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Abstract

Background: Previous molecular genetic studies of physiology and pigmentation of sheep skin have focused
primarily on a limited number of genes and proteins. To identify additional genes that may play important roles in
coat color regulation, Illumina sequencing technology was used to catalog global gene expression profiles in skin
of sheep with white versus black coat color.

Results: There were 90,006 and 74,533 unigenes assembled from the reads obtained from white and black sheep
skin, respectively. Genes encoding for the ribosomal proteins and keratin associated proteins were most highly
expressed. A total of 2,235 known genes were differentially expressed in black versus white sheep skin, with 479
genes up-regulated and 1,756 genes down-regulated. A total of 845 novel genes were differentially expressed in
black versus white sheep skin, consisting of 107 genes which were up-regulated (including 2 highly expressed
genes exclusively expressed in black sheep skin) and 738 genes that were down-regulated. There was also a total of
49 known coat color genes expressed in sheep skin, from which 13 genes showed higher expression in black sheep
skin. Many of these up-regulated genes, such as DCT, MATP, TYR and TYRP1, are members of the components of
melanosomes and their precursor ontology category.

Conclusion: The white and black sheep skin transcriptome profiles obtained provide a valuable resource for future
research to understand the network of gene expression controlling skin physiology and melanogenesis in sheep.
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Background
Sheep are the most important fiber producing animals
worldwide. Fiber diameter, length and color are key
traits contributing to the economic value of sheep and
are determined by both genetics [1,2] and environment
[3]. Factors that determine coat color in sheep are becom-
ing of increasing interest. White fleece holds greatest
economic value due to its ability to be dyed to virtually
any color, whereas interest in natural colors is increasing
due to the green revolution and consumer preference for
natural products.
Coat color genes are good candidates for facilitation of

traceability of animal breeds [4]. Coat color is determined
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reproduction in any medium, provided the or
by amounts and types of melanin produced and released
by melanocytes resident in the skin [5,6]. The genetic basis
for coat color is well understood in rodents [7,8], with
many common genes also implicated in regulation of coat
color in other species, including sheep. For example,
MC1R and ASIP are known to be major regulators of coat
color in mice and MC1R [9] and ASIP [10] loci are func-
tionally linked to undesirable coat color phenotypes in
sheep. In addition, tyrosinase-related protein 1 (TYRP1) is
a strong positional candidate gene for color variation in
Soay sheep [11]. Recent studies have combined SNP ana-
lysis and gene expression profiling to dissect the basis for
the piebald pigmentation phenotype in Merino sheep [12].
Despite considerable knowledge of the genetic regulation
of coat color in mice and identification of loci involved in
coat color regulation in fiber producing species, the mo-
lecular mechanisms, at the level of gene expression,
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associated with differences in coat color phenotype are
not well understood. This information is critical not only
to enhanced basic understanding of regulation of melano-
genesis, but also to the identification of novel pharmaco-
logical and molecular genetics approaches to regulate or
select for coat color in fiber producing species.
Transcriptional profiling is a powerful approach for iden-

tification of genes globally and functionally expressed in
various tissues including skin [13]. Limited information is
currently available regarding differences in transcriptome
profiles of skin associated with coat color in fiber producing
species. To investigate genes that may play important roles
in coat color regulation in sheep skin and gain insight into
molecular mechanisms responsible for biochemistry of skin
and fibers (including pigmentation) in animals producing
hair such as sheep and alpaca, we investigated the tran-
scriptome profiles in skin of sheep with black versus white
coat color using high throughput RNA deep sequencing.
Results provided novel insight into differences in gene
expression associated with coat color, including key
genes implicated in the melanogenesis pathway.

Results
Assembly of unigenes
After the raw reads were filtered, 51,297,002 clean reads
with 52.2% GC percentage and 51,655,390 clean reads
with 53.7% GC percentage were obtained from white
and black sheep skin, respectively. These clean reads
were assembled into unigenes, yielding 90,006 and
74,533 unigenes from white and black sheep skin,
Figure 1 Length distribution and abundance of all unigenes identifie
respectively. There were 2,892 and 2,884 unigenes with
sequence size greater than 3,000 nucleotides in white
and black sheep skin, respectively. The longest unigene
sequenced was more than 9,000 nt in length and the
average size of the majority of coding sequence (CDS)
identified was 300 nt. There were 1,367 unigenes with
more than 3,000 nt of CDS (Figure 1).

Functional classification of the unigenes
BLAST analysis (e-value < 0.00001) of the sheep skin
unigenes against the protein and nucleotide databases
revealed 37,768 known genes, of which, 36,438 were anno-
tated through COG classification analysis. These genes
were grouped into 25 classes based on their putative func-
tions and the largest group of genes was classified into
general function only (15%; Figure 2). The known genes
were also annotated through GO classification analysis
and grouped into 3 categories (biological process, 46.1%;
cellular component, 36.1%; molecular function, 16%)
based on their putative functions (Figure 3).

Genes highly expressed in sheep skin
The top 30 genes most highly expressed in sheep skin
included genes of the keratin family and ribosomal pro-
teins (Table 1). The most highly expressed gene in sheep
skin was 40S ribosomal protein S29. The other highly
expressed genes in sheep skin included, NADH dehydro-
genase subunit 5 (NADH5), cytochrome c oxidase sub-
unit I (COX1), NADH-ubiquinone oxidoreductase chain
4 (ND4), keratin associated protein 9.2 (KAP9.2), keratin
d in sheep skin.



Figure 2 COG functional classification of all unigenes in sheep skin.

Figure 3 GO functional classification of all unigenes in sheep skin.
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Table 1 Top 30 highly expressed genes in sheep skin

Gene name FPKM
(White)

FPKM
(Black)

Keratin associated protein 9.2 2584.8 821.2

Keratin 27 2607.2 1067.3

Complete mitochondrial genome 2674.7 3041.1

Unknown (unigene10779_all) 2748.0 3383.1

PREDICTED: ferritin, heavy polypeptide 1 2888.1 2553.0

Ribosomal protein P2-like 2895.4 2725.2

SJCHGC01393 protein 2901.1 3225.6

NADH dehydrogenase subunit 5 2932.5 2388.7

Cystatin-M precursor 2986.9 782. 3

Unknown 3057.6 2405.2

40S ribosomal protein S15 3076.5 2540.7

High-sulfur keratin BIIIB4 protein 3091.8 1541.3

60S ribosomal protein l18a-like 3167.0 3583.3

40S ribosomal protein S8 3400.9 3428.3

40S ribosomal protein S17 3456.8 3098.2

40S ribosomal protein S2 3617.6 3951.0

PREDICTED: 40S ribosomal protein s15a 3621.0 3604.1

High-sulfur keratin BIIIB4 protein 3717.6 2178.6

Hair keratin cysteine rich protein 3729.8 2563.5

Keratin-associated protein 9.2 3753.7 1379.9

Bos taurus ubiquitin C (UBC) 3912.4 5532.3

Keratin-associated protein 1.4 3945.3 2057.2

40S ribosomal protein S11 4019.3 3719.5

PREDICTED: rrna promoter binding
protein-like

4062.3 4910.0

Keratin associated protein 9.2 4628.2 1689.3

Cytochrome c oxidase subunit I 5279.6 3998.8

Keratin-associated protein 3-2 6143.7 3911.5

NADH-ubiquinone oxidoreductase chain 4 6684.7 5468.1

Unknown (unigene19263_all) 7622.1 12646.3

PREDICTED: 40S ribosomal protein S29-like 19925.8 9994.6

Table 2 Highly expressed transcription factors in sheep skin

Gene name FPKM (White) FPKM (Black)

Transcription factor jun-B-like 206.6 368.3

Cyclic AMP-dependent transcription
factor ATF-4

301.0 340.3

Transcription factor AP-1 125.5 205.5

Endothelial differentiation-related
factor 1 isoform alpha

94.0 140.7

homeobox protein DLX-3 132.6 90.1

transcription factor GATA3 61.7 63.2
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27 (Krt27), high-sulfur keratin BIIIB4 protein, hair kera-
tin cysteine rich protein (Dmpk), keratin-associated pro-
tein 1.4 (KRTAP1.4) and keratin-associated protein 3–2
(KAP3.2). The list of most highly expressed genes also
included 4 unknown genes.

Genes encoding transcription factors expressed in sheep
skin
In the transcriptome of sheep skin, there was at least
527 genes identified encoding for transcription factors
(Additional file 1: Table S1). The highly expressed tran-
scription factor genes in both white and black sheep skin
include transcription factor jun-B-like, nascent polypeptide-
associated complex subunit alpha isoform b, endothelial
differentiation-related factor 1 isoform alpha, homeobox
protein DLX-3 (DLX3), transcription factor AP-1 (JUN),
cyclic AMP-dependent transcription factor ATF-4 (ATF4),
and transcription factor GATA3 (GATA3) (Table 2). Most
of these transcription factors do not show differential
expression between white and black skin. However, some
less abundantly expressed transcription factors such as
Pbx, Tcf4, Nr2f1, Sox11 and Sox4, were differentially
expressed in white and black sheep skin. Transcription
factors that are known to regulate mRNA expression of
coat color genes, such as MITF and CREB/ATF bZIP tran-
scription factor were also found to be expressed in sheep
skin. Interestingly, both genes were expressed approxi-
mately 2 times higher in white sheep skin than black
sheep skin.

Differentially expressed genes in white versus black
sheep skin
Using an algorithm based on a previously described
method [14], genes differentially expressed between white
and black sheep skin were identified. There were a total of
2,235 known genes identified as differentially expressed in
white versus black sheep skin, of which 1,756 were down-
regulated (≤ 2 fold) and 479 were up-regulated (≥ 2 fold)
in skin from black sheep compared with skin from white
sheep (see Additional file 2: Table S2). For the GO ana-
lysis, 1,904, 1,784 and 1,787 differentially expressed genes
were grouped in cellular component, molecular function
and biological process categories, respectively. Most of the
differentially expressed genes were classified into two GO
categories (cellular process and cell and cell part; Table 3
and Figure 4). The majority of the GO terms including
pigmentation do not appear to be significantly enriched in
the differentially expressed genes.
A total of 845 novel genes were identified as differentially

expressed, of which 738 were down-regulated (≤ 2 fold)
and 107 were up-regulated (≥ 2fold) in skin from black
sheep compared with skin from white sheep. Of the 107
up-regulated genes, 16 genes were exclusively expressed in
black sheep skin (including 2 genes highly expressed), and



Table 3 Total number of genes and genes with difference
in each GO term

GO terms Total number
of genes

Total number
of genes with
difference

Corrected
P-value

Biological adhesion 673 89 1

Biological regulation 8650 1141 1

Cell killing 32 5 1

Cell proliferation 470 76 1

Cellular component
organization or
biogenesis

3698 515 1

Cellular process 11404 1441 1

Death 678 92 1

Developmental process 3927 549 1

Establishment of
localization

3191 416 1

Growth 309 34 1

Immune system process 1278 175 1

Localization 3783 92 1

Locomotion 882 126 1

Metabolic process 7062 944 1

Multi-organism process 963 132 1

Multicellular organismal
process

5437 642 1

Negative regulation of
biological process

2792 398 1

Pigmentation 69 21 0.40

Positive regulation of
biological process

3228 447 1

Regulation of biological
process

8093 1078 1

Reproduction 1347 147 1

Reproductive process 1342 147 1

Response to stimulus 6174 753 1

Rhythmic process 184 21 1

Signaling 3997 469 1

Viral reproduction 534 43 1

Cell 13120 1724 7.08 × 10-8

Cell junction 679 86 1

Cell part 13110 1724 4.13 × 10-8

Extracellular region 1685 256 0.15

Extracellular region part 960 157 0.09

Macromolecular complex 3942 495 1

Membrane-enclosed
lumen

3111 420 1

Organelle 9471 1284 6.93 × 10-5

Organelle part 6280 845 0.72

Synapse 477 61 1

Synapse part 353 44 1

Table 3 Total number of genes and genes with difference
in each GO term (Continued)

Antioxidant activity 55 4

Binding 10938 1519 1.11 × 10-15

Catalytic activity 5291 725 1

Channel regulator activity 76 13 1

Enzyme regulator activity 903 123 1

Molecular transducer
activity

1898 136 1

Nucleic acid binding
transcription factor
activity

817 116 1

Protein binding
transcription factor
activity

495 66 1

Receptor activity 2057 157 1

Receptor regulator activity 35 5 1

Structural molecule activity 792 76 1

Translation regulator
activity

27 2 1

Transporter activity 1175 153 1
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26 genes were expressed 8 to 256 times higher in black
versus white sheep skin (see Additional file 3: Table S3).
In order to validate the transcriptome sequencing results,

we selected 10 genes at random for real time PCR to deter-
mine their relative expression in black and white sheep
skin. These genes, identified as differentially expressed in
black versus white sheep skin based on transcriptome
sequencing analysis, included known genes related to coat
color in mammals. The results of real time PCR showed
that 8 of the 10 selected genes had significantly higher
expression in black sheep skin compared with white sheep
skin, which was consistent with the transcriptome sequen-
cing data. Among the differentially expressed genes, TYR
showed the greatest differential expression between black
and white sheep skin (Figure 5).
KEGG pathway analysis
Of the 2,235 known genes differentially expressed in
white versus black sheep skin, 1,903 had a specific
KEGG pathway annotation. Of these KEGG pathway an-
notated genes, 324 were down-regulated in black sheep
skin. These down-regulated genes are mainly involved in
oxidative phosphorylation, and glycolysis and/or gluco-
neogenesis. Remaining KEGG pathway annotated genes
were associated with 241 pathways including those func-
tionally related to coat color in skin such as melanogene-
sis, tyrosine metabolism and Wnt signaling. For example,
there were 20, 53 and 27 differentially expressed genes
involved in tyrosine metabolism, Wnt signaling and



Figure 4 GO functional classification of differentially expressed unigenes in black versus white sheep skin.

Figure 5 Real time PCR validation of differentially expressed genes in black versus white sheep skin. Abundance of target genes was
normalized relative to abundance of â-actin gene. Bars in each panel represent the mean ± standard error (n = 3), * P < 0.05; ** P < 0.01;
*** P < 0.001.

Fan et al. BMC Genomics 2013, 14:389 Page 6 of 12
http://www.biomedcentral.com/1471-2164/14/389



Table 4 Differentially expressed genes and their GO terms related to pigmentation and melanogenesis in black versus
white sheep skin

GO terms Genes Relative expression
in black vs white

sheep skin

Fold change FDR p-value Corrected p-value
of GO term

Developmental pigmentation Tyrosinase Up-regulation 96.88 1.89 × 10-137 0.00273

G-protein coupled receptor 143 Up-regulation 35.63 1.32 × 10-28

Pallidin-like protein Down-regulation 0.16 1.47 × 10-17

P protein-like Up-regulation 17.65 4.78 × 10-5

Melanophilin Up-regulation 27.75 1.94 × 10-158

Pigment cell differentiation Pallidin-like protein Down-regulation 0.16 1.47 × 10-17 1

P protein-like Up-regulation 17.65 4.78 × 10-5

Melanophilin Up-regulation 27.75 1.94 × 10-158

Cellular pigmentation and pigment
granule localization

G-protein coupled receptor 143 Up-regulation 35.63 1.32 × 10-28 1

Melanophilin Up-regulation 27.75 1.94 × 10-158

Pigment metabolic process involved
in developmental pigmentation
and pigmentation

Tyrosinase Up-regulation 96.88 1.89 × 10-137 1

G-protein coupled receptor 143 Up-regulation 35.63 1.32 × 10-28

P protein-like Up-regulation 17.65 4.78 × 10-5

Melanin metabolic process Aralkylamine N-acetyltransferase
(AANAT)

Up-regulation 9.80 7.9 × 10-5 1

Chain E, Crystal Structure Of The
14-3-3 Zeta:serotonin
N- Acetyltransferase

Up-regulation 7.84 1.44 × 10-6

Tyrosinase Up-regulation 96.88 1.89 × 10-137

P protein-like Up-regulation 17.65 4.78 × 10-5

Membrane-associated transporter
protein-like isoform 1

Up-regulation 32.75 1.03 × 10-42

Membrane-associated transporter
protein-like isoform 2

Up-regulation 4099.12 3.46 × 10-13
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melanogenesis pathways, respectively. The enriched GO
terms for genes identified in sheep skin transcriptome re-
lated to pigmentation and melanogenesis and their relative
expression in black versus white skin are shown in Table 4
and Figure 6.
Differential expression of known coat color genes
Approximately 127 genes involved in different pathways
controlling coat color formation have been identified in
the mouse [15]. Those known coat color genes are rou-
tinely classified into six general functions including: Mel-
anocyte development, Components of melanosomes and
their precursors, Melanosome construction/protein rout-
ing, Melanosome transport, Eumelanin and pheomelanin
and Systemic effects [15]. Expression of a total of 49 of
aforementioned coat color genes was detected in sheep
skin in present studies, and 13 genes showed higher
expression in black sheep skin and 8 genes showed higher
expression in white sheep skin. Interestingly, all genes
encoding for the components of melanosomes and their
precursors had higher expression in black sheep skin (see
Additional file 4: Table S4). The coat color genes in the
‘Eumelanin and pheomelanin’ functional category showed
higher expression in black sheep skin, while genes in
the ‘Melanosome construction/protein routing (HPS-
related)’ category displayed lower expression in black
sheep skin. Among the coat color genes showing
higher expression in black sheep skin, TYRP1 showed
the highest expression in black sheep skin versus white
sheep skin, followed by TYR, MLPH, MATP and Si
(Table 5). The genes associated with oculocutaneous
albinism (OCA) such as HPS1, HPS3, HPS4, HPS5 and
HPS6 were expressed in sheep skin but most of them
did not show differential expression associated with
coat color.
Discussion
Mammalian coat color exhibits a wide range of shades
and is dictated by melanin production in melanocytes
(melanogenesis). Melanogenesis involves a complex mo-
lecular regulation [7]. In order to understand the mo-
lecular mechanisms of coat color formation, previous
studies have reported the generation of ESTs from both
sheep and alpaca skin through traditional Sanger



Figure 6 Differentially expressed coat color genes in sheep skin and their involvement in the melanogenesis pathway. Genes with red
frame are up-regulated and genes with green frame are down-regulated in black versus white sheep skin.

Table 5 Highly up-regulated coat color genes in black sheep skin

Gene name Fold change FDR P-value Classification Function

Membrane-associated transporter
protein (Matp)

32.75 1.03 × 10-42 Components of melanosomes and
their precursors

Apparent transporter

Silver (Si) 25.2 0 Components of melanosomes and
their precursors

Melanosome matrix

Tyrosinase (Tyr) 96.88 1.89 × 10-137 Components of melanosomes and
their precursors

Melanosomal enzyme

Tyrosinase-related protein 1 (Tyrp1) 284.17 0 Components of melanosomes and
their precursors

Melanosomal protein

Melanophilin (Mlph) 27.75 1.94 × 10-158 Melanosome transport Melanosome transport
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sequencing [16,17]. A previous study examined differ-
ences in gene expression associated with black spots in
fleece of Corriedale sheep using microarray technology
[18]. To further investigate genes that may play import-
ant roles in sheep skin, particularly in fiber/coat pigmen-
tation, over 100 million transcriptome sequence reads
were generated from white and black sheep skin using
the Illumina technology. From these reads there were
37,768 known unigenes identified as expressed in sheep
skin, among which 2,235 were differentially expressed in
black versus white sheep skin. It is acknowledged that
study design was not optimal due to limited biological
replication because single pooled samples (n = 3 per coat
color) were used in transcriptome sequencing analysis
and the same three samples from white sheep skin and
from black sheep skin were used individually for quanti-
tative real time PCR validation of the sequencing results.
Despite such limitations, results have significantly en-
hanced understanding of sheep skin transcriptome com-
position and potential differences in gene expression
associated with coat color that are foundational to
further study in the future.
Genes encoding for ribosomal proteins, keratin family

members and keratin associated proteins were among
the most highly expressed genes detected in sheep skin.
The ribosome is a central player in the translation
system and its function is to decode the nucleotide
sequence carried by the mRNA and convert it into an
amino acid primary structure [19]. Abundant presence
of ribosomal proteins in sheep skin suggests the import-
ance of high rates of protein translation in sheep skin. In
channel catfish skin, the expression of ribosomal pro-
teins was high presumably due to higher levels of trans-
lational activities [20,21]. Of the top 30 highly expressed
genes in sheep skin, all 9 keratin family members and
keratin associated proteins displayed down regulation in
black sheep skin, which was the same as observed in pie-
bald Merino sheep skin [12]. Collectively, results support
Garcia’s view that no single keratin gene alone appears
to be responsible for the coat color trait [12]. Hair kera-
tins contain a much higher content of cysteine residues
in their non-helical domains and thus form tougher and
more durable structures via intermolecular disulfide
bond formation [22]. Therefore, high expression of kera-
tins is likely crucial for fleece strength. Genes encoding
for important oxidative and dehydrolytic enzymes such
as NADH5 and COX1 were also highly expressed in
sheep skin. The coenzyme NAD (nicotinamide adenine
dinucleotide) is a key electron-carrier which mediates
hundreds of reactions. The redox state of the NAD–
NADH couple plays a central role in energy metabolism
[23], signal transduction [24], and transcriptional regula-
tion [25], which is consistent with the need for mito-
chondrial biogenesis, energy and other proteins during
the strong metabolism characteristic of adult sheep skin
development [26].
The human hair follicle (HF) has a variable response to

potent androgens, such as testosterone (T) and dihydrotes-
tosterone (DHT). The pilosebaceous unit (including HF
and sebaceous gland) enzymatically converts weak andro-
gens, such as dehydroepiandrosterone (DHEA) and andro-
stenedione (AD), to more potent androgens, such as T and
DHT. In HF of scalp, androgens shorten the anagen
growth phase of the hair cycle, causing the HF to regress
and recede. The conversion of androgens is dependent on
oxidized-reduced pyridine cofactors, NAD, NADH, and
NADPH [27]. So, the high level of expression of NADH
likely improves the conversion of androgens in certain
body regions, influencing terminal hair growth.
Transcription factors (TFs) perform important regula-

tory functions by controlling a variety of cellular pro-
cesses [28]. In the mouse genome, 1,445 genes were
identified to encode for TFs and 983 were expressed in
the brain [29]. In the current studies expression of 527
TF genes was detected in sheep skin, including general
TFs such as endothelial differentiation-related factor 1
isoform alpha, DLX3, JUN, ATF4 and GATA3. The high
level of expression of these genes detected in skin re-
flects their importance in regulation of general transcrip-
tional pathways in sheep skin.
Several novel genes were also identified in sheep skin,

and a portion of such genes were differentially expressed.
Two of the novel genes detected lacked ORF in sequence
reads detected, and were highly abundant and exclusively
expressed in black sheep skin. BLAST analysis of these 2
novel genes did not find any similar sequences in NCBI
database (including EST), suggesting that they could be
specific to sheep skin. The differentiated phenotype of
melanocytes must be due, at least in part, to differential
transcription of melanocyte-specific genes [30]. Thus,
these two novel genes may play an important role in
promoting pigmentation and dark coat colors.
The GO and KEGG pathway analyses of differentially

expressed genes revealed that most were associated with
the function of cell and cell part ontology categories. Of
particular interest in our dataset were pathways related
to pigmentation and melanogenesis. Of the differentially
expressed genes, the genes in the category related to ‘the
components of melanosomes and their precursor’ and
‘Eumelanin and pheomelanin’ were up-regulated in skin
from sheep with black coat color. The function of genes
in “the components of melanosomes and their precursor”
and ‘Eumelanin and pheomelanin’ are melanin synthesis
and the switch between eumelanin and pheomelanin [15].
The darker pigmentation of skin, and possibly of
hair, is associated with a higher numbers of melano-
somes, although the number of melanocytes remains
constant [7,31]. Melanocytes in black hair follicles



Fan et al. BMC Genomics 2013, 14:389 Page 10 of 12
http://www.biomedcentral.com/1471-2164/14/389
contain the greatest number of melanosomes (which
are eumelanosomes), while the melanosomes in brown
hair bulbs are smaller and those in blonde hair are very
poorly melanised. The relationship of less melanin with
lighter skin/hair phenotype has been reported in several
species, including humans [32], alpaca [17], llama [33]
and horse [34]. In both domestic sheep and Soay sheep,
light coat color is known to be due to a decrease in the
ratio of eumelanin to pheomelanin, relative to black
coat color [35].
Genes in the ‘Melanosome construction/protein rout-

ing (HPS-related)’ ontology category, such as HPS5,
Lysosomal trafficking regulator (Lyst) and Pallidin, were
all down-regulated in skin of sheep with black coat
color. The functions of genes in the ‘Melanosome con-
struction/protein routing (HPS-related)’ categories are
related to organelle biogenesis [15]. The key to melanin
production is the organelle that is the site of melanogen-
esis, the melanosome, whose architecture, intracellular
distribution and enzyme catalog are critical [30]. HPS5
protein is a component of the biogenesis of lysosome-
related organelles complex-2 (BLOC-2) and its deficiency
can result in Hermansky–Pudlak syndrome (HPS-5)
[36]. HPS is a disorder of lysosome-related organelle
(melanosome) biogenesis, resulting in oculocutaneous
albinism [37,38]. It has been reported that HPS5 mela-
nocytes have an approximately normal contingent of the
melanogenic protein, TYR [36]. Elucidation of the rela-
tionship between lower level of expression of HPS5 and
other genes in this ontology category with black coat
color phenotype will require further investigation.
Among the differentially expressed coat color genes,

TYRP1 showed the greatest level of differential expres-
sion in black versus white sheep skin. TYRP1, one of the
members of the tyrosinase family, is a I type membrane
bound protein that is expressed in both melanocytes and
the retinal epithelium. TYRP1 is involved in the distal
eumelanic pathway and plays a role in stabilizing
TYR, which is the critical and rate-determining
enzyme in melanogenesis [39]. There existed a signifi-
cant association between coat color and TYRP1 in
Soay sheep [11]. In the free-living Soay sheep, coat
color is either dark brown or light tawny color. The
light phenotype is determined by homozygosity of a
single recessive amino acid change (G→T transversion)
at coding position 869 in the TYRP1 gene [11]. This is
consistent with studies in domestic sheep, where light
coat color is known to be due to a decrease in the ratio
of eumelanin to pheomelanin, relative to black coat
color [35].

Conclusions
In summary, to our knowledge this is the first report of
transcriptome analysis of sheep skin from animals with
white and black coat color. The present studies have de-
scribed and revealed a set differentially expressed known
and novel genes in sheep skin potentially related to coat
color and other physiological functions. The 16 novel genes
exclusively expressed in skin of sheep with black coat color
are of particular interest for further studies to elucidate
their functional roles in coat color regulation. Results are
foundational for future studies to potentially manipulate
coat color via pharmacological and genetic approaches.

Methods
Sheep skin sampling and total RNA extraction
Housing and care of sheep and collection of skin samples
for use in the described experiments were conducted in
accordance with the International Guiding Principles for
Biomedical Research Involving Animals (http://www.
cioms.ch/frame 1985 texts of guidelines.htm). The animals
were locally anaesthetized with hydrochloridum (1.5 ml of
3%, i.h.), following the approval (reference number 2010
[088]) provided by the Animal Hospital of Shanxi Agricul-
tural University to decrease the animal suffering. Six
healthy 2-year-old white and black female Sunite sheep
3 sheep per color) were selected for sample collection
from the sheep farm in Sunite, Inner Mongolia, China. A
piece of skin (8 mm in diameter) from the neck was col-
lected via punch skin biopsy under local anesthesia and
immediately placed in liquid nitrogen. Total RNA from
the sample was extracted using Trizol reagent (Invitrogen,
USA) according to the manufacturer’s instructions. The
RNA integrity was evaluated by gel electrophoresis and
the RNA purity was checked by the ratio of OD260/OD280

and RIN value. RNA samples with RIN value greater than
7.5 and OD260/OD280 ratio greater than 1.7 were selected
for deep sequencing.

Library generation and sequencing
Three RNA samples from black or white sheep skin
were pooled before mRNA isolation. Beads with Oligo
(dT) were used to isolate poly (A) mRNA from sheep
skin total RNA. The isolated mRNA was fragmented
followed by first-strand cDNA synthesis using random
hexamer-primers. The second-strand cDNA was synthe-
sized using buffer, dNTPs, RNaseH and DNA polymer-
ase I. The short cDNA fragments were purified using
QiaQuick PCR extraction kit (Qiagen, USA). The frag-
ment ends were repaired and A tailed followed by
ligation to sequencing adaptors. Suitable size fragments
were selected following agarose gel electrophoresis and
used as templates for PCR amplification. Sequencing of
the library was performed using Illumina HiSeq™ 2000.

Unigene assembly and functional annotation
Raw reads were cleaned by removing adaptors and low
quality reads before assembly. Unigene assembly was

http://www.cioms.ch/
http://www.cioms.ch/
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carried out using the short reads assembly program,
Trinity (http://www.genomics.cn). Blastx alignment
(e-value < 0.00001) between the unigenes and protein
databases (nr, Swiss-Prot, KEGG and COG) was
performed, and the best aligned results were used to
decide sequence direction of the unigenes. If results
of different databases conflicted with each other, a
priority order of nr > Swiss-Prot,>KEGG > COG was
followed when deciding sequence direction of the
unigenes. If a unigene was not aligned to one of the above
databases, ESTScan software was used to determine its se-
quence direction. Unigene sequences were first aligned by
blastx to protein databases and then aligned by blastn to
nucleotide database nt (e-value < 0.00001), retrieving
proteins with the highest sequence similarity with the
given unigenes along with their protein functional an-
notations. Proteins with the highest ranks in the blast
results were taken to determine the coding region se-
quences of unigenes. Coding sequences were translated
into amino acid sequences with the standard codon
usage. Gene Ontology (GO) functional annotation was
based on nr annotation [40]. Blast2GO program (http://
www.blast2go.com) was used to assign GO annotations,
and WEGO software (http://wego.genomics.org.cn/cgi-
bin/wego/index.pl) was used to perform GO functional
classification for all unigenes.

Identification of differentially expressed genes and
pathway analysis
A rigorous algorithm based a previously described
method [14] was used to identify differentially expressed
genes between white and black skin. The FDR (false
discovery rate) value of ≤ 0.001 and RPKM ratio of > 2
were used in the analysis [41]. Differentially expressed
genes (DEG) were mapped to each term of GO database
(http://www.geneontology.org/) and the gene numbers
for each GO term were calculated. A list of genes and gene
numbers for every GO term was obtained. Hypergeometric
test was used to find significantly enriched GO terms in
DEG against the genome background. The calculated
p-values went through Bonferroni correction, using
corrected p-value ≤ 0.05 as a threshold. GO terms ful-
filling this condition were defined as significantly
enriched GO terms in DEG. With the help of KEGG
[42] pathway database (http://www.genome.jp/kegg/
pathway.html), the biological complex behaviors of the
DEG were further studied.

Validation of mRNA expressed differentially in skin of
sheep with white versus black coat color
Ten genes were selected at random from the differen-
tially expressed genes for validation by quantitative real
time PCR analysis. Total RNA was isolated from the
same 6 sheep skin samples used for RNA sequencing.
One μg of DNase-treated RNA was converted to cDNA
using oligo dT primer and MMLV cDNA kit mix
(TaKaRa, Dalian, China). The cDNA was then used for
real time PCR quantification of mRNAs using mRNA
specific primers (Additional file 5: Table S5). β-actin was
used as an endogenous control. Quantitative real-time
PCR was performed in triplicate on the Stratagene
Mx3005P system. The 10 μL PCR reaction included
5 μL SYBR Premix Ex TaqTM II (TaKaRa, Dalian,
China), 0.5 μL specific forward primer, 0.5 μL reverse
primer, 0.5 μL ROX reference dye, 2 μL diluted (4 times)
cDNA and 1.5 μL water. Cycling parameters were 95°C
for 30 sec, followed by 40 cycles of 95°C for 5 sec, 56°C
or 58°C for 20 sec and 72°C for 15 sec. Melting curve
analyses were performed following amplifications. Quan-
tification of selected mRNA transcript abundance was
performed using the comparative threshold cycle (CT)
method [43]. The difference in abundance of mRNA for
the genes was determined by analysis of variance.
Additional files

Additional file 1: Table S1. Transcription factors expressed in sheep
skin. List of transcription factors and their expression levels in sheep skin.

Additional file 2: Table S2. Differentially expressed known genes in
black versus white sheep. List of known genes expressed differentially
with fold change and P value.

Additional file 3: Table S3. Differentially expressed novel genes in
black versus white sheep skin. List of novel genes expressed differentially
with fold change and P value.

Additional file 4: Table S4. Differentially expressed known coat color
genes in black versus white sheep skin. List of coat color genes
expressed differentially with fold change and P value.

Additional file 5: Table S5. Primers used for quantitative real time PCR.
List of primers for 10 genes used in quantitative real time PCR analysis to
verify differential expression of genes identified by RNA-Seq analysis.

Abbreviations
MITF: Microphthalmia-associated transcription factor; TYRP1: Tyrosinase-
related protein 1; TYR: Tyrosinase; DCT: Tyrosinase-related protein2;
MLPH: Melanophilin; MATP: Membrane-associated transporter protein;
Si: Silver; MC1R: Melanocortin 1 receptor; ASIP: Agouti/agouti signaling
protein.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
RWF designed the study, performed the analysis and wrote the paper. JBY
and GWS participated in the design of the study, analyzed the data and
critically revised the manuscript. JMB, JSX and XYJ performed real time PCR.
LY and YFS took part in sample collection and RNA extraction. RB, HDW,
WJG, XYH, MH and XT took part in the data analysis and discussion of the
manuscript. CSD conceived the study, analyzed the data and participated in
writing. All authors read and approved the final manuscript.

Acknowledgements
The study was sponsored by the National Natural Science Foundation of
China (30571070, 31201868) and China Postdoctoral Science Foundation
funded project (20100481306).

http://www.genomics.cn
http://www.blast2go.com
http://www.blast2go.com
http://wego.genomics.org.cn/cgi-bin/wego/index.pl
http://wego.genomics.org.cn/cgi-bin/wego/index.pl
http://www.geneontology.org/
http://www.genome.jp/kegg/pathway.html
http://www.genome.jp/kegg/pathway.html
http://www.biomedcentral.com/content/supplementary/1471-2164-14-389-S1.xlsx
http://www.biomedcentral.com/content/supplementary/1471-2164-14-389-S2.xlsx
http://www.biomedcentral.com/content/supplementary/1471-2164-14-389-S3.xlsx
http://www.biomedcentral.com/content/supplementary/1471-2164-14-389-S4.xlsx
http://www.biomedcentral.com/content/supplementary/1471-2164-14-389-S5.docx


Fan et al. BMC Genomics 2013, 14:389 Page 12 of 12
http://www.biomedcentral.com/1471-2164/14/389
Author details
1College of Animal Science and Veterinary Medicine, Shanxi Agricultural
University, Taigu 030801, China. 2School of Science and Technology,
University of New England, Armidale, NSW 2351, Australia. 3Laboratory of
Animal Biotechnology and Genomics, Division of Animal and Nutritional
Sciences, West Virginia University, Morgantown, WV 26506, USA.
4Departments of Animal Science and Physiology, Laboratory of Mammalian
Reproductive Biology and Genomics, Michigan State University, East Lansing,
MI 48824, USA.

Received: 12 March 2013 Accepted: 4 June 2013
Published: 10 June 2013
References
1. Lamoreux M, Wakamatsu K, Ito S: Interaction of major coat color gene

functions in mice as studied by chemical analysis of eumelanin and
pheomelanin. Pigm Cell Res 2002, 14(1):23–31.

2. Bunge R, Thomas DL, Nash TG, Lupton CJ: Performance of hair breeds of
sheep in Southern Illinois: wool production and fleece quality. J Anim Sci
1996, 74:25–30.

3. Kidson S, Fabian B: The effect of temperature on tyrosinase activity in
Himalayan mouse skin. J Exp Zool 2005, 215(1):91–97.

4. Crepaldi P, Nicoloso L: SNPs in coat colour genes in goats. Ital J Anim Sci
2010, 6(1s):91–93.

5. Ito S, Wakamatsu K, OZEKI H: Chemical analysis of melanins and its
application to the study of the regulation of melanogenesis. Pigm Cell
Res 2000, 13:103–109.

6. Ito S, Wakamatsu K: Chemistry of Mixed Melanogenesis-Pivotal Roles of
Dopaquinone. Photochem Photobiol 2008, 84(3):582–592.

7. Slominski A, Tobin DJ, Shibahara S, Wortsman J: Melanin pigmentation in
mammalian skin and its hormonal regulation. Physiol Rev 2004, 84(4):
1155–1228.

8. Steingrímsson E, Copeland NG, Jenkins NA: Mouse coat color mutations: from
fancy mice to functional genomics. Dev Dynam 2006, 235(9):2401–2411.

9. Våge DI, Klungland H, Lu D, Cone RD: Molecular and pharmacological
characterization of dominant black coat color in sheep. Mamm Genome
1999, 10(1):39–43.

10. Norris BJ, Whan VA: A gene duplication affecting expression of the ovine
ASIP gene is responsible for white and black sheep. Genome Res 2008,
18(8):1282–1293.

11. Gratten J, Beraldi D, Lowder B, McRae A, Visscher P, Pemberton J, Slate J:
Compelling evidence that a single nucleotide substitution in TYRP1 is
responsible for coat-colour polymorphism in a free-living population of
Soay sheep. P Roy Soc Lond B Bio 2007, 274(1610):619–626.

12. García-Gámez E, Reverter A, Whan V, McWilliam SM, Arranz JJ, Kijas J: Using
regulatory and epistatic networks to extend the findings of a genome
scan: identifying the gene drivers of pigmentation in Merino sheep. PLoS
One 2011, 6(6):e21158.

13. Tae-Hun K, Nam-Soon K, Dajeong L, Kyung-Tai L, Jung-Hwa O, Hye-Sook P,
Gil-Won J, Hyung-Yong K, Mina J, Bong-Hwan C: Generation and analysis
of large-scale expressed sequence tags (ESTs) from a full-length
enriched cDNA library of porcine backfat tissue. BMC Genomics 2006,
7:36–44.

14. Audic S, Claverie JM: The significance of digital gene expression profiles.
Genome Res 1997, 7(10):986–996.

15. Bennett DC, Lamoreux ML: The color loci of mice–a genetic century. Pigm
Cell Res 2003, 16(4):333–444.

16. Hu X, Gao Y, Feng C, Liu Q, Wang X, Du Z, Wang Q, Li N: Advanced
technologies for genomic analysis in farm animals and its application for
QTL mapping. Genetica 2009, 136(2):371–386.

17. Fan R, Dong Y, Cao J, Bai R, Zhu Z, Li P, Zhang J, He X, Lü L, Yao J: Gene
expression profile in white alpaca (Vicugna pacos) skin. Animal 2011, 5(8):
1157–1161.

18. Peñagaricano F, Zorrilla P, Naya H, Robello C, Urioste JI: Gene expression
analysis identifies new candidate genes associated with the
development of black skin spots in Corriedale sheep. J Appl Genet 2012,
53(1):99–106.

19. Marshall RA, Aitken CE, Dorywalska M, Puglisi JD: Translation at the single-
molecule level. Annu Rev Biochem 2008, 77:177–203.
20. Patterson A, Karsi A, Feng J, Liu Z: Translational machinery of channel
catfish: II. Complementary DNA and expression of the complete set of
47 60S ribosomal proteins. Gene 2003, 305(2):151–160.

21. Karsi A, Cao D, Li P, Patterson A, Kocabas A, Feng J, Ju Z, Mickett KD, Liu Z:
Transcriptome analysis of channel catfish (Ictalurus punctatus): initial
analysis of gene expression and microsatellite-containing cDNAs in the
skin. Gene 2002, 285(1):157–168.

22. Rouse JG, Van Dyke ME: A review of keratin-based biomaterials for
biomedical applications. Materials 2010, 3(2):999–1014.

23. Bakker BM, Overkamp KM, Maris AJA, Kötter P, Luttik MAH, Dijken JP, Pronk
JT: Stoichiometry and compartmentation of NADH metabolism in
Saccharomyces cerevisiae. FEMS Microbiol Rev 2006, 25(1):15–37.

24. Berger F, Ramýìrez-Hernández MH, Ziegler M: The new life of a
centenarian: signalling functions of NAD (P). Trends Biochem Sci 2004,
29(3):111–118.

25. Zhang Q, Piston DW, Goodman RH: Regulation of corepressor function by
nuclear NADH. Science Signalling 2002, 295(5561):1895–1897.

26. Harle-Bachor C, Boukamp P: Telomerase activity in the regenerative basal
layer of the epidermis in human skin and in immortal and carcinoma-
derived skin keratinocytes. PNAS 1996, 93(13):6476–6481.

27. Sawaya ME: Steroid chemistry and hormone controls during the hair
follicle cycle. Annny Acad Sci 1991, 642(1):376–383.

28. Han X, Wu X, Chung WY, Li T, Nekrutenko A, Altman NS, Chen G, Ma H:
Transcriptome of embryonic and neonatal mouse cortex by high-
throughput RNA sequencing. PNAS 2009, 106(31):12741–12746.

29. Gray PA, Fu H, Luo P, Zhao Q, Yu J, Ferrari A, Tenzen T, Yuk D, Tsung EF, Cai Z:
Mouse brain organization revealed through direct genome-scale TF
expression analysis. Sci STKE 2004, 306(5705):2255–2257.

30. Jackson IJ: Molecular and developmental genetics of mouse coat color.
Annu Rev Genet 1994, 28(1):189–217.

31. Rees JL: Genetics of hair and skin color. Annu Rev Genet 2003, 37(1):67–90.
32. Commo S, Gaillard O, Bernard B: Human hair greying is linked to a

specific depletion of hair follicle melanocytes affecting both the bulb
and the outer root sheath. Brit J Dermatol 2004, 150(3):435–443.

33. Cecchi T, Valbonesi A, Passamonti P, Frank E, Renieri C: Quantitative
variation of melanins in llama (Lama glama L.). Small Ruminant Res 2007,
71(1–3):52–58.

34. Sponenberg DP, Ito S, Eng LA, Schwink K: Pigment types of various color
genotypes of horses. Pigm Cell Res 1988, 1(6):410–413.

35. Aliev G, Rachkovsky M, Ito S, Wakamatsu K, Ivanov A: Pigment types in
selected color genotypes of Asiatic sheep. Pigm Cell Res 1990, 3(4):177–180.

36. Helip-Wooley A, Westbroek W, Dorward HM, Koshoffer A, Huizing M, Boissy RE,
Gahl WA: Improper trafficking of melanocyte-specific proteins in Hermansky–
Pudlak syndrome type-5. J Invest Dermatol 2007, 127(6):1471–1478.

37. Huizing M, Boissy RE, Gahl WA: Hermansky–Pudlak syndrome: vesicle
formation from yeast to man. Pigm Cell Res 2002, 15(6):405–419.

38. Wei ML: Hermansky–Pudlak syndrome: a disease of protein trafficking
and organelle function. Pigm Cell Res 2006, 19(1):19–42.

39. Kobayashi T, Imokawa G, Bennett DC, Hearing VJ: Tyrosinase stabilization
by Tyrp1 (the brown locus protein). JBC 1998, 273(48):31801–31805.

40. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP,
Dolinski K, Dwight SS, Eppig JT: Gene Ontology: tool for the unification of
biology. Nat Genet 2000, 25(1):25–29.

41. Benjamini Y, Yekutieli D: The control of the false discovery rate in
multiple testing under dependency. Ann Appl Stat 2001, 29(4):1165–1188.

42. Ogata H, Goto S, Sato K, Fujibuchi W, Bono H, Kanehisa M: KEGG: Kyoto
encyclopedia of genes and genomes. Nucleic Acids Res 1999, 27(1):29–34.

43. Livak KJ, Schmittgen TD: Analysis of relative gene expression data using
real-time quantitative PCR and the 2-[Delta][Delta] CT method. Methods
2001, 25(4):402–408.

doi:10.1186/1471-2164-14-389
Cite this article as: Fan et al.: Skin transcriptome profiles associated with
coat color in sheep. BMC Genomics 2013 14:389.


	Abstract
	Background
	Results
	Conclusion

	Background
	Results
	Assembly of unigenes
	Functional classification of the unigenes
	Genes highly expressed in sheep skin
	Genes encoding transcription factors expressed in sheep skin
	Differentially expressed genes in white versus black sheep skin
	KEGG pathway analysis

	Differential expression of known coat color genes

	Discussion
	Conclusions
	Methods
	Sheep skin sampling and total RNA extraction
	Library generation and sequencing
	Unigene assembly and functional annotation
	Identification of differentially expressed genes and pathway analysis
	Validation of mRNA expressed differentially in skin of sheep with white versus black coat color

	Additional files
	Abbreviations
	Competing interests
	Authors’ contributions
	Acknowledgements
	Author details
	References

