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Abstract

Background: Comparative genomics is a powerful tool to transfer genomic information from model species to
related non-model species. Channel catfish (Ictalurus punctatus) is the primary aquaculture species in the United
States. Its existing genome resources such as genomic sequences generated from next generation sequencing, BAC
end sequences (BES), physical maps, linkage maps, and integrated linkage and physical maps using BES-associated
markers provide a platform for comparative genomic analysis between catfish and other model teleost fish species.
This study aimed to gain understanding of genome organizations and similarities among catfish and several
sequenced teleost genomes using linkage group 8 (LG8) as a pilot study.

Results: With existing genome resources, 287 unique genes were identified in LG8. Comparative genome analysis
indicated that most of these 287 genes on catfish LG8 are located on two homologous chromosomes of zebrafish,
medaka, stickleback, and three chromosomes of green-spotted pufferfish. Large numbers of conserved syntenies were
identified. Detailed analysis of the conserved syntenies in relation to chromosome level similarities revealed extensive
inter-chromosomal and intra-chromosomal rearrangements during evolution. Of the 287 genes, 35 genes were found
to be duplicated in the catfish genome, with the vast majority of the duplications being interchromosomal.

Conclusions: Comparative genome analysis is a powerful tool even in the absence of a well-assembled whole genome
sequence. In spite of sequence stacking due to low resolution of the linkage and physical maps, conserved syntenies
can be identified although the exact gene order and orientation are unknown at present. Through chromosome-level
comparative analysis, homologous chromosomes among teleosts can be identified. Syntenic analysis should facilitate
annotation of the catfish genome, which in turn, should facilitate functional inference of genes based on their orthology.
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Background
Comparative genomics is a powerful tool to transfer
genomic information from model species to related non-
model species. This approach was first applied to con-
struct a human-chimpanzee comparative genome map
using BAC end sequence (BESs) searched against human
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reproduction in any medium, provided the or
genome [1]. Subsequently this approach was widely used
for comparisons of mammalian genomes such as
human-mouse [2], human-cattle [3], human-porcine [4]
and human-horse [5] genome comparisons. Recently,
comparative genome studies have been conducted in a
number of fish species [6-9].
Comparative genomic analyses could bring great bene-

fits to non-model, economically important species. With
exception of the recently published cod genome [10], no
whole-genome sequence exists for aquaculture fish spe-
cies. For aquaculture species, comparative genomic
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analyses not only provide evolutionary perspectives for
genome evolution, but also practical applications for the
identification of positional candidate genes. It provides a
useful tool for genome annotation and functional infer-
ence through the analysis of conserved syntenies. This is
particularly important because direct testing of functions
for a large number of aquaculture species may prove to
be difficult to achieve.
Comparative genome analysis requires rich genome re-

sources. With the release of whole genome sequences
from five teleost species: zebrafish (Danio rerio) (http://
www.ensembl.org), fugu (Fugu rubripes) [11], green-
spotted pufferfish (Tetraodon nigroviridis) [12], medaka
(Oryzias latipes) [13,14] and three-spined stickleback
(Gasterosteus aculeatus) [15], it is now possible to con-
duct initial comparative genome analysis for aquaculture
species. In recent years, great effort has been devoted for
the development of genome resources in aquaculture
species. For instance, rich genome resources have been, or
are being produced with Atlantic salmon (Salmo salar)
[16-19], rainbow trout (Oncorhynchus mykiss) [20-25],
tilapia (Oreochromis spp.) [26-31], gilthead sea bream
(Sparus auratus) [32-34], European sea bass (Dicentrarchus
labrax) [35-39], and channel catfish (Ictalurus punctatus)
for reviews, see [40,41]. These genomic resources included
expressed sequence tags (ESTs), genetic linkage maps,
BAC-based physical maps and radiation hybrid (RH) maps,
and draft genome sequences which allow comparative gen-
omic analyses to be conducted. Second, conserved syntenic
groups could be established through comparisons of model
species with non-model species [42]. The search of con-
served syntenies could enhance the identification of gene
order, thereby allowing insight into orthologies that
may be informative for the analysis of quantitative trait
loci (QTL) for commercially important traits [42,43].
In addition, syntenies can provide evolutionary infor-
mation that support phylogenetic studies for gene and
genome annotation [13,42,44].
Channel catfish (I. punctatus) is the primary aquacul-

ture species in the United States. It is one of the six spe-
cies included in the U.S. National Animal Genome
Project NRSP-8. Major progress has been made in devel-
oping genomic resources of catfish. These genomic re-
sources included numerous molecular markers [45-49],
genetic linkage maps [50-53], ESTs [54-59], microarray
platforms [60-64], transcriptome generated using the
next generation sequencing technologies [65-67], BAC
libraries [68,69], BAC-based physical maps [70,71], and a
partially integrated physical and genetic linkage map
[53]. With these genomic resources, comparative gen-
omic analyses were conducted between catfish and
model species. Wang et al. (2007) utilized 20,366 catfish
BESs and identified syntenic regions among the genomes
of catfish, zebrafish, and green-spotted pufferfish [69]. In
a separate study, Liu et al. (2009) compared local con-
served syntenies between the catfish and zebrafish ge-
nomes using a large number of BAC end sequences [9].
Kucuktas et al. (2009) constructed a gene-based catfish
linkage map that allowed preliminary comparison of
genome similarities among several teleost species [52].
In all these earlier studies, high levels of inter- and intra-
chromosomal shuffling were found, suggesting that the
generalized linearity relationships may not apply to the
organization of the catfish genome when compared to
the genomes of other teleosts, as otherwise found between
medaka-sea bream, Tetraodon-sea bream, stickleback-sea
bream, medaka-stickleback, Tetraodon-medaka and
Tetraodon-stickleback genomes [7,42]. However, in
these studies, only a small number of gene markers
were used that may not allow detection of rearrange-
ment events. Fish-specific genome duplication and ac-
companying genome rearrangements were reported to
lead to teleost species with a higher rate of gene-
linkage disruption and lineage divergence than mam-
mals [44,72]. Study on comparison between zebrafish
and Tetraodon suggested that there were high levels of
conserved syntenies between the majority of zebrafish
and Tetraodon chromosomes, but in the conserved
syntenic regions numerous inversions existed involving
large regions with altered gene orders and orientations
[73]. In this study, we chose catfish linkage group 8
(LG8), which was found to contain microsatellite
markers associated with the tolerance to hypoxia (un-
published), as a pilot study to gain greater insight into
the similarities and conserved syntenies between the catfish
genome and the genomes of several well-characterized fish.
Here we report the potential orthologous chromosomes of
catfish LG8 in several sequenced fish species, conserved
syntenies, annotation of genes on LG8 of the catfish, and
identification of a set of duplicated genes.

Results
Establishing chromosome-scale scaffolds
In order to conduct comparative genome analysis, the
first required step without a whole genome sequence is
to establish large scaffolds that can then be compared
to chromosomal segments of other species with rich
genomic resources. Here, we started with the 106 BAC
end sequence-derived microsatellites that were mapped to
LG8 [53]. As shown in Table 1, these 106 mapped BAC
end sequence-derived microsatellites were from 46 BAC
contigs of the physical map [71] that included 1645 BAC
end sequences (BESs) [9,48]. Therefore, all these 1645
BESs are on LG8. However, the BESs are short single pass
reads and many of them do not contain gene sequences,
making their direct comparison with other genomes
difficult. Consequently, BLASTN searches using these
1645 BESs against the draft catfish genome sequence
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Table 1 Identification of genes on LG8 using information
from BESs, the physical map, linkage map and draft
genome sequences using BLAST analysis

Catalog Number

BAC-associated markers in LG8 106

BAC contigs containing the BAC-associated markers 46

All BAC-end sequences (BES) from mapped BAC contigs 1,645

BESs with significant hits to draft genome 1,510

Draft genome contigs hit by BESs 951

Unique zebrafish genes with genome sequence contig hits 287

Genes with a single genome sequence contig hit 250

Genes with multiple genome sequence contig hits 37

Table 2 Distributions of LG8 genes on orthologous
chromosomes of four model teleost fish species

Chromosome No. of gene hits

Zebrafish Medaka Stickleback Green-spotted
pufferfish

1 6 10 6 14

2 79 1 4 2

3 2 2 53 4

4 3 19 4 4

5 2 6 1 1

6 9 1 2 17

7 148 1 77 5

8 0 4 15 2

9 0 1 12 2

10 0 0 3 10

11 3 1 3 5

12 2 2 2 3

13 0 2 2 2

14 2 5 0 5

15 0 0 12 35

16 1 2 2 0

17 2 51 0 3

18 1 100 5 5

19 2 2 2 1

20 6 30 1 25

21 2 1 29 -

22 1 12 - -

23 0 2 - -

24 7 4 - -

25 2 - - -

Unassigned scaffolds 6 13 42 122

Total 287 272 277 267

Chromosomes with a large number of genes of catfish LG8 is underlined.
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contigs (255,858 contigs with N50 of 6027 bp, unpub-
lished data) resulted in 951 significant hits (Table 1).
The 951 genome sequence contigs were then used as

queries to determine what genes are associated with
these genome sequence contigs using BLASTX searches
against ENSEMBL zebrafish protein database. The
BLASTX searches resulted in 287 unique gene hits. Be-
cause the genetic linkage positions of the 1645 BESs are
known on LG8, the BLASTX analysis allowed the an-
chor of the 287 genes on LG8, forming the LG8 scaffold
for comparative analysis. Out of the 287 gene hits, 250
genes were hit by a single genome contig while 37 genes
were hit by two or more catfish genome contigs
(Table 1). The two or more catfish genome sequence
contigs that had sequence similarity with a single
gene could be from different portion of the same gene
(e.g., different exons of the same gene, but yet there
are gaps in the draft genome sequence), or from du-
plicated genes in the catfish genome (see below).

Identification of homologous chromosomes of catfish LG8
The 287 genes identified on LG8 were used as queries to
search the genomes of the four sequenced teleost spe-
cies, zebrafish, medaka, stickleback, and green-spotted
pufferfish. As summarized in Table 2, the largest number
of genes had hits on chromosome 7 (148 hits) and
chromosome 2 (79 hits) in zebrafish, although significant
hits existed for most of the chromosomes, as well as for
unassigned scaffolds (Table 2). Similarly, the 287 genes
also had largest number of hits on two chromosomes in
medaka (chromosome 17 and 18) and stickleback
(chromosome 3 and 7), and had largest hits on three chro-
mosomes in green-spotted pufferfish (chromosome 15, 20,
and 6). However, green-spotted pufferfish chromosome 1
had 14 gene hits, but there is only one syntenic block
involved 2 genes. Therefore green-spotted pufferfish
chromosome 1 was not considered as homologous
chromosome. These data suggested that the catfish
LG8 was homologous to two or three chromosomes in
the four sequenced fish genomes (Table 3). As catfish
is most closely related to zebrafish phylogenetically,
the number of the genes with significant hits was also
largest in zebrafish. In green-spotted pufferfish, a large
number of these genes have not been assigned to chro-
mosomes, and that is part of the reason that the num-
ber of genes with significant hits on the relevant
chromosomes was low (Table 2).

Annotation of genes on catfish LG8
Annotation in teleost species is often difficult because of
the complications caused by gene and genome duplica-
tions. Proper annotation of genes from a non-model spe-
cies requires detailed phylogenetic analysis or analysis of
evolutionarily conserved syntenic blocks. Here we have
annotated 227 genes on catfish LG8 through comparative



Table 3 Orthologous chromosomes of catfish LG8

Catfish Zebrafish Medaka Stickleback Green-spotted pufferfish

LG8 Chr 2 Chr 17 Chr 3 Chr 15

Chr 7 Chr 18 Chr 7 Chr 20 and Chr6

Table 5 Summary of conserved syntenic blocks between
catfish LG8 and zebrafish chromosome 7

Syntenic block on
zebrafish Chr7

Catfish physical
contigs

Number
of genes

Spanning size on
zebrafish chr (kb)

1 contig1016 3 217

2 contig 0688 8 927

3 contig 2664 (1) 6 483

4 contig 2770 (1) 3 446

5 contig 2664 (2) 11 944

6 contig 1705 (1) 6 456

7 contig 1919 (1) 6 405

8 contig 1705 (2) 4 281

9 contig 1919 (2) 5 614

10 contig 2813 6 313

11 contig 1258 2 185

12 contig 0726 2 146

13 contig 2120 5 400

14 contig 0174 2 373

15 contig 2214 3 189

16 contig 0067 (1) 3 72

17 contig 1919 6 719

18 contig 2770 (2) 7 1,218

19 contig 2665 3 351

20 contig 1918 3 302

21 contig 0067 (2) 4 593

22 contig 1705 (3) 5 550

23 contig 1818 2 244
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analysis of conserved microsyntenies, with 79 genes having
significant syntenic conservations on zebrafish chromo-
some 2 (Additional file 1), and 148 genes having significant
syntenic conservations on zebrafish chromosome 7
(Additional file 2 and Additional file 3).

Conserved syntenic blocks between catfish LG8 and
zebrafish
To gain a close insight into the conserved genomic seg-
ments, conserved syntenies were examined between the
catfish LG8 and zebrafish chromosome 2 and 7. As
shown in Additional file 1 and Additional file 2, a total
of 37 conserved syntenies were identified. A total of 13
conserved syntenies were identified on chromosome 2 of
zebrafish involving 48 genes. These conserved regions
span a total of 8.5 million base pairs (Table 4) in the
zebrafish genome. Similarly, but to a larger extent, a
total of 24 conserved syntenies were identified involving
107 genes on chromosome 7 of zebrafish. These con-
served syntenies span a total of 11.2 Mb on zebrafish
chromosome 7 (Table 5).
Various lengths of conserved syntenies were identified,

ranging from just 40–50 kb to 2.5 Mb (Tables 4 and 5).
In some cases, conserved syntenic blocks were extensive
involving relatively large number of genes, strongly
Table 4 Summary of conserved syntenic blocks between
catfish LG8 and zebrafish chromosome 2

Syntenic block on
zebrafish Chr2

Catfish BAC
contigs

Number
of genes

Spanning size on
zebrafish chr (kb)

1 Contig2535 2 57

2 Contig0034 2 53

3 Contig 2461 2 42

4 Contig 2732 3 99

5 Contig 1723 (1) 11 1,301

6 Contig 0570 4 2,489

7 Contig 0481 4 381

8 Contig 2727 2 75

9 Contig 0672 4 1,036

10 Contig 1676 5 955

11 Contig 1724 3 1,463

12 Contig 1723 (2) 4 458

13 Contig 1723 (3) 2 55

Total 11 48 8,464

The numbers in parentheses mean the different snyteny within same physical
map contig.

24 contig 2570 2 753

Total 18 107 11,181

The numbers in parentheses means the different snyteny within same
physical contig.
supporting the syntenic relationships. For instance, cat-
fish contig 1723 was homologous to a genomic segment
of 1.3 Mb involving 11 identified genes on zebrafish
chromosome 2, and the zebrafish intergenic spaces
(without consideration of the gene size) are 350 kb,
41 kb, 73 kb, 199 kb, 15 kb, 66 kb, 65 kb, 215 kb, 98 kb,
and 171 kb, indicating linearity relationships of genes
and their positions (Additional file 1). In other cases,
however, large conserved syntenic blocks were identified
involving only a small number of genes, less supportive
of linearity relationships. For instance, the largest con-
served syntenic block on zebrafish chromosome 2 spans
a segment of 2.49 Mb (Table 4), but only four genes are
included in the BAC contig 570. The intergenic spaces
(without consideration of the gene sizes) were 107 kb,
225 kb, and 2 Mb between them, suggesting a huge dele-
tion within the catfish genome among these genes as
compared to the zebrafish genome, or a large number of
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genes in this region have not been detected in the catfish
draft genome sequences.
Conserved syntenic blocks between catfish and me-

daka, catfish and stickleback and between catfish and
green-spotted pufferfish were also conducted (Additional
files 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 and 15). The situ-
ations are similar to the comparison with the zebrafish
genome. Overall, the scale of conserved synteny is lar-
gest between catfish LG8 and zebrafish chromosome 7
and chromosome 2, followed by medaka, stickleback,
and green-spotted pufferfish (Additional files 3, 4, 5, 6,
7, 8, 9, 10, 11, 12, 13, 14 and 15).

Chromosome level structural conservations
As described above, BLAST searches indicated that the
catfish LG8 is homologous to two chromosomes of
zebrafish, medaka, and stickleback, and three chromo-
somes of green-spotted pufferfish (Table 3). We then fo-
cused on the gene position and gene order conservations
at the chromosome level. For instance, 148 genes on
zebrafish chromosome 7 were determined to be on the
catfish LG8. An examination of the chromosome locations
of these 148 genes indicated that they were present on
zebrafish chromosome 7 at positions from 2.6 Mb to
9.7 Mb, 17 Mb to 27.2 Mb, 41.5 Mb to 44.4 Mb, 52.3 Mb
to 53.1 Mb, 58.8 Mb to 65.9 Mb and 73.1 Mb to 75.3 Mb,
spanning a physical distance of 30.1 Mb. Without a whole
genome assembly in catfish, a complete comparison of
gene positions is not yet possible at present because many
genes were found to be in each of the physical map
contigs, but the resolution of the genetic linkage map that
positioned the linked BAC contigs was not high enough
to put the catfish genes on a linear order. Therefore, many
catfish genes are “stacked”. Nonetheless, we were able to
compare the gene positions and order at the chromosome
level, ignoring the stacked genes. As shown in Figure 1,
homologous genes located on a large segment of zebrafish
chromosome 7 of approximately 10.2 Mb (from 17 Mb to
27.2 Mb ) existed on the catfish LG8, spanning a genetic
distance of 26 cM. However, this chromosome segment
was rearranged in the catfish LG8 in at least 10 major
blocks (Figure 1 and Additional file 2). The first block, lo-
cated on LG8 position 44.5 cM included 6 stacks of genes
that are located on zebrafish chromosome 7 at chromo-
somal location 18.7-19.2 Mb. The second block, located
on LG8 position 44.4 cM, included 3 stacks of genes that
are located on zebrafish chromosome 7 at location 19.2-
19.7 Mb. The third block, located on LG8 position
44.5 cM, included 11 stacks of genes that are located on
zebrafish chromosome 7 at location 19.7-20.6 Mb. The
fourth block, located on LG8 position 43 cM, included 6
stacks of genes that are located on zebrafish chromosome
7 at location 20.7-21.1 Mb. The fifth block, located on
LG8 position 42 cM, included 5 stacks of genes that are
located on zebrafish chromosome 7 at location 21.2-
21.6 Mb. The sixth block, located on LG8 position 43 cM,
included 4 stacks of genes that are located on zebrafish
chromosome 7 at location 21.7-22 Mb. The seventh block,
located on LG8 position 42 cM, included 5 stacks of genes
that are located on zebrafish chromosome 7 at location
22.4-23 Mb. The eighth block, located on LG8 position
43 cM, included 6 stacks of genes that are located on
zebrafish chromosome 7 at location 23.8-24 Mb. Another
two blocks from 45 cM and 44 cM involved 5 and 3 genes,
which spanned 25.9-26.2 Mb and 26.9-27.2 Mb on
zebrafish chromosome 7.
Similarly, the 79 zebrafish genes located on two major

segments of chromosome 2 spanning a physical distance
of 29 Mb on the zebrafish genome, and they were
mapped to the catfish LG8 spanning a genetic distance
of 15 cM. Very similar to the situation of the comparison
between the catfish LG8 with zebrafish chromosome 7,
comparison of the catfish LG8 with zebrafish chromo-
some 2 also revealed extensive chromosome rearrange-
ment in the catfish genome.
Comparative analyses were also conducted between

catfish and medaka, catfish and stickleback, catfish and
green-spotted pufferfish (Additional files 16, 17 and 18).
The situations are highly similar to the comparison with
the zebrafish genome. Overall, the organization of the
catfish LG8 is most similar to that of zebrafish
chromosome 7 and chromosome 2, followed by me-
daka, stickleback, and green-spotted pufferfish. In
addition, comparative map indicated that green-
spotted pufferfish chormorsome 15 is homologous to
zebrafish 2, but chromosome 20 and 6 are homologous
to zebrafish chromosome 7, since the catfish physical
contigs with significant gene hits on zebrafish chromo-
some 7 had significant gene hits on both chromosome 20
and chromosome 6 of green-spotted pufferfish. These
findings here are consistent with Woods et al. [72], who
reported that Tetraodon chromosome 15 is homologous
to zebrafish chromosome 2. However, Tetraodon chromo-
some 20 is homologous to zebrafish chromosome 7
and 14, and Tetraodon chromosome 6 is homologous
to zebrafish chromosome 7, 2, and 24 [72].

Evolutionary junctions of chromosome rearrangement
Comparisons between syntenic blocks on catfish LG8 and
zebrafish chromosome 7 and chromosome 2 (as well as
those in medaka, stickleback, and green-spotted pufferfish)
indicated extensive chromosomal rearrangements that fused
the sequences on two chromosomes together within the cat-
fish genome during evolution. Through sequence analysis,
genes involved in the same catfish physical map contig were
found to be located on two chromosomes in the zebrafish
genome. For instance, 15 genes were identified in the catfish
physical map contig 2577 (Additional file 3). Eleven of the
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Figure 1 Comparative map between catfish LG8 and zebrafish chromosome 2 and chromosome 7. The catfish LG8 is presented in the
center panel, and zebrafish chromosome 2 (chr2) and chromosome 7 (chr7) are presented on the left panel and right panel, respectively. For
zebrafish chromosomes, gene locations along the chromosome are indicated in Mb on the left (chr2) and right (chr7) of the chromosome(s),
while gene names are indicated on the right (chr2) and left (chr7). For catfish LG8, genetic linkage position is indicated in cM on the left, and the
gene-associated physical contigs are indicated on the righ. Markers with green labels are associated with genes homologous to zebrafish chr2
and markers with red labels are associated with genes homologous to zebrafish chr7. Markers with blue labels are associated with contigs
containing genes homologous to both zebrafish chr2 and chr7.
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15 genes were found on zebrafish chromosome 2 while
four of the 15 genes were found on zebrafish chromosome
7. Similarly, four of the 12 genes in the catfish physical
map contig 123 were found on zebrafish chromosome 2
while eight of the 12 genes on zebrafish chromosome 7;
four of the 7 genes within the catfish physical map contig
2102 were found on zebrafish chromosome 2 and three
genes were on zebrafish chromosome 7 (Additional file 3).
Taken together, these findings suggested the presence of
fusion junctions in these physical map contigs.
Duplicated genes on catfish LG8
As discussed above, BLASTX analysis revealed that 37
genes match more than one draft catfish genome se-
quences (Table 1). These 37 genes are potentially in-
volved in duplicated genes on catfish LG8, though an
alternative possibility is that the two or more catfish
genome contigs were unassembled contigs in the draft
genome assembly. In order to identify the potentially du-
plicated genes on LG8, all the 287 genes on LG8 were
searched against catfish genome sequence contigs. The
basic principle is that genes mapped to different gen-
omic locations (e.g., different genome contigs) are po-
tentially duplicated, whereas the careful visual inspection
needs to be applied. From BLASTN searches (E-value ≤
1E-10), a total of 159 genes were hit by multiple genome
contigs. Through visual inspections of the homologous
regions of these 159 genes, 76 genes match more than
one genomic sequence contigs by overlapping regions,
suggesting that they may be potentially duplicated genes
on LG8 (Table 6). BLASTN searches (cutoff 1E-10) were
carried out using the duplication-involved genome
contigs to determine if these are truly duplicated genes.
A total of 227 genome contigs that potentially
Table 6 Summary of duplicated gene identification on LG8

Catalog Number

Genes with single gnome contig hit 71

Gene with mutiple genome contig hits, but without
overlapping on hitting region

83

Gene with mutiple genome contig and with overlapping on
hitting region

76

Potential duplications after analysis using sequence
alignments

35
represented duplicated genes were used as queries to
search against themselves followed by visual inspection
of the alignments. A total of 35 genes were identified as
duplications on the catfish LG8 (Table 6).
To further determine if these 35 genes were duplicated

in the zebrafish genome, web-based BLASTP in ENSEMBL
was used to align these 35 genes with zebrafish protein
database with genomic locations. A total of 30 (86%) genes
out of the 35 genes were determined to be duplicated in
the zebrafish genome as well (Table 7).

Discussion
In this paper, we present the evidence that the catfish
LG8 are homologous to two chromosomes in several se-
quenced teleost fish species, zebrafish, medaka, and
stickleback, and to three chromosomes of green-spotted
pufferfish. Such findings were made possible by
establishing chromosome level scaffolds using BAC end
sequences, the catfish physical map, and the catfish gen-
etic linkage map [9,48,53,71].
Although there are sequence similarities between cat-

fish and zebrafish at various levels, we decided to use
only gene sequences for our analysis because gene se-
quences are more unique and highly conserved in the
teleost genomes while sequences from intergenic regions
are more divergent, and may involve repeated sequences.
Through analysis of 287 genes within the catfish LG8, it
is apparent that these genes are located mostly on two
or three chromosomes of other teleost species (Table 3).
The largest number of genes was found in zebrafish on
the two relevant chromosomes with 227 out of 287
genes located on chromosome 2 and chromosome 7,
followed by medaka with 151 genes, stickleback with
130 genes, and green-spotted pufferfish with just 77
genes. This is partly due to many of the genes were un-
assigned to chromosomes with green-spotted pufferfish
and Stickleback (Table 2), but is consistent with their
phylogenetic relationships with catfish.
Analysis of conserved microsyntenies allowed identifica-

tion of gene positions and order in different species,
thereby establishing potential orthologies. Through ana-
lyses of sequence similarity, genome context and neigh-
boring genes, we were able to annotate a relatively large
number of genes on catfish LG8. The inferred orthologies
are useful for genome annotation in catfish, and perhaps



Table 7 A list of duplicated genes on LG8

Gene ID Gene identity Nature of
duplication

Duplication
in zebrafish

Zebrafish chromosome locations

ENSDARG00000020857 Coiled-coil domain containing 149b Inter-chr + Chr1: 40,426,579-40,445,530 Chr7: 73,934,667-73,961,321

ENSDARG00000078251 Testis-specific kinase 1 Inter-chr + Chr1: 40,601,010-40,619,684 Chr7: 25,695,507-25,738,547

ENSDARG00000011233 Phosphate cytidylyltransferase 1, choline, alpha a Inter-chr + Chr2: 9,544,319-9,572,728 Chr18: 44,426,569-44,436,626

ENSDARG00000011600 Eph receptor a4b Inter-chr + Chr2: 40,081,937-40,266,727 Chr24: 28,418,728-28,585,492

ENSDARG00000014692 Zinc finger protein 622 Inter-chr - Chr2: 41,536,204-41,544,585 -

ENSDARG00000014986 Activin a receptor, type i like Inter-chr + Chr2: 41,563,236-41,583,420 Chr23: 28,076,284-28,097,688

ENSDARG00000045137 Histamine receptor h4 Inter-chr + Chr2: 1,358,788-1,372,630 Chr22: 1,111,647-1,145,152

ENSDARG00000053293 Fintrim family, member 14 Inter-chr + Chr2: 43,232,265-43,236,818 Chr2: 43,804,098-43,806,620

ENSDARG00000054746 Udp-glucose:glycoprotein glucosyltransferase 1 Inter-chr - Chr2: 40,583,387-40,642,628 -

ENSDARG00000062991 Abl-interactor 1b Inter-chr + Chr2: 9,651,729-9,704,711 Chr24: 6,018,848-6,096,165

ENSDARG00000067818 Replicase/helicase/endonuclease Inter-chr - Chr3: 44,040,671-44,043,730 -

ENSDARG00000093045 Protein nlrc3-like Inter-chr + Chr4: 49,816,584-49,827,190 Chr1: 37,643,376-37,652,927

ENSDARG00000001241 Poly-u binding splicing factor b Inter-chr + Chr7: 43,876,256-43,887,769 Chr2: 32,371,845-32,389,729

ENSDARG00000032458 Map/microtubule affinity-regulating
kinase 2

Inter-chr + Chr7: 26,056,874-26,144,251 Chr21: 26,599,159-26,667,051

ENSDARG00000056690 Myotubularin related protein 1a Inter-chr + Chr7: 26,984,248-27,002,780 Chr21: 33,053,927-33,084,023

ENSDARG00000068557 5-hydroxytryptamine (serotonin) receptor 5a like Inter-chr + Chr7: 43,811,481-43,832,125 Chr2: 29,650,026-29,653,812

ENSDARG00000069463 Arachidonate 12-lipoxygenase Inter-chr - Chr7: 27,155,574-27,173,814 -

ENSDARG00000070107 Sine oculis homeobox homolog 7 Inter-chr + Chr7: 8,229,740-8,248,372 Chr13: 9,823,203-9,826,579

ENSDARG00000074367 Ubiquitin carboxyl-terminal hydrolase Inter-chr + Chr7: 52,780,107-52,812,002 Chr20: 23,071,313-23,099,240

ENSDARG00000074813 Bloodthirsty-related gene family, member 5 Intra-chr + Chr7: 16,963,727-16,970,800 Chr7: 16,970,942-16,980,218

ENSDARG00000075485 Kinesin light chain 2 Inter-chr + Chr7: 7,710,099-7,745,347 Chr22: 41,392,590-41,425,645

ENSDARG00000075647 Grb10 interacting gyf protein 1 Inter-chr + Chr7: 22,013,314-22,051,954 Chr7: 22,066,424-22,077,128

ENSDARG00000076302 Deltex homolog 4 Inter-chr + Chr7: 19,772,977-19,815,910 Chr1: 41,879,456-41,911,414

ENSDARG00000079906 Calcium channel, voltage-dependent, beta 2a Inter-chr + Chr7: 74,455,736-74,500,031 Chr3: 15,773,660-15,847,471

ENSDARG00000090874 Leukocyte immune-type receptor 3 precursor Inter-chr + Chr7: 7,161,386-7,169,236 Chr7: 6,472,649-6,485,064

ENSDARG00000025789 Chromodomain helicase dna binding protein 4 Inter-chr + Chr16: 33,984,640-34,013,093 Chr19: 5,625,090-5,682,362

ENSDARG00000075603 Bloodthirsty-related gene family, member 20 Inter-chr + Chr19: 2,844,513-2,855,533 Chr19: 4,855,762-4,867,193

ENSDARG00000016464 Serine/threonine-protein kinase mrck alpha-like Inter-chr + Chr20: 35,110,850-35,230,881 Chr17: 8,164,393-8,331,381

ENSDARG00000017338 Kinase d-interacting substrate of 220b Inter-chr + Chr20: 29,769,812-29,809,552 Chr17: 34,978,387-35,119,673

ENSDARG00000032238 Dynamin 3 Inter-chr + Chr20: 14,733,643-14,839,604 Chr5: 66,937,070-67,009,337

ENSDARG00000059933 Phosphatidic acid phosphatase type 2b Inter-chr - Chr20: 8,143,071-8,201,815 -
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Table 7 A list of duplicated genes on LG8 (Continued)

ENSDARG00000004988 Protein phosphatase 3, catalytic subunit, alpha
isozyme

Inter-chr + Chr21: 28,352,865-28,470,208 Chr14: 7,770,521-7,857,833

ENSDARG00000078791 General transcription factor ii-i repeat
domain-containing protein 2-like

Inter-chr + Chr22: 8,348,278-8,349,747 Chr15: 10,383,223-10,384,977

ENSDARG00000052330 Solute carrier family 4, anion exchanger,
member 2b

Inter-chr + Chr24: 34,531,261-34,600,148 Chr2: 32,109,772-32,175,798

ENSDARG00000071501 Heparan sulfate 6-o-sulfotransferase 1b Inter-chr + Chr24: 28,654,200-28,749,436 Chr9: 30,372,294-30,460,884
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also useful for functional inference. Orthology inference of
gene functions will prove to be an effective approach for
the vast majority of genes with aquaculture species [74].
The catfish LG8 has a high level of similarity with part

of zebrafish chromosome 2 and chromosome 7 (and simi-
larly with two chromosomes in medaka, stickleback and
three chromosomes in Tetraodon). However, extensive
chromosome rearrangement must have occurred. Numer-
ous small syntenic blocks were identified (Additional file 1
and Additional file 2), with some spanning only 40–50 Kb
while others spanning well over 2 Mb (Tables 4 and 5). It
is apparent that the catfish genome is well conserved at
the chromosomal level with those of other teleosts, but
extensive local shuffling lead to differences in gene posi-
tions and orientations.
Genes included in the same catfish physical map

contigs were found on two chromosomes in zebrafish,
medaka, stickleback, and green-spotted pufferfish. For
instance, genes included in physical map contigs 2577,
123, and 2102 were found to be on chromosome 2 and
chromosome 7 in zebrafish. One possibility is that the
physical map was wrongly assembled due to duplicated
genomic segments. However, this possibility did not hold
because genetic linkage mapping of the BAC end-
associated microsatellites within these contigs placed the
BAC clones on the same linkage group, LG8. In
addition, we have examined the physical map assembly
with extremely high stringencies at p = 10-40, the associ-
ated genes from the same BAC contigs still had hits to
genes on both chromosome 2 and chromosome 7 in
zebrafish. Furthermore, in some cases two genes on the
same catfish BAC clone are homologous to genes on
two different zebrafish chromosomes. For instance, the
two genes from mate paired reads of BAC end sequences
residing within ctg2102 were homologous to “cadherin
24, type 2” located on zebrafish chromosome 2, and to
“mannose receptor, C type 1a” located on zebrafish
chromosome 7 (Additional file 3). Taken together, these
physical contigs should harbor the fusion junctions of the
sequences from the two chromosomes during evolution.
Analysis of such junctions is not possible at present because
the sequences are not yet available, but it should be inter-
esting to look into these junctions to reveal evolutionary
events in forming the chromosome represented by LG8.
It is interesting to observe a higher level of genome scale

structural conservation between catfish and zebrafish than
between catfish and the other three fish species. However,
it is also intriguing that catfish has 29 chromosomes
whereas zebrafish has 25, medaka has 24, stickleback has
21, and green-spotted pufferfish has 21 chromosomes, but
yet the homologous chromosome segments of LG8 of cat-
fish are distributed on two or three chromosomes in these
fish, suggesting that some catfish chromosomes may have
to be large to contain genes from several chromosome
equivalents of the model fish species, or that significant
chromosomal rearrangements have occurred during evo-
lution, in contrast to the generalized linearity relationships
among medaka, stickleback, green-spotted pufferfish, and
sea bream as previously reported [42]. To the minimum, it
is expected that in some cases, one chromosome of
zebrafish (and more so with medaka, stickleback and
Tetraodon because they have even fewer chromosomes)
should be equivalent to more than one catfish chromo-
somes. Whole genome comparative mapping is warranted
to address such issues.
After two rounds of whole genome duplication in ver-

tebrates, ray-finned fishes (actinopterygian) had a third
round, fish-specific genome duplication ~350 million
years ago (FSGD or 3R) [12,72,75,76]. Studies on Hox
gene clusters from a spectrum of vertebrate species pro-
vided critical evidence in support of this hypothesis
[77,78]. In addition, several studies have suggested in-
creased rate of inter-chromosomal rearrangements fol-
lowing the whole-genome duplication (WGD) [13,44,79].
Further studies suggested eight major interchromosomal
rearrangements in the 24 ancestor chromosomes in tele-
osts [13]. Subsequently, the medaka lineage preserved its
ancestral genomic structure and green-spotted pufferfish
lineage underwent three major rearrangements, while the
zebrafish lineage has experienced many interchromosomal
rearrangements [13]. From the comparison of chromo-
some blocks among the five teleost species under study, it
is apparent that many inter- as well as intra-chromosomal
rearrangements may have occurred.
However, the conserved syntenies we identified be-

tween catfish LG8 and zebrafish chromosomes 2 and 7,
and medaka chromosomes 17 and 18 are consistent with
the ancestral vertebrate linkage groups model presented
by Nakatani et al. [80] and Danzmann et al. [81].
According to that model, there is strong affinity between
the ancestral chromosome M and zebrafish chromosome
2 and medaka chromosome 17. Similarly, there is partial
affinity between the ancestral chromosome F and zebrafish
chromosome 7 and medaka chromosome 18. Our results
here provide additional support to the ancestral chromo-
some model, and hold promise for whole-genome com-
parative genome analysis.
A set of potentially duplicated genes were identified by

sequence alignment analysis. Although the final status of
the nature of duplication requires additional work, par-
ticularly the sequence assembly of the whole genome se-
quence, it is apparent that 35 out of 287 (12.2%) genes on
catfish LG8 were duplicated. This rate of gene duplication
is similar to that found in zebrafish genome (14.9%) [82].
In addition Bloodthirsty-related gene family member 5
and its duplicated copy are located on the same scaffold in
catfish, suggesting that they are intra-chromosomal dupli-
cation in the catfish genome. Interestingly, this duplication



BAC-associated microsatellites mapped on LG8

BAC-end sequences mapped on LG8

BACs containing the BAC-end sequences

Physical map contigs containing these BACs

Identify all available BAC-end sequences in these 
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BLAST against the draft catfish genome 

sequences (cutoff 1E-10, bit scores ≥ 400) 

BLAST against ENSEMBL zebrafish protein
database to identify genes
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zebrafish, medaka, stickleback, and Tetraodon

Figure 2 Flowchart of establishing chromosome-scale scaffolds.
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pair is also located on the same chromosome in zebrafish
(Table 7). Other 34 putative duplicated genes are poten-
tially inter-chromosomal duplication because they are lo-
cated on different scaffolds that have been mapped to
different linkage groups [53]. Therefore, all but one of the
35 duplicated genes are inter-chromosomal, consistent
with the situations in related teleost species [82].

Conclusion
In this study, integrated genome resources with BAC
end sequences, physical map, linkage map and the draft
genome sequences were used to conduct comparative
genome analysis of the catfish LG8. The catfish LG8 was
found to be homologous to two chromosomes in
zebrafish, medaka, stickleback and three chromosomes
in green-spotted pufferfish. Through syntenic analysis, a
large number of genes were annotated on LG8. Detailed
analysis of syntenic blocks suggested extensive inter-
and intra-chromosomal rearrangements in the catfish
genome, with certain BAC contigs identified to contain
evolutionary fusion junctions. A set of potentially dupli-
cated genes was identified. As a pilot project, this work
provided the proofs of the principle for whole genome
comparative mapping, and for whole genome sequence
assembly and annotation.

Methods
Establishing chromosome-scale scaffolds
The flow chart of this work is illustrated in Figure 2.
This work started with genetically mapped BAC end se-
quences using microsatellite markers [53], the catfish
physical map [71], the BAC end sequences, and the draft
catfish genome sequence contigs (unpublished data).
The BAC end sequences were previously described and
they were deposited to GenBank [9,48]. The basic con-
cept is that when one BAC end sequence is mapped to
LG8, the entire BAC contig is mapped to LG8. BAC
clones within the same BAC contigs as the mapped BAC
clones were identified through the examination of the
catfish physical map [71]. All available BAC end se-
quences within the BAC contigs were then collected
from the NCBI database. A total of 1,645 BAC end se-
quences were obtained and used to conduct BLAST
searches against the draft catfish genome sequence data-
base with E-value ≤1E-10. The genome sequence contigs
that were “mapped” to LG8 were filtered with high strin-
gent bit scores ≥ 400 to ensure the identification of true
homologous sequences.

Gene identification on LG8
The mapped genome sequence contigs were repeat-
masked using RepeatMasker (version 3.2.7, http://www.
repeatmasker.org/) to mask repetitive sequences before
the BLASTX search for gene identification. The repeat-
masked genome sequence contigs were used as queries
for BLASTX search against the ENSEMBL zebrafish
protein database (Danio rerio Zv9.67) with an E-value
cutoff of 1E-10. Gene annotation information was re-
trieved by BioMart (www.biomart.org) with ENSEMBL
gene IDs. For uncharacterized genes in ENSEMBL,
BLAST search was conducted against NCBI nr database
to obtain the gene annotation information.
Identification of homologous chromosomes
The homologous chromosomes and gene locations in
zebrafish were obtained using BioMart with the unique
ENSEMBL gene IDs. For medaka, stickleback and green-
spotted pufferfish, similarly, BLASTX searches were
conducted using gene-coding sequences. The coding se-
quences as query were searched against protein databases:
medaka (MEDAKA1.68), stickleback (BROADS1.68) and
green-spotted pufferfish (TETRAODON8.68) with the
E-value cutoff of 1E-10, respectively. The homologous
chromosomes and gene locations were then identified
by BioMart. Homologous chromosomes were identified
as the chromosomes with high number of gene hits.

http://www.repeatmasker.org/
http://www.repeatmasker.org/
http://www.biomart.org/
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Identification of conserved syntenies
Conserved syntenies were identified based on genetic
positions of BAC end associated microsatellite markers,
the associated genes on the linkage map and model fish
chromosomal locations. Putative conserved syntenies
were established when the genes were located in the same
chromosome and the same linkage group. Microsyntenic
blocks were identified based on genes included within
BAC contigs of the catfish physical map and their loca-
tions on one chromosome of model fish. The putative
conserved microsyntenies were identified as segments of
model fish chromosomes with a set of adjacent genes that
are homologous to a set of adjacent genes in catfish that
are reflected by their colocation within a single BAC
contig. For the BAC contigs with significant hits on more
than one model fish chromosomes, e.g., ctg0123, ctg2577
and ctg2102 were mapped on both zebrafish chromosome
7 and chromosome 2, the physical maps with high strin-
gent cutoff value: 10-40, 10-30 and 10-25 were checked to
determine if these BAC contigs were incorrectly assem-
bled in the physical map which was constructed using a
cutoff value of 10-20 [71].
Comparative maps were constructed by using MapChart

[83]. The BAC contigs were anchored to the linkage group
based on the BES-associated microsatellite markers. The
comparative maps were then drawn based on the posi-
tions of BAC contigs on catfish LG8 and the gene loca-
tions on model fish chromosomes.

Analysis of gene duplication on LG8
All the 287 genes on LG8 were used as queries to search
against catfish whole genome sequence assembly (unpub-
lished data) to identify potential duplicated genes. Theor-
etically, the genes with significant hits to different
genomic regions (e.g., different genome contigs) should
represent duplicated genes. However, the current catfish
genome assembly is still incomplete. Therefore, the genes
with hits of multiple genomic contigs were used as a
starting point for further analysis and visual inspections.
All the catfish genome contigs involved in potential dupli-
cations were retrieved and visually checked by sequence
alignments using BLASTN at a cutoff value of 1E-10 and
minimum alignment length of 100 bp. The nature of du-
plicated genes were determined by examination of their
genomic locations, with the understanding that if they are
located in the same contig or scaffold, then the duplicated
genes are tandem or intra-chromosome, but not inter-
chromosome. In contrast, if they are located in different
scaffolds, they are candidates for inter-chromosomal du-
plications, pending mapping of the two scaffolds to differ-
ent chromosomes.
To determine if the duplicated genes in the catfish

genome are also duplicated in the zebrafish genome, du-
plicated genes in catfish were used as queries to search
against the ENSEMBL zebrafish protein database using
the Web based ENSEMBL BLAST (cutoff of 1E-10) to
determine the genomic locations and coordinates of
these genes. The hits with high stringencies (alignment
score ≥ 1000) were considered as duplications.
Additional files

Additional file 1: Annotation of catfish genes mapped in LG8 with
significant hits to zebrafish chromosome 2. Microsyntenies are
indicated by the same colored rows.

Additional file 2: Annotation of catfish genes mapped in LG8 with
significant hits to zebrafish chromosome 7. Microsyntenies are
indicated by the same colored rows.

Additional file 3: Annotation of catfish genes mapped in one
physical contig in LG8 with significant hits to both zebrafish
chromosome 7 and chromosome 2.

Additional file 4: Catfish genes mapped in LG8 with significant hits
to Medaka chromosome 17. Microsyntenies are indicated by the same
colored rows.

Additional file 5: Catfish genes mapped in LG8 with significant hits
to medaka chromosome 18. Microsyntenies are indicated by the same
colored rows.

Additional file 6: Summary of conserved syntenic blocks between
catfish LG8 and medaka chromosome 17. The number in parentheses
mean the different snyteny within same physical contig.

Additional file 7: Summary of conserved syntenic blocks between
catfish LG8 and medaka chromosome 18. The number in parentheses
mean the different snyteny within same physical contig.

Additional file 8: Catfish genes mapped in LG8 with significant hits
to stickleback chromosome 3. Microsyntenies are indicated by the
same colored rows.

Additional file 9: Catfish genes mapped in LG8 with significant hits
to stickleback chromosome 7. Microsyntenies are indicated by the
same colored rows.

Additional file 10: Summary of conserved syntenic blocks between
catfish LG8 and stickleback chromosome 3. The number in
parentheses mean the different snyteny within same physical contig.

Additional file 11: Summary of conserved syntenic blocks between
catfish LG8 and stickleback chromosome 7. The number in
parentheses mean the different snyteny within same physical contig.

Additional file 12: Catfish genes mapped in LG8 with significant
hits to green-spotted pufferfish chromosome 15. Microsyntenies are
indicated by the same colored rows.

Additional file 13: Catfish genes mapped in LG8 with significant
hits to green-spotted pufferfish chromosome 20 and chromosome
6. Microsyntenies are indicated by the same colored rows.

Additional file 14: Summary of conserved syntenic blocks between
catfish LG8 and green-spotted pufferfish chromosome 15. The
number in parentheses mean the different snyteny within same physical
contig.

Additional file 15: Summary of conserved syntenic blocks between
catfish LG8 and green-spotted pufferfish chromosome 20 and
chromosome 6. The number in parentheses mean the different snyteny
within same physical contig.

Additional file 16: Comparative map between catfish LG8 and
medaka chromosome 17 and chromosome 18.

Additional file 17: Comparative map between catfish LG8 and
stickleback chromosome 3 and chromosome 7.

Additional file 18: Comparative map between catfish LG8 and
green-spotted pufferfish chromosome 15, chromosome 20 and
chromosome 6.
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