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Abstract

Background: Recent studies have illuminated the diversity of roles for microRNAs in cellular, developmental, and
pathophysiological processes. The study of microRNAs in human liver tissue promises to clarify the therapeutic and
diagnostic value of this important regulatory mechanism of gene expression.

Results: We conducted genome-wide profiling of microRNA expression in liver and performed an integrative
analysis with previously collected genotype and transcriptome data. We report here that the Very Important
Pharmacogenes (VIP Genes), comprising of genes of particular relevance for pharmacogenomics, are under
substantial microRNA regulatory effect in the liver. We set out to elucidate the genetic basis of microRNA
expression variation in liver and mapped microRNA expression to genomic loci as microRNA expression quantitative
trait loci (miR-eQTLs). We identified common variants that attain genome-wide significant association (p < 10™°)
with microRNA expression. We also found that the miR-eQTLs are significantly more likely to predict mRNA levels at
a range of p-value thresholds than a random set of allele frequency matched SNPs, showing the functional effect of
these loci on the transcriptome. Finally, we show that a large number of miR-eQTLs overlap with SNPs reproducibly
associated with complex traits from the NHGRI repository of published genome-wide association studies as well as

and other complex human phenotypes.

variants from a comprehensive catalog of manually curated pharmacogenetic associations.

Conclusion: Our study provides important insights into the genomic architecture of gene regulation in a vital
human organ, with important implications for our understanding of disease pathogenesis, therapeutic outcome,
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Background

Gene expression variation has been shown to be import-
ant for the etiologies of common disorders including
cancers [1], neuropsychiatric diseases [2], and various
autoimmune disorders [3]. Thus, the identification of
genetic polymorphisms, in the form of expression quan-
titative trait loci (eQTLs) [4], that have a functional im-
pact on the regulation of gene expression provides a
powerful means to characterize the molecular events re-
sponsible for disease pathogenesis and to inform poten-
tial therapeutic applications.
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MicroRNAs (miRNAs), a class of conserved non-
coding RNA molecules produced by a multi-step biogen-
esis pathway, have been shown to be a fundamental
mechanism of gene expression regulation, targeting the
3’ untranslated region (UTR) of specific target messen-
ger RNAs (mRNAs) for endonucleolytic cleavage or
translational repression. In contrast to mRNAs, miRNAs
are processed into duplexes by nuclear and cytosolic
RNase III enzymes (Drosha and Dicer) in a maturation
process. First identified in Caenorhabditis elegans (5],
miRNAs have been implicated in key aspects of cellular,
developmental, and pathophysiological processes. Stud-
ies have illuminated the roles of miRNAs in diverse bio-
logical phenomena, including cell proliferation and
apoptosis [6], developmental timing of stage-specific cell
lineages [7], the patterning of tissues in the developing
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embryo [8], and the regulation of immune response to
pathogens [9].

The functional characterization of miRNAs is cur-
rently an active area of investigation. In this study, we
sought to contribute to the functional understanding of
miRNAs by performing genome-wide expression profil-
ing in human liver. The liver is the primary organ in
xenobiotic disposition, through a complex system in-
volving a variety of drug transporters and metabolizing
enzymes. Thus, patterns of gene expression in liver are
likely to influence the systemic availability of xenobi-
otics, mediating downstream pharmacologic effects. Fur-
thermore, studies of the liver transcriptome are likely to
reveal important insights into liver physiology and dis-
ease processes. Recent studies have shown that miRNAs
are abundant in the liver and regulate a broad spectrum
of liver functions [10]. These biomolecules may serve as
diagnostic markers for such liver diseases as hepatocellu-
lar cancer [11] and polycystic liver diseases [12], or as
promising therapeutic targets (for example, for the
chemically engineered oligonucleotides, called “antagomirs”,
designed to be specific silencers of endogenous miRNAs
in vivo) [13].

Thus, we conducted a genome-wide integrative study
of miRNAs in human liver with the purpose of clarifying
their functional impact on the transcriptome and on
complex human traits. We identified a comprehensive
list of miRNAs abundantly expressed in liver. We sought
to dissect the genetic basis of miRNA expression vari-
ation in a tissue of direct relevance to many human dis-
eases and pharmacologic phenotypes. We applied
quantitative trait loci (QTL) mapping to characterize
genetic regulation of miRNA expression levels as quanti-
tative traits. Given the relevance of the tissue for drug
metabolism, we identified miRNAs significantly corre-
lated with the expression of the so-called Very Import-
ant Pharmacogenes (VIP Genes) as maintained by
PharmGKB [14], comprising a list of genes of particular
importance for drug response. Finally, this study pro-
vides biologic insights into certain findings from
genome-wide association studies by establishing poten-
tial mechanistic links into replicated associations with a
broad spectrum of complex traits.

Results

miRNA expression profiling

Genome-wide expression profiling (see Methods) identi-
fied 277 expressed miRNAs in liver, defined here as hav-
ing non-missing expression values for at least 75% of the
samples. Of these, 166 miRNAs had zero missing values.
A missing value for a given sample may result when the
calling of the particular miRNA failed. This “failure”
meant that 2 or more of the 4 replicated measures of the
miRNA were flagged 1 or 2 by the (Exiqon) image
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software, indicating that the quantified signal was below
background. Alternatively, a missing value may result
when the Hy3 and Hyb5 signals were lower than 1.5 times
that of the median signal intensity of the given slide.

The 166 miRNAs with no missing values include some
of the most abundantly expressed miRNAs in liver, in-
cluding miR-122, a liver-specific miRNA previously
known to be expressed in liver tissue, human primary
hepatocytes, and in cultured liver cells [15]. Included in
these 166 miRNAs too are other miRNAs known to be
abundantly expressed in adult liver tissue, including
miR-16, miR-27b, miR-30d, miR-126, as well as the let-7
family of miRNAs [10]. Additional file 1: Figure S1 is a
heatmap illustrating a two-way hierarchical clustering
[16] of miRNAs and samples.

miRNA expression levels negatively correlated with
putative target mRNAs

Global baseline gene expression in liver on these sam-
ples was previously quantified using the Agilent 4x44
array [17] (see Methods for details). Figure 1 illustrates
the distribution of p-values for the negative associations
between miRNA expression and mRNA expression. (All
correlation tests between miRNA expression and mRNA
expression in our study involve the inverse relationship
[i.e., negative beta], which is our primary interest here,
unless explicitly stated.) The enrichment of low p-values
among the miRNA-mRNA relationships suggests that
our study is capturing some true signals and, of these,
miRNAs tend to be associated with multiple mRNAs (as
perhaps expected from the fact that miRNAs are known
to target at least a third of all genes in the genome [18]).
For multiple testing for the miRNA-mRNA (negative)
correlations, we used a false discovery rate (FDR) ap-
proach [19]; we defined FDR < 0.05 as significant.

At this stringent threshold, we found 275 miRNAs (of
the 277 expressed miRNAs) to be negatively correlated
with mRNA expression (see Additional file 2: Table S1
for the list of the top miRNA-mRNA relationships);
comparisons were made against 19,749 transcripts in
this analysis. In particular, miR-122, is associated with
105 target mRNAs (all p < 107'?). Additional file 3: Table
S2 lists the most significant of the miRNA-mRNA
relationships and their overlap with computational
miRNA target prediction approaches, miRBase [20] and
ExprTarget [21].

Furthermore, we conducted functional enrichment ana-
lyses, using DAVID [22], on the genes that showed the
most significant negative correlations with miRNAs in
liver (p<107° and found a highly significant excess
(p = 0.02, Benjamini-Hochberg [23]) for genes (N = 25) in-
volved in cell adhesion, characterized as the attachment of
a cell, either to another cell or to an underlying substrate
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Figure 1 Histogram of P-values for the negative associations between miRNA expression and mRNA expression. Note the enrichment
for low p-values, suggesting the presence of true signals.

such as the extracellular matrix, via cell adhesion mole-
cules [24].

The genetic basis of miRNA expression in liver

We hypothesized that miRNA expression variation may
in part be due to effects of genetic polymorphisms. We
therefore conducted genome-wide association studies to
map miRNA expression levels to genomic loci as miR-
eQTLs. First we used the increased density of interro-
gated SNPs from conducting imputation with Bimbam
[25] as previously described [17]. Using mean imputed
genotypes for nearly 2 million SNPs and miRNA expres-
sion levels for the identified expressed genes in liver, we
performed QTL mapping on each miRNA. Given our
sample size, we considered only those SNPs that meet
the minor allele frequency threshold of 15% in our QTL
mapping. We used a strict Bonferroni threshold (based
on the number of SNPs and the number of miRNAs
tested, p<10'°) to define a significant “trans” associ-
ation. Despite this stringent threshold, we nevertheless
found a genome-wide significant set of miR-eQTLs, in-
cluding rs263418 for miR-938 (p = 4.1x10™"?), rs2999200
for miR-200c (p = 1.9x10™"), and rs11088818 and miR-
10b (p=1.5x10"). At a suggestive threshold (p < 109),
we found 39 miRNAs (14% of all tested) to be associated
with SNP genotypes (N=18) (see Figure 2 for a
genome-wide map of these miRNA-associated SNPs), in-
cluding rs2999200 and rs6551952 for the abundantly
expressed and liver-specific miR-122 (p =7.7x10" and
p = 3x107, respectively). Figure 3 provides, as an illustra-
tive example, a regional view [26] of a genome-wide scan
for miR-eQTLs for miR-200c, a molecule that has been

reported to successfully distinguish hepatocellular car-
cinoma from liver metastases [27].

Several patterns emerge from this analysis. First, we
identified some SNPs associated with multiple target
miRNAs. For example, rs2999200 was found to be sig-
nificantly associated with miR-198, miR-509-3-5p and
miR-519¢* (p = 8.8x10™*%, p=6.9x10"" and p = 4.3x10*?,
respectively). Second, we identified miRNAs associated
with multiple SNPs (miR-10b and the SNPs rs11088818
at p=15x10"", rs11088887 at p = 1.7x10™"" and rs3778533
at p=52x10"), the last two of which are not in linkage
disequilibrium.

miR-eQTLs are enriched for mRNA eQTLs

We sought to further functionally characterize the miR-
eQTLs obtained from our genome-wide mapping ana-
lysis. Our group had previously conducted whole-
genome gene expression profiling in a larger set (N =
206) of these liver samples, which allowed us to deter-
mine to what extent the identified miR-eQTLs influence
global gene expression as mRNA eQTLs [17]. In this
previously reported eQTL study, 1,787 genes were found
to have significant cis-linked genetic effects on expres-
sion levels, a large proportion of which were replicated
in two other independent collections of human liver; fur-
thermore, 353 gene expression traits were found to have
significant trans eQTLs. We devised a simulation pro-
cedure to test for enrichment of mRNA eQTLs among
miR-eQTLs. We asked whether SNPs associated with
miRNA expression (minor allele frequency >15%, p < 10)
are enriched for SNPs associated with mRNA expression
(defined as p < 10™). Using 1000 randomly generated sets of
SNPs (matching the minor allele frequency distribution of
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Figure 2 A genome-wide map of miRNA eQTLs in liver. Shown here are all SNPs with p<10°® for association with miRNA expression.

==

the miRNA-associated SNPs) as controls, we generated the
empirical null distribution for the overlap count with the
mRNA-associated SNPs. We observed that the miRNA-
associated SNPs are more likely to be mRNA-associated
(Additional file 4: Figure S2; enrichment p =0.049) than a
random set of allele frequency matched SNPs.

miR- eQTLs and replicated associations from genome-
wide association studies of disease susceptibility and
quantitative traits

We hypothesized that the results of our miR-eQTL map-
ping might help to clarify many of the associations found
in the NHGRI catalog of published genome-wide associ-
ation analyses, most of which have been validated in a
subsequent replication study. For the definition of
miRNA-associated SNPs, we chose the liberal threshold
p <10 because we were interested in functionally an-
notating SNPs with information on miRNA expression
and, furthermore, the SNPs had prior information on as-
sociation with complex human phenotype. Additional

file 5: Table S3 lists the overlap between miRNA eQTLs
and GWAS SNPs; for every trait-associated SNP, it
shows the target miRNAs, the p-value for the SNP-
miRNA association, and the direction of effect. We
found miRNA-associated SNPs for a broad spectrum of
complex traits, including serum uric acid, QT-interval,
pulmonary function, cognitive performance, weight and
height, as well as a list of complex diseases such as
Alzheimer’s disease, Crohn’s disease, ulcerative colitis,
myocardial infarction, and multiple sclerosis. We found
no excess of a particular direction of effect (plus or
minus) for these trait- and miRNA- associated SNPs;
that is, there is no tendency for the “risk allele” to be as-
sociated with lower or higher miRNA expression. Of
note however, among these SNPs, we found several
which were associated with the expression levels of mul-
tiple miRNAs (Additional file 5: Table S3), which were
thus annotated to the same complex trait. This latter ob-
servation raised the hypothesis that trait- and miRNA-
associated SNPs may indeed be more likely to regulate
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Figure 3 A regional view of a genome-wide scan for miR-eQTLs. Shown here is a regional plot that illustrates the eQTL mapping for miR-
200c, a molecule that has been reported to successfully distinguish hepatocellular carcinoma from liver metastases.

the expression levels of multiple miRNAs than allele fre-
quency matched SNPs. Simulation analyses using 1000
randomly generated sets of SNPs (matching the minor
allele frequency distribution of the trait- and miRNA-
associated SNPs) in fact confirmed this to be the case
(enrichment p = 0.01).
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Figure 4 QQ plot of associations between trait-associated SNPs
and miRNA expression in liver. We considered the associations
between the trait-associated SNPs from the NHGRI catalog of
genome-wide association studies and miRNA expression in liver and
found an excess of significant regulatory signals on miRNA
expression. Shown here is the global distribution of p-values from
the association with miRNA expression for the NHGRI SNPs, with
deviation from expectation for the most significant associations.

We asked whether the trait-associated SNPs in the
NHGRI catalog are enriched for miRNA associations in
liver. Figure 4 is a QQ plot that shows a significant ex-
cess of miRNA regulatory signals among the NHGRI
catalog SNPs. The blue dots depict the distribution of
miRNA association p-values for the trait-associated
SNPs from the NHGRI catalog. The QQ plot includes
all (tested) association p-values between trait-associated
SNPs and miRNA expression (in particular, regardless of
the directional effect of miRNA-mRNA pairings since
this analysis is specifically concerned with identifying
miRNA associations for the NHGRI catalog SNPs
whether or not the miRNA regulates an mRNA and
whether or not the miRNA is co-expressed with certain
mRNAs in the tissue). Furthermore, the departure from
expectation is observed for only the most significant
SNP-miRNA pairs.

VIP Genes and miRNA Regulation

Given the aforementioned crucial role of liver in xenobiotic
metabolism, we hypothesized that identifying genetic varia-
tions influencing miRNA expression, which in turn regu-
lates the expression of the specific target mRNA(s) of the
corresponding VIP gene(s), should highlight polymor-
phisms (and thereby associated genetic-based mechanisms)
with potential functional impact, at the pharmacodynamic
or pharmacokinetic level, on drug response. Pursuing this
hypothesis, we first conducted a comprehensive evaluation
of the association between miRNA expression and mRNA
expression for each of the VIP genes. We conducted ran-
dom sampling (n=1,000) of the same size as that of the
VIP genes and found, on the basis of comparisons of the



Gamazon et al. BMC Genomics 2013, 14:395
http://www.biomedcentral.com/1471-2164/14/395

15
1

10

Observed -log10(p)

T T T T

0 5 10 15
Expected -log10(p)

Figure 5 VIP genes are under substantial miRNA regulation
relative to the genomic background. The QQ plot shows the
association p-values between the VIP genes and miRNA expression
traits for all (negatively correlated) miRNA-mRNA pairs. We
compared the distribution of the best association p-value per gene
for the VIP genes (“observed” data) to that of random sets (each of
the same size as that of the VIP genes) of the most significant p-
value per gene for the randomly selected genes (“expected” data).
Only the negatively correlated miRNA-MRNA pairs were used in
this analysis.

median p-value, that no p-value distribution (from the
negative correlations between the miRNAs and mRNAs) of
any random set matches or exceeds that of the VIP genes
(empirical p <0.001). Figure 5 shows a QQ plot from the
association p-values between miRNA expression and tran-
script (mRNA) level, for which increased (decreased)
miRNA expression was associated with decreased (in-
creased) mRNA expression. We compared the distribution
of the best association p-value per gene for the VIP genes
(“observed” data) to that of random sets of the most signifi-
cant p-value per gene for the randomly selected genes
(“expected” data). Again, in the “observed” and “expected”
data, only the negative correlations between the miRNAs
and mRNAs were used. Taken together, these results dem-
onstrate that the VIP genes show substantial regulatory
miRNA effect, indeed greater than expected by chance.

We found that 28 of the 41 VIP genes were significantly
(and negatively) associated (FDR<0.05) with miRNA
expression in liver. Several miRNAs (for example miR-23b)
were negatively associated (FDR <0.05) with multiple VIP
genes (e.g., F5, ADRB1, GSTPI1, KCNH2, KCNJ11, NQOI,
and PTGIS). Additional file 6: Table S4 shows the full list of
these significant miRNA-VIP genes relationships. Notably,
several of the relationships we identified (e.g, ADRBI and
miR-30a, b, ¢, and e) were predicted by miRBase [20] as well
as ExprTarget [21].
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We investigated the miRNA effect (5) on the VIP
genes relative to the global distribution of effect sizes for
the negative associations (FDR < 0.05) between miRNAs
and mRNAs (Additional file 7: Figure S3). This distribu-
tion showed a mean of 4 = -1.21 and standard deviation
of 0=1.05. We then considered those VIP genes with /3
<-4 to identify pharmacogenes showing substantial
miRNA regulatory effect from the most significant of
the miRNA-mRNA relationships (FDR < 0.05). We iden-
tified 12 (of 41) such VIP genes: PTGIS, KCNH2, GSTP1I,
ADRBI, NQOI, ADRB2, F5, ABCBI, MTHFR, BRCAI,
SLCOI1BI, and DPYD. This represents a significantly
higher proportion relative to what is expected genome-
wide (5%), demonstrating that these pharmacogenes are
enriched for large miRNA regulatory effects.

Clinical Associations in Pharmacogenetics and miR- eQTLs
Since the liver is the most important site of drug metab-
olism and excretion, we asked to what extent the identi-
fied miR-eQTLs may be used to clarify the mechanistic
role of published genetic associations in a broad
spectrum of pharmacologic traits. We thus compiled a
list of such pharmacogenetic associations from
PharmGKB (http://www.pharmgkb.org) [28] and from
our own curation [29]. These clinical annotations are
classified according to the strength of evidence for the
association [28]. Level 1 requires replication in popula-
tions of at least 1,000 cases and 1,000 controls of the
same ethnicity and corrected p-value <0.05. Among
these level-1 variants are the established associations
rs12248560 (CYP2C19) for clopidogrel, rs1057910
(CYP2C9) and rs9923231 (VKORCI) for warfarin, and
1s776746 (CYP3AS5) for cyclosporine. Level 2 annotations
require corrected p-value < 0.05 and at least one popula-
tion of at least 100 although the variant may or may not
be replicated. Among these are rs2284017 (CACNG?2)
for lithium (as treatment for Bipolar Disorder),
rs1801252 (ADRBI) for atenolol (Coronary Artery Dis-
ease), and rs429358 (APOCI1, APOE) for ritonavir (HIV,
HIV infections, Hyperlipidemias). Level 3 falls short of
level 2 criteria due to sample size or p-value, or because
the evidence is based on in vitro/pharmacokinetic (PK)
support only. Consistent with this evidence-based anno-
tation, we incorporated published results from genome-
wide association studies of a wide array of chemothera-
peutic agents, as cataloged in a public resource PACdb
[29] we created. In total, 480 SNPs from all three levels
were included.

We found that these clinical associations are enriched
(enrichment p <0.05) for miRNA-associated SNPs (p <
0.001) relative to frequency-matched SNPs. For example,
SNPs that show evidence for regulating the expression
of miRNAs in liver include several replicated clinical as-
sociations with response to chemotherapeutic agents,
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including rs9332377 (cisplatin; miR-619) [30] and rs4880
(cyclophosphamide; miR-199a-5p, miR-376a, miR-450a,
miR-590-5p) [31]. We hypothesized that the miRNAs as-
sociated with these pharmacogenetic variants have sig-
nificantly higher regulatory effect on their target genes.
Additional file 8: Figure S4 compares the distribution of
effect sizes on target mRNAs for the miRNAs associated
(p<0.001) with the pharmacogenetic variants and the
remaining expressed miRNAs, indicating the larger
effect sizes (in absolute value) of the former (p =0.042,
t-test). The larger effect sizes (in magnitude) on the
target genes for the miRNAs associated with these
pharmacogenetic associations become more significant
(p=0.0086) when we restrict only to those variants
(N =192) with the highest level of evidence (level 1 and
level 2).

Experimental Confirmation of Gene Expression, miRNA-
mRNA Correlation and miR-eQTLs

We chose two miRNAs (miR-148a and miR-185a), two
mRNAs (PTGIS and ADRB2), and two miR-eQTLs
(rs6551952 and rs1220) for additional experimental con-
firmation. In the aforementioned analysis, miR-148a and
miR-185a were significantly inversely correlated with
PTGIS (p=1.14x10"®) and ADRB2 (p =5.02 x 10°°), re-
spectively, while rs6551952 and rs1220 were significantly
associated with miR-148a (p = 1.97 x 10”) and miR-185a
(p=1.72 x 107), respectively. The two miRNAs and two
mRNAs were quantified using Quantitative PCR (Q-
PCR) in the samples for which RNA was still available
(n=53). We found that the correlations between the Q-
PCR and microarray data in gene expression were gener-
ally high (r>0.48) (Table 1, Figure 6). In these 53 sam-
ples, both the correlation coefficient and the direction of
the correlation between the miRNAs and the mRNAs
were quite similar (Table 1). In confirming the two miR-
eQTLs, there was only a limited number of samples in
the heterozygote genotype class (n=2) and the rare-
allele homozygote genotype class (n=2) at the
rs6551952 locus. However, we did observe similar
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correlations between the genotype at rs1220 and the ex-
pression of miR-185a when comparing the Q-PCR and
the microarray data (Table 1, Figure 6E and F).

Discussion
In this study, we performed large-scale integration of
genomic information, transcriptome data, and

miRNAome profiling in human liver. The resulting inte-
grative map offers the possibility of identifying key regu-
latory pathways involved in disease biology and
therapeutic outcome. Genome annotation of global
mRNA and miRNA expression in this tissue should fa-
cilitate explorations of the complex interrelationships
between genetic variation, the regulome consisting of
the regulatory nodes and networks underlying biological
function, and complex traits (pathophysiology and
pharmacogenomic traits). The resource we have created
expands on earlier studies of the heritability of miRNA
expression in (transformed) lymphocytes [32] and of the
utility of eQTL mapping in a variety of tissues for the
identification of disease-associated genes [33,34].

This study presents a genome-wide analysis of miRNA
expression in human liver, with a primary focus on un-
derstanding miRNA regulatory effects on the transcrip-
tome, but also a special emphasis on obtaining
pharmacogenomic insights from an exploration of gene
regulation in the tissue of key importance for drug me-
tabolism and excretion. Consistent with studies that
show that miRNAs target a third of the genome [18], we
found that 275 miRNAs are inversely correlated (FDR <
0.05) with the expression levels of 5,767 genes. This
finding implies that mRNA expression in liver is likely
to be altered by multiple miRNAs. In particular, we iden-
tified several miRNAs that significantly downregulate
(FDR <0.05) the so-called VIP genes, which are key
pharmacogenes involved in modulating response to one
or more drugs; these miRNAs are thus likely to have a
significant pharmacodynamic or pharmacokinetic influ-
ence on drug response phenotypes. For example, miR-
23b, which has been implicated in liver stem cell

Table 1 Confirmation of miRNA/mRNA expression, the miRNA-mRNA correlation and the miR-eQTLs

Gene or SNP Correlation (n=53)

Q-PCR Microarray Replication r Replication p Original r Original p
miR-148a miR-148a 048 0.001 - -

miR-185a miR-185a 052 0.0003 - -

PTGIS PTGIS 0.5 0.0002 - -

ADRB2 ADRB2 0.94 <1x107 - -
miR-148a vs PTGIS -0.36 0.016 -0.36 0.012
miR-185a vs ADRB2 -043 0.003 -046 0.001
miR-185a vs rs1220 032 0.029 039 0.006

The correlation coefficient (r) and statistical significance (p) of the comparisons between Q-PCR data and the original microarray data are shown. Analyses were

based on the samples for which RNA was available (n =53).
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differentiation [35], significantly downregulates the ex-
pression of multiple VIP genes (FDR < 0.05), including
F5, ADRBI, GSTP1, KCNH2, KCNJ11, NQOI, and
PTGIS. In addition, we have shown that these important
pharmacogenes are significantly enriched for large
miRNA regulatory effects in liver, compared to genome-
wide expectation.

We found, in a gene set enrichment analysis, that the
genes with the most significant negative correlations
with miRNAs in liver were enriched for cell adhesion
molecules. Regulation of cell adhesion molecules has
been shown to play a role in the pathogenesis of many
human diseases [36] as well as in normal cellular and or-
ganismal homeostasis [37]. A growing body of literature
(for review, see Commentary in [37]) has demonstrated
the crucial role of miRNAs in four major adhesion pro-
cesses: cytoskeletal dynamics, cell-cell adhesion, cell-

matrix adhesion, and extracellular matrix; interestingly,
as Robert Weinberg et al. [37] noted, those miRNAs that
target genes belonging to more than one of these adhe-
sion processes are notably the same miRNAs that have
been implicated in various human diseases [38-40].

Our study demonstrates that miRNA expression in hu-
man liver has a significant genetic component. Most in-
vestigations of the effect of genetic variation on miRNAs
have so far been focused on genetic influence (e.g., 3’
UTR SNPs) on miRNA target site recognition. Our
study sought evidence for the role of genetic variation in
modulating miRNA expression variation.

Importantly, our findings can be integrated into stud-
ies of complex phenotypes from genome-wide associ-
ation studies and sequencing efforts. We investigated
published associations between genetic variation and
disease susceptibility or quantitative traits from the
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NHGRI repository. For example, we identified two SNPs,
rs4598195 and rs4730276, that have been found to be
associated with ulcerative colitis [41,42] and that predict
the expression of hsa-miR-629% remarkably, hsa-miR
-629 has been independently found to be differentially
expressed in ulcerative colitis [43]. Two independent
SNPs, rs7191888 on chromosome 16 and rs10259085 on
chromosome 7, are reported associations with multiple
sclerosis [44] and associated with the expression of hsa-
miR-126* and hsa-miR-126 respectively in our dataset. A
SNP rs6085920 has been associated with serum uric acid
[45] and is associated with the expression of miRNA
hsa-miR-141, which has been proposed as a therapeutic
target for the prevention of progressive kidney disease
[46].

In a similar vein, we systematically investigated pub-
lished clinical pharmacogenetic associations for their
role in regulating miRNA expression. A SNP rs4888024
was found to be associated with end-of-induction min-
imal residual disease in childhood acute lymphoblastic
leukemia from 2 independent cohorts and higher metho-
trexate clearance [47]. Leukemias with rearrangement of
the MLL gene have been shown to be characterized by
the absence of hsa-miR-340 expression [48]. Our miR-
eQTL data support a relationship (p = 8.5x10™*) between
rs4888024 and the expression of hsa-miR-340. Further-
more, a SNP rs730012 (in LTC4S) has been found to be
associated with exacerbation rates in asthma patients
treated with montelukast [49]. Our data support a rela-
tionship between this SNP and the expression of miR-
146b (p=3.89x10™), which has been implicated in
asthma pathogenesis in murine models of acute and
chronic asthma [50]. As the detailed mechanisms under-
lying numerous genotype-phenotype correlations in both
disease genomics and pharmacogenomics remain largely
unknown, our study provides important hypotheses for
future investigations. To this end, we make the results of
our study available to the scientific community through
an online public resource [51].

Using Q-PCR, we were able to confirm the expression
of two miRNAs and two mRNAs, the inverse correla-
tions between these miRNAs and mRNAs, and an iden-
tified miR-eQTL, despite the limited sample size due to
the availability of RNA. Although the biological interac-
tions between the miRNAs and the mRNAs will require
extensive experimental validation (e.g. cloning, transfec-
tion etc.), our study generates, in aggregate, numerous
hypotheses that warrant continued investigations and
that may have substantial impact on the study of human
diseases as well as on pharmacogenetics.

Conclusion
Our comprehensive catalog of miR-eQTLs in liver sug-
gests numerous functional links to important disease
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traits and drug response phenotypes. The discovery of
genetic variations that influence miRNA expression (and
thus the expression of mRNA targets) facilitates a gen-
omic annotation approach that is likely to lead to more
robust associations between variants and complex hu-
man phenotypes.

Methods

mRNA expression analysis

Gene expression profiling in liver was done on 206 sam-
ples. The liver samples were mostly derived from donor
livers not used for whole organ transplants. The study
described here was made possible by liver samples from
deceased anonymous individuals; thus, for the purpose
of this study, the utilized livers did not involve “human
subjects.” Genotyping on these samples was performed
on the Illumina Human 610 quad beadchip platform
(GPL8887) with Bimbam, as previously described [17].
Array hybridizations using the Agilent 4x44 arrays were
conducted at The University of Chicago according to
manufacturer’s instructions. The quantification of sig-
nals, the normalization approach used, and other quality
control procedures performed as well as the subsequent
mRNA-level analyses, including the covariate modeling,
surrogate variable analysis [52], and eQTL mapping,
were previously described [17]. The mRNA data have
been deposited into Gene Expression Omnibus
(GSE28893).

Samples

MiRNA expression was measured in 79 of the liver sam-
ples using the Exigon miRCURY™ LNA Array v10.0 (for
approximately 850 miRNAs) (Exiqon, Inc., Denmark).
These 79 samples were a subset of the 206 liver tissue
samples used for the mRNA expression profiling. The
collection of samples from the Liver Tissue Cell Distri-
bution System (funded by NIH #NO01-DK-7-0004/
HHSN267200700004C and by the Cooperative Human
Tissue Network) was approved by the institutional re-
view boards (IRBs); The University of Chicago IRB also
approved the use of the samples for the study described
here.

miRNA expression profiling

Total RNA was extracted using TRIzol reagent according to
manufacturer’s instructions (Invitrogen, Carlsbad, CA),
followed by RNeasy Mini Kit cleanup (Qiagen, Valencia,
CA). Cleanup protocol was modified to preserve microRNA
(modification instructions provided by Exiqon). Sample
RNA quality control was performed using Bioanalyzer2100.
In addition to the rRNA ratio (s28/s18), the bioanalyzer
evaluates the quality of the RNA using RNA Integrity Num-
ber (RIN); RIN >7 was used as threshold. Array hybridiza-
tions were performed by Exiqon. Quantified signals were
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background corrected through normexp with offset value 10
based on a convolution model [53]. Normalization of quan-
tified signals was done using the global Lowess (LOcally
WeEighted Scatterplot Smoothing) regression algorithm [54].
Quantified miRNA expression levels were log,-transformed.

miRNA-mRNA associations

Linear regression analyses were performed between the
log,-transformed miRNA (n =277) expression and the
quantile-normalized mRNA (n = 19,749) expression. The
distribution of p-values for those comparisons with a
negative correlation coefficient was plotted, showing an
enrichment towards low p-values for the miRNA-mRNA
correlations. For multiple testing adjustment, an FDR
approach was used [19].

miRNA eQTL mapping

We conducted genome-wide association studies to map
miRNA expression to genomic loci as miRNA eQTLs
(miR-eQTLs). We had performed imputation on the 206
samples (and thus on the subset [n=79] of miRNA sam-
ples) to increase the number of interrogated SNPs, as pre-
viously described [17]. Each miRNA expression
phenotype, considered as a quantitative trait, was tested
for association with genome-wide markers (n = 1,707,239)
using linear regression. In the covariate modeling, age,
sex, and the first 3 (genotype-based) principal components
were used as covariates if they were associated with the
miRNA expression trait. In the QTL mapping, we filtered
for SNPs that failed to meet the minor allele frequency
threshold of >15% and showed significant deviation from
Hardy-Weinberg equilibrium (Fisher’s exact test, p<
0.001). To ensure the robustness of our findings to the
presence of unknown hidden factors, we utilized the prob-
abilistic estimation of expression residuals (PEER) frame-
work [55], which infers hidden determinants of expression
levels and generates a residual expression profile. From
the diagnostic plot of the factor relevance [55], we used 4
inferred factors and performed an eQTL scan on the re-
sidual dataset. For the miRNAs considered in this study,
the median correlation between the pre- and post- hidden
factor adjusted miRNA levels is 0.86 (with minimum cor-
relation of 0.70 and maximum of 0.996).

Enrichment analyses

To test for enrichment of mRNA eQTLs (or
pharmacogenetic associations) among the miR-eQTLs,
we conducted simulations as previously described [4].
Briefly, we generated 1000 sets of SNPs matching the al-
lele frequency distribution of the miRNA-associated
SNPs. For each such set, we determined the number of
mRNA-associated SNPs (at a given p-value threshold).
The overlap of each set with the list of mRNA-
associated SNPs vyields an empirical null distribution,
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allowing us to determine the expected overlap count.
The proportion of the simulated sets with overlap count
that matches or exceeds the actual observed overlap be-
tween the miRNA-associated SNPs and the mRNA-
associated SNPs provides an empirical p-value for the
enrichment.

Q-PCR Confirmation

To confirm the expression of select miRNAs and
mRNAs, the correlations between the miRNAs and
mRNAs, and the miR-eQTLs, quantitative PCR (Q-PCR)
studies of two miRNAs (miR-148a and miR-185a) and
two mRNAs (PTGIS and ADRB2) were conducted. We
performed correlation analyses between the Q-PCR and
microarray data, between the miRNAs and mRNAs, and
between the miR-eQTLs and the miRNAs. The Q-PCR
confirmation was performed in the samples for which
total RNA was still available (n=53). Q-PCR for
miRNAs was performed with Tagman MicroRNA Assays
(Invitrogen, CA, USA) using ViiA™ 7 Real-Time PCR
System (Invitrogen) according to the manufacturer’s in-
structions. The U6 gene (RNU6B) was used as an in-
ternal control. Q-PCR for the two mRNA genes was
conducted using iQ™ SYBR® Green Supermix (Bio-Rad,
CA, USA) according to the protocol developed in our
previously study [56]. The ribosomal 7185 RNA gene was
used as an internal control for the normalization of the
mRNA expression. Primer sequences for PTGIS and
ADRB2 genes are: PTGIS_F: 5'-CAGCTCCAAGTCC
AAGTGCA-3’, PTGIS_R: 5'-CACTGCCTGGGGAGG
AGTTAT-3’; and ADRB2_F: 5'-GGACTTCCATT
GATGTGCTGT-3', ADRB2_R: 5'-GTCAGCAGGCTC
TGGTACTTG-3', respectively. Annealing temperature
used for the Q-PCR reactions for both genes was 65°C.
The relative expression levels between the quantified
miRNA or mRNA genes and the respective internal con-
trol genes were used in the data analyses.

Correlation analyses were conducted using the SPSS
20.0 program (SPSS Inc, IL, USA), and data were
plotted using Graphpad Prism 6.0 (Graphpad Software,
CA, USA). P<0.05 was used as a cut-off for statistical
significance.
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Additional file 1: Figure S1. A heatmap illustrating a two-way
hierarchical clustering of miRNAs and samples.

Additional file 2: Table S1. Top miRNA-mRNA associations in liver.

Additional file 3: Table S2. The most significant MiIRNA-MRNA
associations and overlap with computational miRNA prediction
approaches.

Additional file 4: Figure S2. The miRNA-associated SNPs are more
likely to be mRNA-associated than a random set of allele frequency
matched SNPs.
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Additional file 5: Table S3. NHGRI Catalog SNPs and miRNA
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Additional file 6: Table S4. Significant associations between miRNAs
and VIP genes.

Additional file 7: Figure S3. A comparison of miRNA effect on VIP
genes and the global distribution of effect sizes for the negative
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pharmacogenetic variants and the remaining expressed miRNAs.
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