Hfr-3 genes are located on
group 7 chromosomes of the hexaploid wheat. Yet, no
Hessian fly resistance gene was reported on chromo-
some 7B where TaOPR7-B was mapped.

Conclusions

In summary, a frequent objective of wheat breeding is to
pyramid multiple genes for resistance to diseases and in-
sects into a single cultivar. Compared with 2174, Jagger
attained a translocated fragment that contains Lr37, Yr17
and Sr38 conferring resistance to leaf rust, stripe rust, and
stem rust, but Jagger lost the allelic region containing the
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resistance gene on QHfosu-2A against Hessian fly. The
molecular marker can greatly facilitate the identification of
such a candidate gene for the QHfosu-1A locus, enabling
opportunities for functional analysis which can then be
used to better understand the defense mechanisms of
wheat plants in response to this major insect.

Methods

Hessian fly populations

A Kansas population of Hessian fly consisting of predom-
inantly biotype GP [67] was used in this study. The popu-
lation was maintained on Hessian fly susceptible wheat
seedlings (‘Karl 92’) in the greenhouse. Karl 92 was used
as a susceptible control and WGRC42 was used as a resist-
ant control to test the Hessian fly population [19].

Plant materials and DNA isolation

Based on observations on seedling plants, Jagger is sus-
ceptible to Hessian fly biotype GP infestation whereas
2174 is resistant; therefore, the Jagger x 2174 population
of 154 F4.g recombinant inbred lines (RILs) were used to
map genes associated with resistance to Hessian fly.
Wheat genomic DNA was extracted from leaf tissue of
each RIL plant as described previously [68].

Evaluation of Hessian fly resistance

Parental lines and 154 Fgg RILs were evaluated for
phenotypic reaction to Hessian fly infestation in growth
chambers at 18 +1°C with a 14 h:10 h (light: dark)
photoperiod as described previously [20,34,69]. Briefly,
seedling plants were infested with mated Hessian fly
females. Three weeks after infestation, seedling plants
were examined to identify resistant and susceptible phe-
notypes. Susceptible plants were stunted, dark green,
and harbored live larvae, whereas resistant plants grew
normally with light green color and dead larvae [67].
Hessian fly reactions were recorded and a random sub-
set of the RILs was confirmed with additional replica-
tions (three totally).

Resistance screening was carried out in greenhouse as
described previously [19]. Specifically, approximately 20
seeds of each wheat line were planted in a flat. A flat with
soil was divided into 22 rows with a line divider, and each
row was further divided into two half rows. Therefore in
each flat, a total of 44 wheat lines could be planted. Along
with wheat lines from a mapping population, two suscep-
tible control wheat lines, Karl 92 and Jagger (the suscep-
tible parent), and two resistant control wheat lines, 2174
(putative resistant donor) and WGRC42 (containing the R
gene Hdic), were also planted in each flat. Wheat plants
were infested at one leaf-stage (the second leaf just
emerged) with Hessian fly adults under a cheese cloth
tent. Females deposit eggs on the adaxial surface of the
first leaf. Infestation was stopped when the egg density
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reaches 8 per leaf, which usually results in ~5 larvae per
plant. Resistant and susceptible plants were phenotyped
three weeks after infestation. Phenotypes of resistant and
susceptible plants were distinct and easy to score. Resist-
ant plants grew normally with light green color and sus-
ceptible plants were stunt with dark-green color. Plants
with a resistant phenotype were further dissected to check
for dead larvae. Plants without dead larvae were taken as
escapes and were excluded from the data set.

QTL analysis

A total of 404 SSR markers were assembled in linkage
groups using MapMaker 3.0 program, and a QTL was
identified using the WinQTLCart 2.5 program as previ-
ously described [37,70]. Other unlinked markers were
tested using correlation analysis to examine which
markers might be related to Hessian fly resistance using
SAS software (SAS 9.1, SAS Institute Inc. Cary, NC, USA).

Gene-specific marker development

Wheat ESTs encoding LOX (GenBank: BE403717) and
OPR (GenBank: BE482663) were found present in the
deletion bin (1AS-3 FL 0.86) on chromosome 1A, and
these ESTs were used to develop markers for mapping.
The genomic sequences of the orthologous OPR and
LOX genes in rice are available in GenBank databases,
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including OPR genes in rice BAC from chromosome 1
(GenBank: AK100034), chromosome 6 (GenBank:
AP004741), and chromosome 8 (GenBank: AP004707);
and LOX genes from chromosome 2 (GenBank:
AP004184), chromosome 5 (GenBank: AC136525), and
chromosome 8 (GenBank: AP005816). Rice BACs and
wheat EST sequences were used to blast against wheat
gDNA databases (http://www.cerealsdb.uk.net) to re-
trieve homoeologous and paralogous sequences for each
TaOPR and TaLOX genes. Multiple sequence alignments
showed that the homoeologous and paralogous TaOPR
and TaLOX genes are variable, which made it possible to
design genome-specific primers for each gene. Gene
markers developed were used to analyze the RIL popula-
tion and evaluated for linkage (Table 1).

Polymerase chain reaction (PCR)

All PCR reactions were performed in a 25 pl reaction
under the following conditions: 1 denaturation cycle at
94°C for 5 min; 40 cycles of 94°C for 30 s, 52-62°C
(based on primer annealing temperature) for 30 s, and
72°C for 30 s — 2.5 min (based on fragment length), then
a final extension step at 72°C for 10 min before cooling
to 4°C. PCR amplified fragments were separated on 2%
agarose gels through electrophoresis in 1x TAE buffer or
6% acrylamide gel in 0.5x TBE buffer. DNA banding

Table 1 Primers used for detecting allelic variation in TaOPR1-A, TaOPR2-A, TaOPR7-B, TaLOX1-A, TaLOX2-B, TaSrk,

TaClp, and TaPkc in hexaploid wheat

Primer Sequence (5-3') Loci PCR size (bp) Tm (°C) Restriction site
OPRC1-ABD-F2 CCGTCGACGCCGGTACG TaOPR1-A 337 62 Kpnl

OPRC1-R8 GGCCGCCGATCTCCCT TaOPRI1-A

OPR22-C1-F3 TCTGCTTTCCTCTGCTCGTC TaOPR2-A 634 55 Hincll

OPR-R2 TTCATGGTTCAATGACACATCAAGG TaOPR2-A

OP1-C1F1 AAAAGGTTTTCACCTCGATGATCGGGG TaOPR7-B 487 55 Ddel

OP1-R1 CCGATGGCCCTGCACCTCGTCATCG TaOPR7-B

LOX-C5-F5 CATCCTGAATAAAGAACCTC TaLOX1-A 2500a 55 Scrfl

LOX-C5-R6 GATCATATGGAGACGCTGTT TaLOX1-A

LOXO-F4 GGAGCACGGCCTCAAGCTC TaLOX2-8 680a 52b dominant band
LOX0-R6 CATGTGGTTTATTTTAGCTCTGTAGA TaLOX2-B

LOX-F4 CTGCGTCGAGCCCTACATCATCG TaLOX6-B 264/272 62 8-bp indels
LOX-R6 GGGCCAGCCCCCGGCTGACG TaLOX6-B

Srk-F3 CGGACCACTTCAACCATAGG TaSrk 1437 56

Srk-R2 ACCTTTCACAGTCTGCAATGGCAATGCT TaSrk

CLP-F1 TCCATCTCCTATGGCTTCTT TaClp 1648 55 Rsal

CLP-R2 GGTGGGGGTTGCCTATCCAG TaClp

Pkc-F3 GAGAGAAGCAATTCAGGGCT TaPkc 911 55

Pkc-R2 CCAGATTACAATTTTAAAGAGAAG TaPkc

? Estimated product size.

b A touch-down program (60°C down to 52°C for annealing temperature) was performed before the regular was performed (see details in Methods).
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patterns were visualized under UV light with ethidium
bromide staining.

Additional files

Additional file 1: Sequence comparison of TaOPR1-A and TaOPR2-A.

Additional file 2: Sequence comparison of a LOX gene between
wheat and rice.
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