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Abstract

Background: White clover (Trifolium repens L.) is a temperate forage legume with an allotetraploid genome
(2n=4×=32) estimated at 1093 Mb. Several linkage maps of various sizes, marker sources and completeness are
available, however, no integrated map and marker set has explored consistency of linkage analysis among
unrelated mapping populations. Such integrative analysis requires tools for homoeologue matching among
populations. Development of these tools provides for a consistent framework map of the white clover genome,
and facilitates in silico alignment with the model forage legume, Medicago truncatula.

Results: This is the first report of integration of independent linkage maps in white clover, and adds to the
literature on methyl filtered GeneThresher®-derived microsatellite (simple sequence repeat; SSR) markers for linkage
mapping. Gene-targeted SSR markers were discovered in a GeneThresher® (TrGT) methyl-filtered database of
364,539 sequences, which yielded 15,647 SSR arrays. Primers were designed for 4,038 arrays and of these, 465
TrGT-SSR markers were used for parental consensus genetic linkage analysis in an F1 mapping population (MP2).
This was merged with an EST-SSR consensus genetic map of an independent population (MP1), using markers to
match homoeologues and develop a multi-population integrated map of the white clover genome. This integrated
map (IM) includes 1109 loci based on 804 SSRs over 1274 cM, covering 97% of the genome at a moderate density
of one locus per 1.2 cM. Eighteen candidate genes and one morphological marker were also placed on the IM.
Despite being derived from disparate populations and marker sources, the component maps and the derived IM
had consistent representations of the white clover genome for marker order and genetic length. In silico analysis at
an E-value threshold of 1e-20 revealed substantial co-linearity with the Medicago truncatula genome, and indicates a
translocation between T. repens groups 2 and 6 relative to M. truncatula.

Conclusions: This integrated genetic linkage analysis provides a consistent and comprehensive linkage analysis of
the white clover genome, with alignment to a model forage legume. Associated marker locus information,
particularly the homoeologue-specific markers, offers a new resource for forage legume research to enable genetic
analysis and improvement of this forage and grassland species.
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Background
Genetic maps and markers are integral to plant im-
provement strategies being developed and applied in
agricultural genomics. These tools enable trait mapping,
marker-assisted selection, genetic resource assessment,
comparative genetics, and characterisation of genome
evolution and organisation [1-4].
White clover (Trifolium repens L.) is a temperate peren-

nial forage legume widely used in pastoral systems. The
species produces high quality herbage, hosts Rhizobia bac-
teria that transform atmospheric nitrogen into plant avail-
able forms, exhibits compatibility and persistence in
mixed species pastures, and contributes to soil quality
[5,6]. Propagated sexually by seed and asexually by stolons,
it is an outcrossing disomic tetraploid (2n=4×=32) with
abundant sequence polymorphism and highly heteroge-
neous populations [7,8]. White clover progenitors are pu-
tatively identified as the diploid species T. occidentale and
T. pallescens [9,10]. The white clover genome is moder-
ately compact, estimated at 1093 Mb (1C; [11]), with high
sequence similarity in orthologous genic regions within
homoeologous pairs [12].
Minor agricultural species, such as white clover, often

lag in the development of genomics resources. A range
of marker platforms is now available, and the choice
among systems is influenced by genome structure, re-
productive biology of the species, and consideration of
development costs, scale and system efficiency. Targeting
marker discovery to specific genome fractions can influ-
ence the effectiveness of a marker resource. Markers in
low copy number genic regions, such as expressed se-
quence tag (EST)-derived sources are more likely to be
associated with polymorphisms conferring trait effects
and are preferred in agricultural plants, however these
markers generally exhibit reduced rates of polymorphism
[13,14]. Methylation-filtration targets genomic sequence
surveys to genic regions, providing gene-rich marker dis-
covery data [15]. As a marker development resource,
these sequences share the gene-associated benefits of
EST-derived sequence data and the higher polymorph-
ism rate of genomic-derived sequence data. Methyl-
filtered sequences are also free from bias created by
enriching or screening genomic libraries for specific sim-
ple sequence repeat (SSR; microsatellite) motifs, or using
expressed sequence data from specific tissues or plant
growth stages.
Marker development from targeted sequence can iden-

tify polymorphism based on sequence identity (e.g. sin-
gle nucleotide polymorphism, SNP) or length, such as
SSR arrays. In the absence of reference genomes for
white clover and progenitors, homoeologous sequence
similarity in genic regions hinders development of an ef-
ficient SNP discovery process. This is predominantly due
to a high proportion of putative SNP markers in silico
arising from conflation of orthologous sequence within
homoeologous pairs [16]. Reference sequence from pro-
genitor species [9,10] partially overcomes this limitation
[17], however SNP discovery and utilisation in white clo-
ver remains a challenge.
Polymorphisms in candidate gene (CG) sequence offer

markers with potential functional effects to enrich maps
and advance the genetic dissection of some traits [18].
Although a relatively laborious process, sequencing CGs
can be used to identify haplotypes and overcome the
limitations of in silico SNP discovery experienced in se-
quence databases [16].
Markers using SSR polymorphism are a co-dominant

system that is proven, transportable, amenable to semi-
automated assay, moderately cost-effective, and scalable.
SSR markers have been used in a number of applications
in plant improvement [3], and are estimated to occur at
a density of one per 4.7 kb in transcribed regions of the
white clover genome [19]. Four independent genetic
linkage maps of varying completeness and quality based
on Trifolium SSR markers have been published in white
clover [19-22]. Quantitative and qualitative trait maps
have also been developed [23-26], and some effort has
been made to identify homoeologue sets based on se-
quence data from the putative progenitor species T.
occidentale [17,26]. Large mapped [19] and unmapped
[27] sets of white clover SSR markers have been made
publicly available to augment three small sets of mapped
SSR markers [20,28,29]. In addition, substantial marker
and linkage map resources in red clover (Trifolium
pratense) [30] have been applied in white clover and T.
subterraneum for comparative mapping [19,22,31]. At
present, white clover maps have not been integrated
across populations. Marker order is also insufficiently
resolved among published maps, and homoeologue-
specific markers are not available. As a result, only
superficial comparisons among independent mapping
populations have occurred, and homoeologue matching
and integration has not been achieved. In other species,
integration of independent mapping populations has
enhanced genetic resolution and provided comprehen-
sive relational locus information for disparate marker
and population resources [32]. Furthermore, availability
of homoeologue-specific markers to the wider white
clover research community would provide a valuable re-
source for data alignment across populations and re-
search groups.
The Trifolieae forage legume modelMedicago truncatula,

with links to the wider legume phyla community and other
agricultural crops [33], is of primary interest in white clover
comparative genetics. In silico referencing of white clover
to M. truncatula has identified macrosyntenic relationships
maintained between these two species [19,34,35], supported
by evidence from mapped comparative markers [22].
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Figure 1 Sequence repeat characteristics of 4038 SSR arrays
mined from methylation-filtered genomic DNA in white clover.
Non-redundant SSRs were identified among 15,647 sequence reads
from 186,890 methylation filtered white clover clones of the cultivar
‘Grasslands Huia’, using the GeneThresher® system for methylation
filtering. A. Motif type distribution. B. Motif repeat number.
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This has led to the Medicago chromosomal nomencla-
ture replacing the initial Trifolium nomenclature of
Barrett et al. [20].
The objectives of this research were to: establish an inte-

grated genetic linkage map of the white clover genome
based on linkage analysis in two independent F1 mapping
populations; develop candidate gene-targeted markers for
traits of interest as a platform for functional markers and
to aid genome alignment with other species; identify
homoeologue-specific markers; document a comprehen-
sive set of mapped white clover microsatellite markers;
and enrich the in silico alignment between Trifolium
repens and Medicago truncatula.

Results
SSR marker discovery
White clover end sequence data from 186,890 methyl-
filtered genomic DNA clones were assembled to generate a
GeneThresher® database (TrGT) containing 364,539 unique
sequence segments plus consensus assembly sequences.
The mean sequence length was 604 nucleotides. Assembly
revealed 84,080 contigs and an estimated non-redundant
sequence of 147 Mb, equating to an estimated 30% of the
white clover genome’s non-methylated fraction. A sequence
homology query of the TIGR Eukaryote Orthologous set in-
dicated TrGTcontains 14,372 unique genes.
SSR arrays meeting minimum criteria were identified

prior to contig assembly in 15,647 singleton sequences
in TrGT, which comprise 4.4% of the database se-
quences. Primer pairs meeting design criteria were iden-
tified for 4038 of the arrays including 2480 di-, 1141 tri-,
235 tetra-, 119 penta- and 63 hexanucleotide SSR motif
arrays (Figure 1A). The number of SSR repeat units per
array ranged from a truncated lower threshold of five up
to 55, with a mode of eight (Figure 1B).
Primer pairs for 1344 TrGT-SSRs, including 224 di-,

938 tri-, 108 tetra-, 50 penta- and 24 hexanucleotide
SSR motif arrays were synthesised and tested. Of these,
1242 (92%) generated discrete amplicons resolved by ca-
pillary electrophoresis following PCR at design parame-
ters. Mean realised amplicon size was 103% of that
predicted in silico.

Marker genotyping and linkage analysis
Screening revealed a subset of 465 TrGT-SSRs poly-
morphic in the parents of population MP2. Their
primers and TrGT singleton sequences from which they
were derived are disclosed in Additional files 1 and 2,
respectively. These SSRs, plus one morphological marker
(Rf ), 18 candidate gene markers (Table 1), 10 ‘ats’ gen-
omic SSRs and 69 ‘prs’ EST-SSRs, identified 733 poly-
morphic features when genotyped in the MP2
population. This included 268 loci polymorphic in the
maternal parent, 201 loci polymorphic in the paternal
parent, and 264 loci polymorphic in both parents. The
MP2 mapping data were resolved by linkage analysis
into sixteen linkage groups in two homoeologous sets
and spanned 1265 cM. Linkage groups contained 24 to
70 marker loci and ranged in length from 62 to 95 cM
(Additional file 3).
The 18 candidate gene markers mapped to 19 discrete

loci, with only marker TrPPD identifying homoeoloci in
group 1. Many of the candidate genes generated additional
amplicons which were monomorphic; these may represent
homoeoloci and paralogues. Fourteen of the candidate
gene markers generated amplicons of the approximate size
predicted in silico (95-103% of expected size), three were
substantially larger (117-140%), and one (TrSEP1) was
smaller (63%). Markers derived from different introns of
the SHATTERPROOF9 gene (TrSHP-2 and TrSHP-8)
mapped to the same locus (Table 1; Additional file 3). The
Rf locus was polymorphic in parent 20161.21, and mapped
to linkage group 8-1.
Although derived from unrelated populations and dis-

tinct marker sources, the linkage maps of MP2 (Additional
file 3) and MP1 [20] revealed a similar view of the white



Table 1 Candidate genes mapped in a white clover F1 population

T repens Locus Annotation Intron Tr LG Mt PM Ref Forward Primer (5'-3') Reverse Primer (5'-3')

TrPHR MYB transcription factor 1 2-2 2 [36] GTTGATGCTGTGGCTCAACTT
CCCATAACTCTGAGGACCCCTPhosphorus transport

TrCPS Glutamine synthase 2 3-1 3 [37] TGGATCAGGTTTGGACTTGAG
GGAAGCTGTGAAGGGTCAGTAIn planta nitrogen cycling

TrMIP Myo inositiol 1-P- synthase 9 3-1 3 [38] GTTATCTGACCAAGGCTCCTCTG
ACCACTGGTGTGCCCGGTGGAACPinitol synthesis

TrLFY LEAFY 1 3-2 3 [39] TCTCGATGCTCTCTCTCAAGAAG
TCGCTGCACCACCGGCTCCTCCGFlowering

TrPLT1 PLETHORA 6 4-2 4 [40] GTGAGCTTCATACCTTCCAGTCC
AAGAACTTCGATATATCGCGGTGRoot growth

TrSHP-2 SHATTERPROOF9 2 4-2 4 [41] GAGGTACAAGAAAGCATGTTCAG
CTTCAAGTATTCACGGTAACTGCDehiscence

TrSHP-8 SHATTERPROOF9 9 4-2 4 [41] AAAGCATGTTCAGATTCTTCTGG
GCAGTTTGGCAGCTTCTTGCTGGDehiscence

TrPRP ROOT PHOTOTROPISM2 3 5-2 5 [42] AATCGACGATGATCTTTACCGCGCCG
TTTGTTCTGTGACGCGTGCACACGRoot growth

TrDFR Dihydroflavonol reductase (DFR) 1 6-1 2 [43] CATTGGAAGAGTTAGAGATTTAG
TCCAACTTCCATAAATGTTCAACCondensed Tannin

TrIAA SOLITARY ROOT 4 6-1 2 [44] TGAAAGGCTCTGATGCAATTGGG
CTAGATTTTTCCATTGCTCTTGGRoot growth

TrSEP1 SEPELLATA1 2 7-1 7 [45] GCAAACCTGCTAAAGAACTTGAG
CTTCAAGTATTCACGGTAACTGCFloral initiation

TrTT12 TRANSPARENT TESTA12 3 7-1 7 [46] CAGATCCAAAGTTGGAGACATCGG
AGCCCATAGGATATGGTGAAGTGCCondensed Tannin

TrRMS5 RAMOSUS5 6 7-2 7 [47] GGCGAAGAAGAAGATGATGG
CATCTCTGCATTGAGGTAGCABranching

TrAlaAT ACC SYNTHASE1 6 8-2 8 [48] AACTGGTGCCTATAGTCATAGTC
GCTATTGTATCACGTAAACCCTGFlowering

TrVP1 Clover orthologue of AVP1 5 8-2 8 [49] ACTGAATACTATACCAGCAATGC
TGCAGGAGTCTGCAACATCTTGCDrought tolerance

TrPPD PEAPOD 2 1-1 1-2 no hit [50] GATATCGTGAAAAGCGAAAGGAC
AGCTTCACTGGAAGGTTCAAATALeaf meristem activity

TrANR Anthocyanidin reductase (ANR) 1 4-2 no hit [51] GAGTGCATGTTTGGTTTGCCA
TGCAAAGTTCACAGGTGTAGCCondensed tannin

TrSTP STAMINA PISTILLOIDIA n/i 4-1 AC235671 [52] TGGAAGGTTTTCACCCATCTATG
TATCCTGCTGTTCATCCATGGAGFlowering

Eighteen candidate genes related to plant morphology, chemical composition, or transcription regulation were evaluated by in silico analysis. Primers were
designed from T. repens genomic sequence, and length polymorphisms were assayed in 92 members of population MP2 using intron-spanning PCR for all loci
except TrANR and TrSTP, which were assayed by SNP and exon size variation, respectively. Tr LG=white clover linkage group; Mt PM=Medicago truncatula genome
assembly 3.0 pseudomolecule; Ref=cited reference; no hit=not found in M. truncatula databases and n/i=no intron in this gene. Note that BAC AC235671 is not
incorporated into the M. truncatula assembly.
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clover genome in terms of shared marker order and link-
age group size (Table 2). Improved map statistics were ob-
served for MP2 (Table 2) and were a reflection of the 49%
increase in marker loci and 39% increase in marker dens-
ity relative to MP1.
Multi-population parental consensus map integration
Linkage group matching between populations prior to
developing the integrated map (IM) required placement
of additional ‘prs’ and ‘gtrs’ markers common to both
MP1 and MP2. The aim was to enrich linkage groups to



Table 2 Summary of two independent white clover F1-derived parental consensus genetic linkage maps and an
integrated map

Linkage
Group

No. of Marker Loci Map Length (cM, Kosambi) Marker Density
(cM/locus)Observed Estimated

IM MP2 MP1 IM MP2 MP1 IM MP2 MP1 IM MP2 MP1

1-1 66 44 31 86.7 84.9 91.0 89.3 88.9 80.8 1.31 1.93 2.94

1-2 87 70 27 92.8 93.1 72.0 94.9 95.8 81.8 1.07 1.33 2.67

2-1 42 24 22 70.2 63.2 72.0 72.6 72.0 76.8 1.67 2.63 3.27

2-2 48 38 18 71.4 70.9 76.0 69.6 77.0 80.8 1.49 1.87 4.22

3-1 77 47 35 89.4 92.4 76.0 91.7 96.4 73.8 1.16 1.97 2.17

3-2 85 53 38 88.1 87.8 77.0 90.2 91.2 66.8 1.04 1.66 2.03

4-1 98 59 52 82.5 76.9 82.0 84.2 79.5 86.8 0.84 1.30 1.58

4-2 78 52 47 80.0 76.7 94.0 82.1 79.7 98.8 1.03 1.47 2.00

5-1 60 50 26 76.3 62.3 77.0 78.9 64.9 95.8 1.27 1.25 2.96

5-2 63 46 14 72.7 65.4 28.0 75.0 68.3 76.8 1.15 1.42 2.00

6-1 57 41 22 70.1 68.5 69.0 73.6 68.7 74.8 1.23 1.67 3.14

6-2 44 22 23 66.5 70.3 60.0 74.5 74.8 73.8 1.51 3.20 2.61

7-1 70 41 38 88.3 94.8 69.0 90.8 99.5 81.8 1.26 2.31 1.82

7-2 62 47 20 72.9 76.6 62.0 75.3 79.9 32.8 1.18 1.63 3.10

8-1 95 59 41 86.2 93.8 70.0 88.0 97.1 73.8 0.91 1.59 1.71

8-2 77 40 39 79.6 87.2 69.0 81.7 91.7 64.8 1.03 2.18 1.77

mean 69.3 45.8 30.8 79.6 79.1 71.5 82.0 82.8 76.3 1.20 1.84 2.50

SEM 4.3 3.0 2.8 2.1 2.9 3.7 2.0 2.9 3.7 0.06 0.13 0.18

Total 1109 733 493 1273.6 1264.8 1144.0 1312.5 1325.2 1220.7

Genome Coverage 97.0% 95.4% 93.7%

MP1 is the map published by Barrett et al. [20]; MP2 is based on linkage analysis of 184 individuals from the pair cross of heterozygous genotypes 21125.DC and
20161.21. IM = the linkage map integrated from consensus maps in populations MP1 and MP2. The integrated map consists of 1109 loci including gene-targeted
microsatellites, candidate gene markers, and the morphological marker Rf. Estimated = estimated maximum map length in each linkage group (=observed linkage
group length×[(no. loci+1/(no. loci-1)]; Method 4 of Chakravarti et al. [53]. SEM = standard error of the mean. Genome Coverage = observed map length/
estimated map length according to Sekino and Hara [54].
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achieve a joining (anchor) locus density <50 cM per
joining locus. Numbers of joining markers per group
ranged from three (group 3-2) to 15 (group 5-1) with a
mean of 7.6 (Table 3). Genotyping of these additional
markers in MP1 facilitated resolution of linkage group 5
(formerly G; [20]), the order of which was insufficiently
resolved in the original map of this population.
Inter-population homoeologue matches were based

primarily on single locus, homoeologue-specific (SL-HS)
markers. These markers, identified from SSRs exhibiting
single locus segregation patterns in MP2, had been
screened further against a panel of 16 individuals includ-
ing the parents of MP2 and 14 diverse genotypes from
cultivars and ecotypes. Markers that amplified a max-
imum of two alleles per individual across the entire
panel were designated SL-HS (Additional file 4) and
then genotyped in MP1 to provide homoeologue-specific
joining loci. In all cases where multiple independent SL-
HS markers mapped in both MP1 and MP2 populations,
marker order and relative positions were consistent
across populations. There were no instances where mul-
tiple SL-HS markers mapped to a single homoeologue in
one population then mapped to separate homoeologues in
the other population, which would have been classed as a
mismatch (Table 3). Presence of multiple SL-HS loci
supported matching 10 of the 16 inter-population
homoeologue pairs (Table 3). Matching of one inter-
population pair of linkage groups to form an IM linkage
group identified by default the other inter-population
homoeologue match. Multiple SL-HS loci, therefore, iden-
tified all inter-population homoeologue groups to be inte-
grated except for IM 5-1 and 5-2, where the match relied
on a single SL-HS marker in 5-1 (Table 3).
Additional independent evidence for matched homo-

eologues between populations was provided by com-
monality of allele size or allele size range of the mapped
joining loci. SSR primer pairs often generated sets of
amplicons of contrasting size ranges; those in one size
range mapping to a homoeologue, and those in the other
size range mapping to the other homoeologue, or else-
where in the genome, or were uninformative in that
population. Allele size, therefore, could be evidence
supporting homoeologue matching between populations.
Each linkage group from MP2 was aligned with either of



Table 3 Map integration data for inter-population
homoeologue matching and alignment in white clover

Linkage
Group

Single Locus Allele Size

Match Mismatch Match Mismatch Ambiguous

1-1 3 0 2 0 2

1-2 4 0 3 2 2

2-1 1 0 1 0 3

2-2 2 0 5 0 4

3-1 3 0 3 0 1

3-2 2 0 1 0 0

4-1 2 0 4 0 2

4-2 1 0 7 0 2

5-1 1 0 7 2 5

5-2 0 0 2 0 3

6-1 2 0 2 2 3

6-2 0 0 2 1 0

7-1 2 0 3 1 2

7-2 1 0 3 0 4

8-1 4 0 2 0 1

8-2 2 0 0 0 2

Data are from mapping populations MP1 [20] and MP2, based on analysis of
121 shared marker loci. Markers polymorphic in both MP1 and MP2 were used
to match and align homoeologues based on marker loci that were single locus
homoeologue-specific (SL-HS). Additional support for homoeologue matching
was provided by comparison of allele size of non-single locus shared marker
loci. Of the allele size loci, some indicated an alternative matching that was a
mismatch to the maximum parsimony allele-size homoeologue alignment, and
others did not provide conclusive support for either alignment combination
and were designated as ambiguous. In all cases, homoeologue alignment
based on shared marker allele size was corroborated by the SL-HS
alignment data.
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the two potential homoeologues in MP1 and assessed for
joining locus allele size similarity. There were multiple
joining loci per potential inter-population homoeologous
pair and not all size-matching loci were consistent in iden-
tifying which homoeologues should be aligned. In any
pairing, joining loci suggesting an alignment with a
homoeologue could be flanked by joining loci suggesting
the other homoeologue. Inter-population homoeologue
alignment using allele size (Table 3) was, therefore, derived
from identifying the homoeologue pairing that maximised
the number of joining loci in agreement with the align-
ment (matches) while minimising the number of joining
loci at variance with the alignment (mismatches). In some
cases, the allele size ranges overlapped and were therefore
not definitive for homoeologue identification. These were
classed as ambiguous loci (Table 3).
The allele size-based inter-population homoeologue

alignments were made before analysis of the SL-HS
markers, and in all cases SL-HS data corroborated the
pairings indicated by maximised allele size agreement data.
Of the homoeologue alignments, only group 5–1 relied on
a single SL-HS locus; however, it was supported by seven al-
lele size matching loci with only two mismatches (Table 3).
Upon integration of all matched homoeologues, the
resulting IM included 823 molecular and morphological
markers identifying 1109 independent loci spanning
1274 cM (Figure 2). The map covered an estimated 97%
of the genome, with mean length of 80 cM and 70
marker loci per linkage group (Table 2). Numbers of
marker loci per linkage group ranged from 44 to 98, and
linkage groups ranged in length from 67 to 93 cM
(Table 2). Differences in observed linkage group length
within each homoeologous pair ranged from 1% for
group 3 up to 21% for group 7. The map was of moder-
ate density, with a mean of 1.2 cM per locus.
Map saturation analysis using mean marker density in

the IM estimated that 82% of the genome was within 1
cM of a marker locus, which increased to 100% at 4 cM.
This is an increase from MP2 and MP1 at 67% and 55%,
respectively, for 1 cM coverage. Substantive gaps of 14
cM on group 1-1 and of 10 cM on group 5-1 were
present in each source population and remained after
the map integration.
Of the 823 markers in the IM, 204 identified loci on

homoeologous groups, including 30% of EST-SSR and
24% of TrGT-SSR primer pairs. A further 43 multi-locus
SSRs mapped to non-homoeologous loci. SSR marker
loci were generally not clustered by sequence source
(Figure 2), suggesting GeneThresher® and EST data are
derived from throughout the genome.
There was no evidence of substantive chromosomal

rearrangements or re-ordering of marker loci between
homoeologues in IM, indicating conservation of homo-
eologous macrosynteny within this disomic tetraploid
(Figure 2). There were, however, minor differences which
may be artefacts of linkage analysis or indicative of local-
ised inversions (Figure 2).

Segregation distortion
Eight percent of loci in MP1 and MP2 showed segrega-
tion distortion, largely restricted to discrete regions of
the genome. The specific site of distortion was generally
population-specific, except groups 3-1 and 4-1 which
showed distortion in both populations (Figure 3). MP2
distortion was derived predominantly from the female
parent and was particularly high with a maximum Chi
square (χ2) probability P-value threshold of (P<0.0001)
in groups 1-2, 4-1 and 5-1 (Figure 3). In contrast, segre-
gation ratios in MP1 were less distorted with a max-
imum P-value threshold of P<0.05, and were derived in
similar proportion from both parents (Figure 3).

In silico genome alignment
The in silico alignment of the IM to assembly version
3.0 of the Medicago truncatula genome revealed 376 hits
at an E-value threshold of 1e-20 for 822 T. repens
mapped marker query sequences. Mean alignment span
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gtrs590a
prs0300a#

gtrs370b
gtrs276xn#%
prs0640-4-1

gtrs551a#
prs0180x#

prs0017f
gtrs283y

prs0166-4-1#
prs0573y

prs0340c#
prs0326c

4-1

prs0373x
prs0124x2#
gtrs721c#
prs0509b
prs0350x
gtrs831-4-2
gtrs980e#
gtrs439a
prs0564d
ats0113-4-2
gtrs336e
gtrs918a
prs0181b
gtrs450xn

gtrs981-4-2

gtrs625-4-2#@
prs0640-4-2
gtrs432xn
gtrs168xn
gtrs283b
prs0494b
prs0160b
gtrs370c
prs0180e#
prs0166b#
gtrs880a
TrPLT#
gtrs383d
prs0029c#%

4-2

prs0373c prs0122d
prs0387x

gtrs479xn gtrs889b
gtrs898a gtrs699c

gtrs721a# prs0583z#%
prs0520x gtrs593xn#%

ats0113e

gtrs858b prs0711x

prs0427-4-1

gtrs874x#
gtrs342e

prs0598x#

gtrs168x#

gtrs0886a

prs0494d
ats0227x

ats0072e

prs0326c

gtrs721a#
prs0520x

gtrs0886a

gtrs715c#
prs0186d

gtrs347-3-2@
gtrs722x1#%
gtrs596d#
prs0089x# prs0357a#
prs0363c gtrs203xn
prs0753z#
prs0100-3-2#% prs0530-3-2

prs0685-3-2
ats0029a#
gtrs271x#%

ats0032x2 prs0276b
prs0643e

prs0010x# gtrs191i
gtrs236y#%
gtrs375y#
gtrs463y#

prs0112x#

prs0550c#
gtrs594-3-2@
prs0240c#
gtrs574a#
prs0504b
prs0521-3-2
gtrs767x# gtrs337f
gtrs795x#
prs0046b#

(A inv)3-1

gtrs843b
gtrs436x

gtrs526c
gtrs595y

prs0504b

prs0046b#

3-2

TrCPS#

gtrs715d#
prs0186-3-1 gtrs843c

gtrs945c#
gtrs436c gtrs876a

gtrs722f#%
gtrs380b

gtrs203e gtrs571a
prs0089b# prs0530d

gtrs568d# gtrs279d
gtrs271b#%

prs0643x
ats0029d#

ats0032x

gtrs654-3-1@

gtrs375a#
gtrs435xn

prs0010a#
prs712d

gtrs759c#%
prs0396d prs0002c

gtrs329x gtrs526x
gtrs183x

prs0738a
gtrs827b#%

prs0465e#
gtrs937xn1#
gtrs202b# gtrs285xn1
gtrs406y# gtrs161e#
gtrs474xn# gtrs466xn#
gtrs489a#
gtrs355x#
prs0344b gtrs303b#%
gtrs338xn gtrs235xn#
prs0731b gtrs250xn#
prs0653b
gtrs488x# gtrs638c
gtrs361xn1 prs0145a#%
prs0353y ats0123c
prs0131b
prs0764-2-2#
ats0126xn#

gtrs839-2-2
gtrs762-2-2
prs0474c
gtrs626xn
gtrs600-2-2@
prs0184b gtrs307j

prs490-2-2
ats0176-2-2#
prs0328-2-2#@

2-1

gtrs886h
TrPHR#

gtrs378b

2-2 (F inv)

ats0073-2-1#@
prs0700b# prs0465c#

prs0628b#%
gtrs701xn# gtrs161a#

gtrs937xn2 gtrs285xn2
gtrs466x# gtrs474d#

gtrs908d
prs0566x gtrs355d#

prs0344a
gtrs990xn prs0596x

gtrs250b#
gtrs456a

gtrs338b#
gtrs361a prs0419b

prs0157b#%
ats0123b# ats0126-2-1#

prs0353a#

prs0321x

prs0682b#%

gtrs839-2-1 gtrs351b

gtrs626-2-1
gtrs254e

ats0176-2-1#

gtrs466x#

gtrs939xn#

gtrs756y

gtrs624-1-2@

gtrs952-1-2@ gtrs812xn#

prs0331-1-2#%
prs0285-1-2@

gtrs290b#%
gtrs274x#%
gtrs334c

gtrs382c
prs0284-1-2#

gtrs242x#%

prs0236d#

gtrs747a#
gtrs385e#
gtrs902d#
gtrs800b#
gtrs851b

gtrs431d#
gtrs711y#

gtrs365x

prs0641a#

gtrs407b
gtrs757xn
prs0632c#
gtrs373b
gtrs912a
gtrs384x#
gtrs766b
gtrs904c
prs0225g#
prs0498a
gtrs368a
gtrs887x2
prs0764b
gtrs708y
gtrs558xn
gtrs545c
prs0144b
gtrs212c

1-2 (E)

gtrs941y
prs0035b#%

gtrs584xn prs0663a#
gtrs385xn#

prs0236-1-1
gtrs671-1-1@

gtrs881x

gtrs431xn#

prs0331-1-1#%
gtrs929a

gtrs322c gtrs239b
gtrs757d gtrs373d

prs0408a#
prs0284b#
prs0225a#

gtrs912e gtrs169e
gtrs334b

gtrs343-1-1@
gtrs508x

gtrs242b#%
gtrs887g gtrs704f#

prs0012x gtrs543xn
gtrs158xn#

gtrs558b

gtrs499x

gtrs616c gtrs331g
gtrs366-1-1@

1-1

gtrs905xn

gtrs322c
gtrs757d

gtrs912e
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prs0513g#

prs0029c#%
prs0790a gtrs967g
gtrs0307a gtrs691c
gtrs241a
TrANR
prs0606x
gtrs140-4-2
prs0525a#
gtrs451a gtrs583-4-2
prs0282b#% gtrs679b
prs0320b prs0379c
TrSHP-8# TrSHP-2#
gtrs150c# ats0003xn
gtrs806b gtrs674xn#
gtrs269y
gtrs538x
prs0666b#%
gtrs742xn
gtrs314a gtrs475a#
prs0612-4-2 gtrs286xn
prs0283x#
gtrs198y
gtrs776b# gtrs886e
gtrs802f
gtrs962xn# gtrs877x
gtrs885a
prs0165-4-2 prs0513g#

prs0326c
gtrs353d
prs0134a
gtrs967x1

gtrs836-4-1@
prs0322b#
prs0008a#
prs0783b
prs0024a
gtrs919xn
prs0073x
gtrs583xn
gtrs339xn
gtrs679xn
gtrs674i#
gtrs502c
TrSTP

prs0648a
prs0411x#
prs0599b
prs0379g
prs0592x

prs0717b#
gtrs196a#%

prs0255-4-1#
gtrs962d#
prs0360a
gtrs802xn
prs0178a
gtrs949a
gtrs885e

prs0513a#

prs0029c#%
prs0790a
gtrs0307a
gtrs241a
TrANR
prs0606x
gtrs140-4-2
prs0525a#
gtrs451a
prs0282b#%
prs0320b
TrSHP-8#
gtrs150c#
gtrs806b
gtrs269y
gtrs538x
prs0666b#%
gtrs742xn
gtrs314a
prs0612-4-2
prs0283x#
gtrs198y
gtrs776b#
gtrs802f
gtrs962xn#
gtrs885a
prs0165-4-2(80)

(83)

gtrs307d
gtrs226b

gtrs967x1

prs00521e#

gtrs822xn prs0024a
gtrs919xn
prs0073x

prs0226x gtrs583xn
prs0282a#% gtrs339xn

gtrs641xn gtrs679xn
gtrs150x# gtrs674i#

gtrs269i gtrs502c
ats0003-4-1 TrSTP

prs0207b#% prs0648a
prs0411x#
prs0599b
prs0379g
prs0592x

gtrs578b prs0717b#
gtrs289b#% gtrs196a#%

prs0255-4-1#
gtrs206c gtrs962d#

prs0360a
gtrs501x gtrs802xn

gtrs776xn# prs0178a
prs0108b# gtrs949a

gtrs257b#% gtrs885e
prs0513a#

prs00521e#

prs0282a#%

gtrs289b#%

prs0046b#

gtrs735y#
gtrs446-3-2@

prs0497b#

gtrs617x# gtrs535xn#
gtrs1333x#
gtrs974b#
gtrs253x1

prs0770x TrLFY#
gtrs689b

prs0461a
gtrs748xn
prs0546a#

gtrs899xn# gtrs1020y
gtrs453c# prs0786a#
prs0673d
gtrs416x1#
prs0306b gtrs760a#
prs0364b gtrs611a#
prs0725a# gtrs646x1#
ats0002xn prs0561x#
prs0751a# prs0595x#
prs0190x# gtrs504a

prs0426c#
prs0202b
prs0200x2
prs0365b#
prs0051a# prs0380c#
prs0467a#%

gtrs311b

gtrs454b

gtrs219b

gtrs159c

gtrs456c
prs0461a
gtrs178y
gtrs300a

gtrs211c

(88)
(89)

gtrs574xn#
prs0497d#

gtrs870xn
gtrs735g# gtrs331h

prs0717b gtrs386a#
prs0377b#

prs0146b
prs0702x#%

gtrs255a
prs0045b#% gtrs301a

prs0473a
TrMIP#

prs0770b
prs0176b# gtrs298b
gtrs456b gtrs0413f

gtrs655-3-1@
prs0786c

prs0526b# prs0461a
prs0021z
prs0713a

prs0561a# gtrs245x#%
prs0687c prs0618b

prs0200x
ats0054x

prs0365y# prs0398c#
prs0380x# prs0079x#

ats0002-3-1 prs0051d#
gtrs646b# gtrs504x

gtrs491xn# gtrs901x#
gtrs453x# gtrs416xn#

gtrs527y

prs0717bgtrs1351b
prs0645d
gtrs141-2-2

gtrs890b# prs0708-2-2

prs0169-2-2

gtrs494a#

gtrs498d
gtrs160a
gtrs1351b
prs0645d

gtrs494a#

(71)
(70)

gtrs156xn

prs0708e
gtrs1351a

ats0005x
prs0343a
gtrs141e

gtrs201b

prs0021d prs0268b#

prs0500b

gtrs162xn

gtrs179-1-2#
gtrs797f

gtrs616b

gtrs376x#%

prs0754-1-2# prs0709-1-2

gtrs524y1#

gtrs259c#%
gtrs564d

gtrs789-1-2@ gtrs187b

gtrs670d#
gtrs859y#

gtrs212c
prs0405b
gtrs878y

prs0234x#
gtrs469x#%
prs0690z1
prs0552b#
prs0214a
gtrs332xn
gtrs853c#
gtrs640d
prs0085x2#
prs0499-1-2
prs0484a#
prs0619a#%
gtrs0331xn
gtrs714c
gtrs553xn

prs0634a
prs0406g#
TrPPDa
gtrs690d
gtrs924c#
gtrs989a#
prs0511xed
gtrs387x# gtrs564d

gtrs185b
prs0762c
gtrs344d
gtrs270b
gtrs857a
gtrs846x
gtrs415a(93)

prs0690-1-1 gtrs179b#
prs0757z

prs0311c
prs0150b

prs0085x# prs0484c#

prs0406x#
prs0384x
gtrs690e
prs0783b

gtrs725y prs0634d
prs0460a# prs0368c#

prs0035x#%
gtrs524y2#

gtrs961c# gtrs409b
prs0642d prs0204f

prs0256a
ats0125-1-1
prs0762x#%

gtrs965-1-1 prs0391c
gtrs191f

gtrs405y# gtrs270xn
gtrs670xn# (87)

TrPPDd

45

50

55

60

65

70

75

80

85

90

prs0562-8-2#%

gtrs938d

prs0715b
gtrs541b#
prs0381x# prs0748c#
gtrs573d gtrs649c#
prs0734-8-2@
prs0568d prs0371b#
prs0687d# prs0562-8-2#%
gtrs353e
ats0131d
gtrs441y2 prs0014x
gtrs213b prs0007x#
TrAlaAT#
prs0146d prs0675c
gtrs171y
gtrs688xn#
prs0600x#
prs0749x#
prs0119e
prs0659a#
gtrs1264x#
gtrs940b gtrs1133c
gtrs273b prs0153b
prs0418c#
gtrs642x gtrs500x2#
gtrs540xn prs0462b
gtrs401x
prs0462z

gtrs352x
prs0361x#%
prs0156a

(B inv)8-1

gtrs938d

prs0715b
gtrs541b#
prs0381x#
gtrs573d
prs0734-8-2@
prs0568d
prs0687d#
gtrs353e
ats0131d
gtrs441y2
gtrs213b
TrAlaAT#
prs0146d
gtrs171y
gtrs688xn#
prs0600x#
prs0749x#
prs0119e
prs0659a#
gtrs1264x#
gtrs940b
gtrs273b
prs0418c#
gtrs642x
gtrs540xn
gtrs401x
prs0462z

gtrs352x
prs0361x#%
prs0156a

8-2 (B inv)

gtrs696d gtrs996xn
gtrs830xn

gtrs589b# gtrs684c
gtrs541d#

gtrs383b prs0568a
prs0616a

prs0562-8-1#
ats0072c

prs0371d#
prs0485b#%

ats0205-8-1 ats0131a
gtrs213c prs0014x

gtrs174a prs0007x#
gtrs452a ats0084b

prs0217a prs0369a
gtrs171e

gtrs623xn gtrs478a
gtrs458b#
gtrs875xn
prs0119b

prs0659x#
ats0153a

Rf-8-1 prs0468a
prs0318c

gtrs1264f#
prs0402c

gtrs500x1#
gtrs886g

gtrs173xn
gtrs540b
gtrs331x
gtrs826a

gtrs371b#%
prs0005-8-1#@

ats0205-8-1

gtrs427-7-2#@

prs0737-7-2#

prs0060-7-2#
gtrs604x
gtrs749d# gtrs502a

gtrs586b

TrRMS5#

prs0489b#%
prs0705a
gtrs319x#%
gtrs241j

gtrs395x# gtrs197y#
gtrs139xn gtrs774y#
prs0543-7-2 prs0326b
prs0161x gtrs394y
prs0435a prs0216a#
prs0386x# gtrs326b
prs0433-7-2
gtrs942b#

ats0070j
ats0006x# gtrs207x
gtrs873d# gtrs916c

gtrs484y#

(C inv)7-1

gtrs427-7-2#@

prs0737-7-2#

prs0060-7-2#
gtrs604x
gtrs749d#

gtrs586b

TrRMS5#

prs0489b#%
prs0705a
gtrs319x#%
gtrs241j

gtrs395x#
gtrs139xn
prs0543-7-2
prs0161x
prs0435a
prs0386x#
prs0433-7-2
gtrs942b#

ats0070j
ats0006x#
gtrs873d#

gtrs484y#

7-2 (C inv)

prs0060-7-1#
prs0737x# TrSEP1#

prs0730-7-1
prs0315b prs0158x#

gtrs238a prs0264-7-1#@
prs0115c#% gtrs502xn

gtrs749b# prs0294x#
prs0394a#

prs0516a

prs0705-7-1 prs0414b

prs0379a# prs0107x#%

gtrs319g#% gtrs241i

gtrs395y# prs0473d#%

prs0490a

gtrs719a
prs0435b gtrs659a

prs0216c#
TrTT12#

prs0637x#
prs0565b#

gtrs641x prs0037a#%
prs0604x# gtrs223xn#

gtrs606x
gtrs873xn#

gtrs536xn gtrs149-7-1@
gtrs184f

7-1

prs0737x#

prs0315b
gtrs238a

prs0115c#%
gtrs749b#

prs0705-7-1

prs0379a#

gtrs319g#%

gtrs395y#

prs0435b

gtrs641x
prs0604x#

gtrs536xn

prs0336-6-2#
prs0332c
prs0545x#
prs0407c prs0188e
prs0153b
prs0136a
prs0480a#%
prs0197d

gtrs374a
gtrs992e
gtrs794c#
gtrs412xn2#
gtrs391c
prs0342-6-2#
prs0295a
prs0251b# gtrs953b
gtrs968a#
prs0732a
gtrs221x

gtrs433x2# gtrs801a
gtrs928y#

prs0682a

gtrs143xn
prs0534g#
ats0186x2 gtrs950xn
prs0290c# prs0712a
gtrs994b prs0129-6-2
ats0066a#

6-1

prs0336-6-2#
prs0332c
prs0545x#
prs0407c
prs0153b
prs0136a
prs0480a#%
prs0197d

gtrs374a
gtrs992e
gtrs794c#
gtrs412xn2#
gtrs391c
prs0342-6-2#
prs0295a
prs0251b#
gtrs968a#
prs0732a
gtrs221x

gtrs433x2#
gtrs928y#

prs0682a

gtrs143xn
prs0534g#
ats0186x2
prs0290c#
gtrs994b
ats0066a#

6-2 (H)

gtrs226c
prs0407f prs0545b#

prs0332-6-1
prs0336-6-1# prs0188c

gtrs194f
prs0279-6-1#

gtrs374xn
prs0607x

prs0157c prs0136b
gtrs992xn prs0197b

gtrs794xn# gtrs412xn1#
gtrs936b

prs0342-6-1#
gtrs391b
prs0295d

gtrs331a
prs0154c

gtrs433x1#
gtrs928x#

gtrs307i
prs0647x

gtrs340a gtrs572c
prs0651-6-1#@

gtrs900xn# gtrs950b
gtrs575x

gtrs931xn gtrs801-6-1

gtrs988xn#

prs0732b
gtrs455c

prs0407f

prs0336-6-1#

gtrs794xn#

gtrs900xn#

gtrs931xn

prs0345xn

prs0443xn#%
gtrs673xn# gtrs175c#
prs0310xn# gtrs167d#
gtrs337b# gtrs871c#%
gtrs354xn#
gtrs480b# gtrs528a#
prs0506c#
gtrs377c# prs0022-5-2#
gtrs724xn# prs0608y#
prs0554c#
gtrs972a gtrs769f
gtrs425x2
prs0479c#
prs0075xn#
gtrs631-5-2#
gtrs723b# prs0779a
gtrs850b#
prs0302d#
gtrs1176a gtrs200b#
gtrs192a gtrs916a
gtrs264x gtrs265x
gtrs661d#
gtrs461x#
gtrs253a#% gtrs591b#

gtrs976-5-2#

gtrs686xn#

(G inv)5-1

prs0345xn

prs0443xn#%
gtrs673xn#
prs0310xn#
gtrs337b#
gtrs354xn#
gtrs480b#
prs0506c#
gtrs377c#
gtrs724xn#
prs0554c#
gtrs972a
gtrs425x2
prs0479c#
prs0075xn#
gtrs631-5-2#
gtrs723b#
gtrs850b#
prs0302d#
gtrs1176a
gtrs192a
gtrs264x
gtrs661d#
gtrs461x#
gtrs253a#%

gtrs976-5-2#

gtrs686xn#

5-2 (G inv)

prs0345d

gtrs287a
gtrs946y# gtrs167x#

gtrs943xn
gtrs1059y#
gtrs612a#

gtrs798-5-1#@ prs0506-5-1#
gtrs175xn#

gtrs480xn# prs0443f#%
prs0608-5-1# prs0305-5-1#

prs0554a# gtrs425x1
prs0022-5-1#

gtrs769xn gtrs377c#
gtrs745b gtrs631c#

gtrs723c#
prs0479-5-1# gtrs340b

prs0302-5-1#
gtrs565xn#

gtrs447a
prs0662-5-1# prs0726b#

gtrs930xn#
gtrs331b

gtrs200x# prs0510-5-1#
gtrs731a

prs0041a#
prs0487b#

gtrs225-5-1
gtrs763xn# gtrs461xn#

gtrs191b
gtrs1113xn

5-1

gtrs946y#

gtrs798-5-1#@

gtrs480xn#
prs0608-5-1#

prs0554a#

gtrs769xn
gtrs745b

prs0479-5-1#

prs0662-5-1#

gtrs200x#

gtrs763xn#
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prs0531-8-2#%

prs0156a
prs0456c#
prs0309b prs0603b#

ats0157a# ats0067a#
ats0202a#

gtrs727x# gtrs779a#
gtrs999xn prs0531-8-2#%
TrVP1#
gtrs555c
gtrs855d gtrs252c
prs0701d
prs0139b
gtrs1176c
gtrs254c
gtrs307g
gtrs359e prs0044x#
prs0683c# prs0646b#
prs0544c ats0121b
gtrs195-8-2@
prs0001x# gtrs732a#
gtrs345a
gtrs609a prs0077a#
gtrs576a gtrs356d
prs0431a# gtrs709c#

prs0156a
prs0456c#
prs0309b

ats0157a#
ats0202a#

gtrs727x#
gtrs999xn
TrVP1#
gtrs555c
gtrs855d
prs0701d
prs0139b
gtrs1176c
gtrs254c
gtrs307g
gtrs359e
prs0683c#
prs0544c
gtrs195-8-2@
prs0001x#
gtrs345a
gtrs609a
gtrs576a
prs0431a#(80)

(86)

prs0005-8-1#@
prs0456a# prs0217e

ats0046b
gtrs678b# ats0041a#

gtrs464a
prs0361a#% gtrs348e#

gtrs292d
gtrs1133d gtrs743-8-1#@
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Figure 2 An integrated linkage map of allotetraploid white clover (2n=4x=32) derived from two independent mapping populations.
The integrated map consists of 1109 independent loci including 427 loci from 308 EST-SSRs, 47 loci from 31 genomic SSRs, 615 loci from 465
GeneThresher®- derived SSRs, 19 loci from 18 candidate genes, and the morphological locus Rf. The eight homoeologous pairs of linkage groups
have been aligned and orientated with Medicago truncatula nomenclature and labelled 1–8. Homoeologues within each pair are designated -1
and -2 based on alignment to homoeologues described in Barrett et al. [20]. For ease of comparison with previous literature, the Barrett et al. [20]
A-H nomenclature and relative alignment (inv=inverted) is provided in brackets. Estimated genetic distance (cM) is represented by the scale
below the map, and length (cM) of each homoeologue is indicated in brackets below each group. Homoeologous loci are connected by lines
between homoeologue pairs. Loci prefixes ats, prs, gtrs and Tr denote genomic-, EST-, white clover GeneThresher®-SSRs, and candidate genes,
respectively. Loci suffixes a-i, x, xn, y, and z represent locus configurations of individual alleles, (ab×cd), (ab×cd) with at least one null allele,
(ab×ac), and (ab×ab), respectively. Loci labelled in bold and bold italics@ denote loci common to both MP1 and MP2 used for map integration,
and single locus homoeologue-specific loci for homoeologue identification and integration, respectively. Additional suffixes # and #% represent
loci with homology to the Medicago truncatula reference genome that align to the equivalent M. truncatula chromosome, or to a different
chromosome, respectively. Regions of homoeologous groups 2 and 6 filled by cross hatching or solid black represent the regions of loci with
homology to M. truncatula chromosomes 2 or 6, respectively.
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for the 376 hits was 242 bp with a mean E-value of 4.4e-22.
There were similar values for ESTs and TrGT se-
quences. Inspection revealed 81% of the aligned se-
quences followed a linear pattern of macrosyntenic
alignment with consistent coverage of M. truncatula hits
across most of the T. repens genome (Figure 4). The
remaining 19% were more widely scattered (Figure 4).
The alignment supports relating the T. repens nomencla-
ture of Barrett et al. [20] with M. truncatula (Mt) groups
as follows: Mt-1 = E with 39 hits; Mt-3 = A with 49 hits;
Mt-4 = D with 34 hits; Mt-5 = G with 53 hits; Mt-7 = C
Figure 3 Segregation distortion patterns in two independent
white clover F1 mapping populations. Data are -log10P for female
(♀)-derived alleles; log10P value for male (♂)-derived alleles for white
clover mapping populations MP1 (dashed line) and MP2 (solid line).
Distorted loci were declared at P<0.05 (log10P>±1.3) and aligned as
a proportion of distance along each integrated linkage group for
each of the two homoeologues (H-1, H-2), noting that -1 and -2 are
arbitrary distinctions and do not relate to the progenitor genomes O
and P’ of T. occidentale and T. pallescens, respectively. The Self-
Incompatibility (S) locus [24] is on the top end of group 1, and may
underlie the severe male-derived distortion observed in MP2 on
that group.
with 37 hits; and Mt-8 = B with 50 hits. Groups 3, 4, 5, 7,
and 8 as presented in Barrett et al. [20] were inverted in
T. repens relative to M. truncatula; in Figures 2, 4 and 3
and Additional file 3 they have been matched with the
M. truncatula orientation. Relative to M. truncatula, there
may be short inversions within white clover groups 1, 4
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Figure 4 A matrix plot of synteny assessed between
allotetraploid Trifolium repens and diploid Medicago truncatula
genomes. A total of 376 T. repens sequences among 822 queried
showed sequence homology to M. truncatula. SSR-containing
T. repens GeneThresher® (purple dots), EST (green dots), and
genomic (black dots) sequences and candidate genes (red Δ) were
ordered according to proportion of distance along merged T. repens
homoeologue linkage maps (1–8) then aligned by BLAST analysis
with homologous (E-value threshold of 1e-20) sequences in the
Medicago truncatula genome (v 3.0) which were ordered by
proportion of distance along M. truncatula pseudomolecules (1–8).
Candidate genes are in the order of the first 15 listed in Table 1. For
ease of comparison with previous T. repens linkage map literature,
the Barrett et al. [20] A-H nomenclature and relative alignment
(inv=inverted) is provided in brackets.
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and 8; however these may be artefacts of constraints in
linkage analysis or genome assembly.
Trifolium repens groups F and H, in the Barrett et al.

[20] nomenclature, revealed a complex relationship with
the M. truncatula genome. Group F had 22 hits on Mt-2
and three on Mt-6; group H had 16 hits on Mt-2 and six
on Mt-6. Moreover, group H had an even distribution of
in silico hits to M. truncatula along the length of the
group (Figure 2, Group 6) whereas group F had poor in
silico alignment to M. truncatula with large gaps
flanking loci marked by prs328 and ats176 accounting
for 47% of group F (Figure 2, Group 2). This was the
only T. repens linkage group with large regions with no
in silico alignment to M. truncatula. The segment (35%)
at the top of group F (Figure 2; 2-1, 2-2) had a dense
contiguous alignment spanning the initial 28% of Mt-2
(Figure 4). The bottom segment of group F (18%)
contained three hits located in the top segment of Mt-6.
Most of group H (66%) (Figure 2; 6-1, 6-2) aligned with
and spanned the bottom half of the Mt-2 pseu-
domolecule (Figures 2 and 4). There was an approxi-
mately 5 cM gap between loci prs251 and prs342
(Figure 2) indicating a translocation where the remain-
der of H (27%) aligned with Mt-6. This alignment com-
prised three contiguous hits covering the top 14% of Mt-
6 then a separate set of three contiguous hits that
aligned with the bottom segment of Mt-6 (Figure 4).

Discussion
In the first linkage map integration across independent
mapping populations in white clover, we present a com-
prehensive analysis of the white clover genome, based
on SSR and candidate gene markers aligned to the
Medicago genome, with a set of mapped molecular
markers made available for the research community.
This map provides markers enabling homoeologue
matching among populations, and thoroughly resolves
all linkage groups. Furthermore, the integrated map is a
robust composite assessment of the white clover gen-
ome, being derived from component linkage maps that
reveal very similar data in terms of marker order, gen-
ome arrangement and map size; despite being based on
dissimilar populations and distinct marker sources.
This work complements prior genetic linkage maps
[19-22], recent trait-focused studies [24-26], and en-
riches prior macrosyntenic alignments of T. repens with
Medicago [22,34,35].

Microsatellite discovery
This integrated map is anchored by gene-targeted SSR
markers mined from a white clover GeneThresher®
(TrGT) genomic DNA sequence and from ESTs. EST-
derived markers exhibit less polymorphism, but have a
higher probability of being directly linked to a causative
gene than genomic SSRs [3]. Repeat number in EST-
SSRs is usually low and a predominance of trinucleotide
motifs is explained by changes in other common motif
lengths causing frame shifts disrupting coding sequence
[3,55]. The white clover EST-SSR source had a prepon-
derance of trinucleotide motifs and a mode of four re-
peats per array [20], whereas the methyl-filtered TrGT
source was predominately dinucleotides motifs, with a
mode of eight repeats. Only 71% of EST-derived SSRs
produced PCR products [20], compared with 86% [29]
and 92% from array targeted white clover genomic li-
braries [27] and from TrGT-derived SSRs in this study.
Intron presence may affect the efficiency of generating
amplicons from expressed sequence sourced SSRs, as
well as influencing the observed versus predicted
amplicon size. Mean observed amplicon size of white
clover EST-derived SSRs was 128% of the size predicted
in silico [20], compared with 103% for TrGT-derived
SSRs. Reduced amplification efficiency attributed to M13
(-21) primer-based fluorophore addition [56] has been
demonstrated [57,58], suggesting that more than 92% of
the TrGT-derived SSR primer pairs are viable.
Literature on efficiency of SSR mining from

GeneThresher® methyl-filtered sequence is scarce. Gill
and co-authors [59] reported 0.8% of sequenced
GeneThresher® clones from perennial ryegrass con-
tained SSR arrays. This contrasts with 4.4% of white
clover sequences in the present study, and 7% of EST-
derived sequences in Barrett et al. [20]. A species-
related difference in array density has not been noted in
other libraries, and may be a unique feature of the
GeneThresher® system interaction with genome size, or
other factors. The SSR array density in white clover
GeneThresher® and EST sequences are both higher than
in a genomic sequence of BAC end surveys [28].
While BLAST results suggest methyl-filtration en-

riched for genic regions of the white clover genome,
61% of the SSRs were dinucleotide motif repeats. These
values agree with genomic DNA surveys in which
48-67% of SSRs found among a range of species are di-
nucleotides [55]. Inspection of the TrGT database re-
vealed most dinucleotide motif SSRs to be near but
outside open reading frames (data not presented) and
therefore unlikely to disrupt coding sequences with
changes in array length. The increase in SSR array
length and polymorphism detected by TrGT-SSRs rela-
tive to EST-SSRs also suggests they are from non-
coding sequence.
While SSR polymorphism reflects the breeding system

and diversity of the subject species, previous studies
have shown that genomic SSRs are more informative
than EST-SSRs [13,14]. This is supported by the contrast
of white clover TrGT-SSRs with the EST-SSR resource
of Barrett et al. [20] where a greater proportion of
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TrGT-SSRs were polymorphic, and more alleles per
polymorphic primer were identified.

Linkage mapping and multi-population map integration
Development of this integrated genetic linkage map re-
lied on parental consensus maps from two unrelated, in-
dependent full-sib populations. Furthermore, while these
maps were based predominantly on discrete marker
sources and MP2 had a greater number of marker loci
(49%) and density (39%) relative to MP1, both maps re-
vealed largely similar views of the genome. There was
only a 10% increase in map length from 1144 cM to
1264 cM for parental consensus maps of MP1 and MP2,
respectively. This indicates most of the recombinogenic
genome is mapped and was supported by the high gen-
ome coverage calculations, which improved after map
integration (Table 2). The IM increases estimated gen-
ome coverage to 97%, relative to the prior 95% (MP2)
based mainly on GeneThresher®-derived SSRs, 94%
(MP1) by Barrett et al. [20] using EST-SSRs and 87% by
Zhang et al. [22] which relied primarily on red clover
(T. pratense) SSRs. Particular features of MP2 and the
integrated map are improved resolution of group 5
(formerly G) and extension of homoeologous group 2
(formerly F) as compared to Barrett et al. [20]. Both
TrGT and EST marker sets show generalised distribu-
tion through the genetic linkage space, indicating both
are suitable sources for further marker enrichment of
targeted map regions.
Further evidence of the robustness of the assessment

of genomic structure provided by these linkage analyses
is the consistency of map length and the relative posi-
tions of joining loci between the two source maps
presented here, as well as unpublished maps developed
in our laboratory for both T. repens and the diploid pro-
genitor, T. occidentale. There are no markers in common
between IM and the incomplete genome map of Jones
et al. [21], but the trait-focused parental maps of Casey
et al. [24] and Wang et al. [26] exhibit regions of general
marker order alignment with ‘ats’ and ‘prs’ markers com-
mon to IM. Map length is more difficult to compare due
to the partial genome coverage of those maps. In con-
trast, comparative analysis and alignment to the map
presented by Zhang et al. [22] of ‘ats’ and ‘prs’ markers
in common with IM, indicates significant differences in
marker placement both within and among linkage
groups. Furthermore, the Zhang et al. [22] map is distin-
guished by a 47% increase in map length to 1877 cM,
relative to the 1274 cM of IM. The recent white clover
linkage map [19], based on a combination of white clo-
ver, red clover and Medicago truncatula-derived SSRs,
also exhibits a marked inflation (97%) in total map
length to 2511 cM relative to IM. Comparative align-
ment based on common ‘ats’ and prs’ markers also
indicates regions on that map with notable divergence in
marker placement relative to IM, particularly linkage
groups 2a and 2b [19].
Care was taken in matching homoeologues between the

consensus maps of MP1 and MP2 in the map integration,
including use of homoeologue-specific SSR markers and
allele size matching (Table 3). There is, however, insuffi-
cient information in marker and sequence resources to
accurately assign linkage groups from this map to pro-
genitor genomes identified by Williams and colleagues
[10] and tentatively annotated O and P’ [17]. As additional
sequence resources become available, this integrated map
and marker resource is expected to accelerate the process
of linkage group assignment into homoeologous sets,
matching sets to progenitor genomes, and exploration of
genome evolution within the genus Trifolium.

Candidate genes
Mapping candidate genes places genes putatively associ-
ated with traits of interest on linkage maps. These mapped
genes may provide functional markers associated with re-
gions of the genome with a significant effect on trait
phenotype, as has been shown in Medicago [60], and may
be deployed in marker-assisted breeding. Markers derived
from two introns of the SHATTERPROOF9 gene (TrSHP-
2 and TrSHP-8) provided an internal control for the intron
polymorphism methodology for candidate gene mapping,
and mapped to the same locus (Table 1; Additional file 3;
Figure 2). While TrPPD was the only candidate gene to be
mapped in both homoeologues, many of the other genes
exhibited additional amplicons that were not informative
in the mapping population suggesting they may have loci
elsewhere in the genome, including other homoeologues
and paralogues. Placement of candidate genes also enables
comparative mapping, for example, LEAFY (marker
TrLFY; Table 1) maps to a locus at similar positions
in group 3 of our integrated Trifolium map and in
Medicago [60].

Segregation distortion
Segregation distortion was confined to discrete regions
of the genome in both MP1 and MP2, most of which
were population-specific (Figure 3) and characterised by
flanking markers exhibiting progressive distortion decay
with distance from the peak. Zhang et al. [22] also iden-
tified discrete regions of segregation distortion, although
several individual distorted loci were closely flanked by
non-distorted loci without the characteristic distortion
decay. In contrast, Isobe et al. [19] documented segrega-
tion distortion across much of the white clover genome.
It is difficult to accurately align regions of segregation
distortion in the parental consensus maps of MP1 and
MP2 with the maps of Zhang et al. [22] and Isobe et al.
[19] due to discrepancies in marker order where there
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are SSRs in common. Alignment with the map of Casey
et al. [24], in which the white clover S locus that regu-
lates self-incompatibility was mapped to the top of a
homoeologue of group 1, was straightforward as it con-
tains marker loci in common order. In particular, a sin-
gle locus homoeologue-specific SSR (prs285) near the S
locus [24] enables homoeologue matching with MP2,
and places the S locus at the top of MP2 1-2, which also
exhibits strong segregation distortion in the same region
(Figure 3). This highlights the value of sharing marker
resources to facilitate correspondence of marker and
phenotype information across populations, and localises
the S locus to T. repens LG 1-2. MP1 has no segregation
distortion on this homoeologue which may be explained
by MP1 parents having compatible S alleles at this locus.
Both MP1 and MP2 share a region of segregation distor-
tion on 4-1 and while white clover is regarded as having
a single locus self-incompatibility system [61], the distribu-
tion of distortion raises the question of what other loci
may influence segregation in these conditions for this
species.

In Silico genome alignment
The in silico alignment between T. repens and M.
truncatula revealed a general case of co-linearity, and iden-
tified an inter-chromosomal rearrangement where Mt-2
and -6 were split across Tr-2 and -6, as first described by
Griffiths et al. [35]. Furthermore, orientation of T. repens
relative to M. truncatula was clear in which groups 2 (F), 3
(A), 4 (D), 5 (G), 7 (C), and 8 (B), as oriented in Barrett
et al. [20], were inverted relative to M. truncatula and
reflected that of Griffiths et al. [35]. Groups 1 (E) and 6 (H)
were correctly orientated relative to M. truncatula. Com-
parison with M. truncatula suggests short inversions com-
pared with white clover groups 1, 4 and 8; however it is not
known if these are authentic or are artefacts of constraints
in linkage analysis or genome assembly. This is also the first
in silico alignment of Tr-5 (G), based on the improved
marker order and numbers in the integrated map com-
pared with Barrett et al. [20]. Tr-2 (F) was the only
T. repens linkage group with large regions with no in silico
alignment to M. truncatula. This suggests Tr-2 either has
large regions without homology to M. truncatula, or re-
gions of M. truncatula with homology to actively tran-
scribed regions of the T. repens genome have yet to be
sequenced. Candidate genes, however, matched expected
macrosyntenic sites between Trifolium and Medicago in all
cases, including the group 2/6 translocation as annotated.
When considered in totality, this in silico comparative ana-
lysis confirms a general state of co-linearity between T.
repens and M. truncatula. This extent of alignment sug-
gests the Medicago genome can be used as a reference to
estimate genome locations of unmapped sequence, and is
further supported by evidence of micro co-linearity [12].
While the split of Mt-2 across Tr-2 and −6 was clear, de-
termining which of T. repens groups 2 (F) and 6 (H) had
greatest co-linearity with Mt-2 was less so. Our data sug-
gest that T. repens group H aligns more extensively with
Mt-2, although this may only be resolved after develop-
ment and alignment with a T. repens genome assembly.
For consistency, however, the published [34] syntenic as-
signments of Mt-2 = F and Mt-6 = H are maintained. This
split of Medicago group 2 across T. repens groups 2 (F)
and 6 (H) is a key feature of the in silico alignment.
According to a phylogeny of the legume vicioid clade [9],
three general groupings, one comprising Medicago and
Ononis, another Trifolium and Melilotus, and another
Pisum, Lathyrus, and Vicia, had diverged from a more an-
cestral Cicer arietinum (Chickpea). Detailed comparative
analysis of members of these groupings with Medicago
shows the group 2 split is a feature of T. repens,Vicia faba
[62], and Pisum sativum [63]. In contrast, there is no such
split between Medicago and Cicer arietinum [64], indicat-
ing that Medicago group 2 may represent the ancestral
condition that has since undergone rearrangement during
evolution of derived phyla including Trifolium.
In contrast to Mt-2 and the other M. truncatula

pseudomolecules, determining alignment of Mt-6 with
T. repens was more difficult. This was due to the paucity
of matches between Mt-6 and T. repens; a total of 10
hits compared to a mean of 52 hits each for other
Medicago groups aligned with T. repens. While Mt-6 has
approximately half the sequence data of other Medicago
groups (http://www.medicago.org/genome/downloads/
Mt3/), the very low number of in silico matches between
Mt-6 and multiple T. repens sequence sources is not a
surprise for several reasons. Mt-6 is atypical of the other
Mt chromosomes as it contains an over-representation
of resistance gene analogues and leucine rich repeats
[65], the greatest proportion of heterochromatin [66],
and a corresponding under-representation of randomly
selected and mapped EST markers [65,67]. Furthermore,
comparative alignment with other legumes reveals Mt-6
to have reduced marker-based synteny [67]. Since the T.
repens alignment with M. truncatula was based predom-
inantly on exome-derived sequence, reduced synteny
with the low gene density Mt-6 is not unexpected and
may explain the in silico alignment gap identified in
Tr-2. The full relationship with Mt-6 may only be re-
solved after development and alignment with a T. repens
genome assembly.
The in silico alignment in this and a previous study

[35], used an E-value threshold of 1e-20 for identifying
significant BLASTN matches. Reducing stringency to
<1e-5 in our analysis revealed numerous spurious
matches, often to multiple regions in the Medicago gen-
ome (data not shown). A similar study by George et al.
[34], using a subset of the data from Griffiths et al. [35],

http://www.medicago.org/genome/downloads/Mt3/
http://www.medicago.org/genome/downloads/Mt3/
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derived an in silico M. truncatula:T. repens alignment at
the <1e-5 threshold. While the general patterns of align-
ment were conserved, the reduced data set and low
threshold may have prevented George et al. [34] from
determining orientation of T. repens relative to M.
truncatula for groups F (Mt-2), G (Mt-5), and H (Mt-6).
Evidence was also presented for a translocation of a ter-
minal segment of Mt-1 to Mt-3 [34], however there is
no evidence for this translocation in the current or pre-
vious studies [35], which are augmented significantly by
the full EST-SSR dataset, and TrGT-SSRs. Furthermore,
there is no evidence in our study of a general breakdown
in group 1 synteny as there is a well-supported macro-
syntenic relationship along the length of the groups,
with a short inversion of Tr-1 relative to Mt-1 at the top
end that may be an artefact of linkage analysis. Again,
the full relationship between these two species may only
be resolved after development and alignment of a
T. repens genome assembly with Medicago and other
legume genomes.

Conclusions
This is the first report of integration of independent
linkage maps in white clover, and adds to the literature
on the utility of methyl filtered GeneThresher®-derived
microsatellite markers for linkage map development. A
GeneThresher® methyl-filtered gene-targeted SSR marker
linkage map (MP2) was generated and merged with an
earlier EST-SSR-based consensus genetic map of an in-
dependent population (MP1; [20]). Integration required
development of homoeologue identifiers to generate the
first multi-population integrated map of this disomic
tetraploid genome. The integrated map (IM) includes
1109 loci with a total genetic length of 1274 cM, cover-
ing an estimated 97% of the genome, and a moderate
density of one locus every 1.2 cM. Despite being derived
from disparate populations and distinct marker sources,
the component maps (MP1 and MP2), and the subse-
quent IM, provide a consistent and comprehensive view
of the white clover genome in terms of marker order
and linkage group size. The mapped marker resource,
particularly the homoeologue identifiers, provides a ve-
hicle for aligning mapping and quantitative trait loci
(QTL) among the forage legume research community, as
shown by the ability to align the S self-incompatibility
locus described by Casey et al. [24] with a region of seg-
regation distortion in MP2. In silico comparative analysis
at an E-value threshold of 1e-20 revealed a high degree of
co-linearity with the Medicago truncatula genome, and a
translocation between T. repens groups 2 and 6 relative
to M. truncatula. This provides a platform for compara-
tive mapping and utilising the M. truncatula genome to
assist in clover trait dissection and candidate gene
discovery. This work will enable ongoing research in
genetic architecture of traits, comparative genetics, gen-
omics, and marker-aided breeding using a mapped
marker resource cross-validated in independent mapping
populations and aligned to a model forage legume
genome.

Methods
Plant material
Two white clover (Trifolium repens L.) mapping popula-
tions were used for the development of the integrated
genetic linkage map. Each population was a sample of F1
full-sib progeny derived from a hand-pollinated reciprocal
pair cross of phenotypically divergent and highly heterozy-
gous genotypes, following a double pseudo-testcross strat-
egy [68]. MP1, the first population (n=92), was used
previously to map EST-derived SSRs [20], and was a cross
between genotypes ‘6525.5’, a parent of the cultivar ‘Grass-
lands Sustain’, and ‘364.7’, an individual from a nematode
resistance recurrent selection programme [20]. The sec-
ond population (n=184), designated MP2, was used for
linkage analysis to place GeneThresher®-derived genomic
SSRs. MP2 was a cross between genotypes ‘20161.21’, a de-
rivative of a bi-parental cross of a genotype from ‘Grass-
lands Pitau’ and an experimental line, and ‘21125.DC’, a
derivative of germplasm sourced in the former Soviet
Union. Parent 20161.21 carries the Red Fleck allele at the
Rf locus [25,69,70], whereas 21125.DC does not exhibit
any red flecking. Plants were grown in pots, from which
unexpanded trifoliate leaf tissue was harvested. Genomic
DNA was purified by an extraction step using the Plant
DNAzol system (Invitrogen Corporation, USA) followed
by purification and elution from DNA binding columns
supplied with the DNeasy extraction kit (Qiagen, USA).
Purified genomic DNA was quantitated fluorometrically
using Hoechst 33258 DNA-specific dye [71].

SSR marker discovery
Development of EST-SSR and genomic SSR markers with
‘prs’ and ‘ats’ prefixes, respectively, is previously described
[20]. White clover SSRs with ‘gtrs’ prefixes were developed
from a Trifolium repens GeneThresher® (TrGT) database
of genomic DNA sequence enriched for transcriptionally
active genome regions using GeneThresher® methylation-
filtering technology (Orion Genomics LLC, USA). The
TrGT database was developed using DNA from individ-
uals of the white clover cultivar ‘Grasslands Huia’. All
TrGT sequences and their contigs were screened for all
permutations of di-, tri-, tetra-, penta-, and hexanucleotide
SSR repeat motifs using established methods [20]. Screen-
ing parameters included exclusion of dinucleotide motif
arrays with fewer than six repeats, and fewer than five re-
peats for the other motif classes.
Primers for SSR arrays were designed from the TrGT

singleton database to ensure non-chimaeric source
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sequence and negate any contig assignment errors. Primer
design parameters were 20–27 nucleotides, expected
amplicon length 95–395 bp, and Tm of 60°C. Primer de-
sign was automated in Primer3 [72]. Sequences with phred
scores <50 [73] were excluded. Redundancy reduction
using in silico PCR and BLAST analysis against the TrGT
database prevented retention of multiple primer pairs for
a single sequence or legitimate members of the same
contig. SSR primer pairs were synthesised (Integrated
DNA Technologies, Coralville, IA, USA) with modifica-
tions including 5’ M13(-21) tail universal priming site [56]
on forward primers, and 5’-GTTTCTT-3’ sequence on re-
verse primers [74] as described by Barrett et al. [20].
Primers were evaluated for amplification and amplicon
size in standard conditions [20].

Candidate gene markers
Gene orthologues with annotation indicative of interaction
with key traits of interest including root morphology,
vegetative attributes, flowering and seed production, me-
tabolite pathways, and biotic and abiotic stresses were se-
lected for marker development. Either SSR, intron length,
or SNP polymorphism were used to map each candidate
gene (CG) marker. Orthologues identified in clover cDNA
and TrGT sequence databases were screened for SSR mo-
tifs as described. If these motifs were absent or mono-
morphic, exon-anchored primers were designed to assay
for length polymorphism. Intron/exon boundaries were
identified by alignment of clover or legume orthologue
cDNA with clover genomic sequence orthologues, or pub-
licly available genomic legume databases such as M.
truncatula or Lotus japonicus genomic sequence using the
EMBOSS (European Molecular Biology Open Software
Suite) est2genome programme. Primers were designed
with a target product length of 100 to 400bp suitable for
resolution by capillary electrophoresis, 5’ and 3’ modified
as described by Barrett et al. [20] and synthesised (Inte-
grated DNATechnologies, Coralville, IA, USA).
The anthocyanin reductase (ANR) gene sequence

contained no SSRs or intron length polymorphisms
and was mapped using sequence variation. A region
of ~1000 bp spanning Exon1-Intron1-Exon 2 of the
ANR gene was amplified in MP2 parents, cloned and se-
quenced using Big-Dye (Version 3.1) chemistry (Applied
Biosystems, Foster City, CA, USA) and compared using
Alignx (Invitrogen Corporation, Carlsbad, CA, USA). Se-
quences were sorted into homoeologues based on fea-
tures specific to the homoeologue most similar to that
of T. occidentale, enabling SNP identification. Primer
pairs designed for SNP allele-specific PCR [75] were
synthesised (Integrated DNA Technologies, Coralville,
IA, USA), products amplified and visualised by ethidium
bromide-stained agarose gel electrophoresis and scored
for presence/absence.
SSR, candidate gene and morphological marker
genotyping
The incidence of polymorphism in TrGT-SSRs and can-
didate gene markers was assessed using established assay
methods [20] in a white clover genotype panel com-
prised of MP2 parents and a random sample of six MP2
F1 progeny. Informative TrGT-SSR markers were assayed
in 184 MP2 F1 progeny. To provide loci in common for
integration of the MP1 and MP2 parental consensus
maps, a set of EST-SSRs mapped in MP1 [20] were
assayed in a random subset of 92 individuals from MP2,
and a set of TrGT-SSRs mapped in MP2 were assayed in
MP1. CG markers were assayed across the subset of 92
MP2 individuals. The morphological marker Rf locus
was assayed as a presence/absence of the Red Fleck
phenotype among 184 MP2 F1 progeny.

Linkage mapping
Genetic linkage analysis and parental consensus map es-
timation for MP2 used JoinMap® 3.0 software [76]
(http://www.kyazma.nl). A loci grouping threshold of
LOD≥8 was used with default locus ordering parameters.
Estimates of genetic distance were corrected with the
Kosambi mapping function. Loci exhibiting significant
(P<0.05) segregation distortion were retained for initial
map estimation, and were removed during locus order-
ing only if they exhibited distortion patterns incongru-
ous with flanking loci. SSR-derived single parent maps
were estimated and merged to form a bi-parental con-
sensus map as described [20] with the nomenclature of
George et al. [34]. Final marker order and map estima-
tion was based on multiple ordering iterations and
marker combinations until all loci were ordered in the
second round analysis. Candidate gene orthologues and
EST-derived SSRs were subsequently placed on the
TrGT-SSR map. Linkage maps were visualised using
MapChart 2.2 software [77].

Multi-population parental consensus Map integration
Development of a white clover integrated linkage map
required matching and alignment of homoeologues be-
tween populations. Homoeologue matching was based
on multiple lines of evidence, the strongest being place-
ment of single locus homoeologue-specific (SL-HS) SSR
markers. Putative SL-HS markers were identified from
SSRs with single locus segregation patterns after amplifi-
cation and mapping in MP2. These markers were further
screened against a white clover panel of 16 diverse geno-
types including an individual each from cultivars ‘Alice’,
‘Avoca’, ‘Chieftain’, ‘Dacia’, ‘Grasslands Demand’, ‘Grass-
lands Tahora’, ‘Kotare’, ‘Quest’, and ecotype crosses A1 16/
4 (Algeria), A1 28/1 (Algeria), GA 10 (Northern Europe),
PxML 6 (Eastern Europe), TR 96–3 (Eastern Europe)
and Wab 5 (Western Europe), and the two parents of

http://www.kyazma.nl/
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MP2. SSRs that amplified a maximum of two alleles per
individual across the entire panel were designated SL-HS.
These SL-HS SSRs were also mapped in MP1 to provide
homoeologue-specific joining loci in both MP1 and MP2.
Supplementary evidence for inter-population homoeologue
matching was based on allele size commonality of joining
(anchor) loci placed in both populations at minimum den-
sity of <50 cM per joining locus. For some loci, allele size
was homoeologue-specific and was used to inform align-
ment between populations.
Homoeologue match assignment was achieved by se-

quentially aligning homoeologues from MP1 (eg. 1-1)
with the two homoeologue options from MP2 (eg 1-1
and 1-2). Linkage groups of the same homoeologue in
different populations were then combined for map inte-
gration by matching nomenclature of joining loci and
using the 'Combine Groups for Map Integration' func-
tion of JoinMap® 3.0 at default parameters [76,78,79].

Segregation distortion
Linkage map integration and homoeologue alignment
enabled comparison of segregation distortion between
MP1 and MP2. Probabilities from Chi square (χ2) tests
of segregation ratios against expected ratios of ordered
markers were derived [76]. To visualise segregation dis-
tortion in MP1 and MP2, P-value thresholds (P<0.05,
<0.01, <0.005, <0.001, <0.0005, <0.0001) for each marker
locus were transformed by –log10 for alleles derived
from the female parent (MP1, 6525.5; MP2, 21125.DC)
or log10 for alleles derived from male parent (MP1,
364.7; MP2, 20161.21), and aligned with marker position
as a proportion of total length for each integrated link-
age group.

Genome length and coverage
The expected genome length based on the parental con-
sensus MP1 and MP2 and the Integrated Map datasets
was estimated as described in Method 4 [53], assuming
a random distribution of markers. Genome coverage was
derived from the expected and observed genome length
according to Sekino and Hara [54], and map saturation
was calculated as described by Fishman et al. [80].

In silico genome alignment
The integrated white clover genetic linkage map and the
Medicago truncatula genome sequence were aligned.
White clover homoeologue pairs from the integrated map
were conflated to form eight homoeologous groups with
marker locus positions standardised as a proportion of dis-
tance along each linkage group. Sequences harbouring the
SSR arrays were trimmed to open reading frame regions
of the TrGT data, and to remove 5’ and 3’ untranslated
regions from the ESTs. The remaining sequence was
then aligned against M. truncatula Genome Assembly
Mt v.3.0 (http://www.medicago.org/genome/downloads/
Mt3/) by BLAST analysis with an expect value (E-value)
exclusion threshold of 1e-20 and a maximum of five hits in
the M. truncatula genome. M. truncatula physical posi-
tions were standardised as the proportion of distance along
the pseudomolecule for each hit. The strongest hit was
retained and plotted against the normalised white clover
genetic linkage map locations. Candidate genes mapped in
white clover were assessed individually by BLAST for
orthologue location in the M. truncatula assembly.
Additional files

Additional file 1: Tabulated white clover GeneThresher®-derived
‘gtrs’ (n=465) and genomic ‘ats’ (n=31) SSR marker and locus
summary including primers and sequence identifiers. SSR name refers
to the marker and single locus homeologue-specific markers are denoted
with an @ suffix; LG = Linkage group; cM = genetic distance along on linkage
group in centimorgans; Type refers to repeat motif size – di=dinucleotide, tri
= trinucleotide, tetra = tetranucleotide, penta = pentanucleotide, hexa =
hexanucleotide; Motif = repeat motif; Repeats = number of times the motif
was repeated in the source SSR array; eSize (bp) = predicted amplicon size
(base pairs) based on in silico data; Forward and Reverse primers identify the
primers flanking the SSR used for PCR amplification; and GeneThresher®
Sequence Identifier refers to the unique code of the GeneThresher® sequence
(Additional file 2) harbouring the mapped SSR.

Additional file 2: GeneThresher® sequences in FASTA format
harbouring mapped SSRs. GeneThresher® sequence identifiers
correspond with those detailed in Additional file 1.

Additional file 3: A white clover genetic linkage map of F1
population MP2 (21125.DC×20161.21). The linkage map of MP2
contains 733 independent loci including 87 loci from 69 EST-SSRs, 16 loci
from 10 genomic SSRs, 608 loci from 465 white clover GeneThresher®-
derived SSRs, 21 loci from 19 candidate gene markers, and the
morphological locus Rf. The eight homoeologous pairs of linkage groups
have been aligned and orientated with Medicago truncatula and labelled
1–8, and homoeologues within each pair are designated -1 and -2 based
on alignment to homoeologues described in Barrett et al. [20]. For ease
of comparison with previous literature, the Barrett et al. [20] A-H
nomenclature and relative alignment (inv = inverted) is provided in
brackets. Genetic length (cM) is represented by the scale below the map,
and length (cM) of each homoeologue is indicated in brackets below
each group. Homoeologous loci are connected by lines between the two
homoeologues. Loci prefixes ats, prs, gtrs and Tr denote genomic-, EST-,
white clover GeneThresher®-SSRs, and candidate genes, respectively. Loci
suffixes a-i, x, xn, y, and z represent locus alleles, (ab×cd) loci, (ab×cd) loci
with at least one null allele, (ab×ac) loci, and (ab×ab) loci, respectively.
Loci in bold and bold italics@ denote loci common to both MP1 and
MP2 used for map integration, and single locus homoeologue-specific
loci for homoeologue identification and integration, respectively.
Additional suffixes # and #% represent loci with homology to the
Medicago truncatula reference genome that either align to the equivalent
M. truncatula chromosome, or to a different chromosome, respectively.
Regions of homoeologous groups 2 and 6 filled by cross hatching or
solid black represent the regions of loci with homology to M. truncatula
chromosomes 2 and 6, respectively.

Additional file 4: Tabulated single locus homoeologue-specific SSRs
in white clover. SSR name refers to the marker; LG = Linkage group;
cM = genetic distance along on linkage group in centimorgans; Type
refers to repeat motif size – di=dinucleotide, tri = trinucleotide, tetra =
tetranucleotide, penta = pentanucleotide, hexa = hexanucleotide; Motif =
repeat motif; Repeats = number of times the motif was repeated in the
source SSR array; eSize (bp) = predicted amplicon size (base pairs) based
on in silico data; Forward and Reverse primers identify the primers
flanking the SSR used for PCR amplification.
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