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Abstract

Background: Technical improvements have decreased sequencing costs and, as a result, the size and number of
genomic datasets have increased rapidly. Because of the lower cost, large amounts of sequence data are now
being produced by small to midsize research groups. Crossbow is a software tool that can detect single nucleotide
polymorphisms (SNPs) in whole-genome sequencing (WGS) data from a single subject; however, Crossbow has a
number of limitations when applied to multiple subjects from large-scale WGS projects. The data storage and CPU
resources that are required for large-scale whole genome sequencing data analyses are too large for many core
facilities and individual laboratories to provide. To help meet these challenges, we have developed Rainbow,
a cloud-based software package that can assist in the automation of large-scale WGS data analyses.

Results: Here, we evaluated the performance of Rainbow by analyzing 44 different whole-genome-sequenced
subjects. Rainbow has the capacity to process genomic data from more than 500 subjects in two weeks using
cloud computing provided by the Amazon Web Service. The time includes the import and export of the data using
Amazon Import/Export service. The average cost of processing a single sample in the cloud was less than 120 US
dollars. Compared with Crossbow, the main improvements incorporated into Rainbow include the ability: (1) to
handle BAM as well as FASTQ input files; (2) to split large sequence files for better load balance downstream; (3) to
log the running metrics in data processing and monitoring multiple Amazon Elastic Compute Cloud (EC2)
instances; and (4) to merge SOAPsnp outputs for multiple individuals into a single file to facilitate downstream
genome-wide association studies.

Conclusions: Rainbow is a scalable, cost-effective, and open-source tool for large-scale WGS data analysis. For
human WGS data sequenced by either the Illumina HiSeq 2000 or HiSeq 2500 platforms, Rainbow can be used
straight out of the box. Rainbow is available for third-party implementation and use, and can be downloaded from
http://s3.amazonaws.com/jnj_rainbow/index.html.

Keywords: Cloud computing, Whole genome sequencing, Single nucleotide polymorphism, SNP, Next generation
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Background
High-throughput next-generation sequencing (NGS)
technologies from Illumina (San Diego, CA, USA), Life
Technology (Carlsbad, CA, USA), and Roche/454
(Branford, CT, USA) have evolved rapidly and are re-
shaping the scope of genomics research [1-3]. Technical
improvements have greatly decreased sequencing costs
and, as a result, the size and number of datasets have
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increased dramatically. The lower costs mean that se-
quence data are being produced more often by small to
midsize research groups. This trend is likely to continue
as newer generation sequencing technologies keep driv-
ing costs down [4]. The increasing volume of data has
enabled the rapid adoption of whole-genome sequencing
(WGS) to enhance drug research and development,
which has led to a significant increase in the need for
computational methods and bioinformatics tools [5,6].
For example, deep sequencing (30–60× fold coverage) of
the entire human genome on an Illumina’s HiSeq 2000
platform typically generates billions of 100-bp short
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reads, and the corresponding FASTQ files can be as
large as 460 gigabytes (GBs). For a WGS project
consisting of 50 subjects, 20 terabytes of disk space are
required to store the raw reads alone. The data storage
and CPU resources needed pose a huge practical chal-
lenge for data analyses in a local environment.
Fortunately, in recent years, cloud computing has

emerged as a viable option to quickly and easily acquire
the computational resources for large-scale data analyses
[7-9]. Cloud computing offers network access to compu-
tational resources where CPU, memory, and storage are
accessible in the form of virtual machines (VMs). Using
these VMs eliminates the need to build or administer
local infrastructure while addressing the challenges in-
volved in the rapid deployment of computing environ-
ments for bioinformatics. In addition, cloud computing
offers machines with different hardware and software
specifications, including large-memory machines, fast-
CPU machines, and abundant disk space. In addition,
users can select and configure VMs to meet their differ-
ent computational needs. More importantly, cloud com-
puting can provide storage and computation at a far
lower cost (both up-front costs and on-going costs) than
resources that are often dedicated to specific projects.
With the massive economies of scale, cloud-computing
providers are continually driving costs down. This has
led to considerable enthusiasm within the bioinformatics
community for the use of cloud computing for NGS se-
quence analyses [10]. Several cloud-based bioinformatics
applications and resources have been developed specific-
ally to address the challenges of working with the very
large volumes of data generated by NGS technology.
Cloud-based bioinformatics software include CloudBurst
[11], Crossbow [12,13], Myrna [14], and CloVR [15].
Our focus has been on identifying genetic variations

from WGS data, mainly single nucleotide polymor-
phisms (SNPs). To do this, all the short reads are aligned
to a human reference genome and then SNP calls are
made. A few open-source applications are available for
mapping large numbers of short reads to reference se-
quences, including Bowtie [16], SOAP [17], and BWA
[18]. These tools were designed initially for implementa-
tion on a single compute node or on a local workstation,
and generally require a long running time even with
multiple threads, making them impractical for process-
ing a large number of samples. However, when a soft-
ware program is executed in a compute cluster in which
many processors work in parallel, the calculations can
be completed in significantly less time. We used Cross-
bow [12], which is a Hadoop-based [19] parallel pipeline
for genomic analysis, to search for SNPs using cloud
computing. Crossbow uses Bowtie [16] and SOAPsnp
[20] for alignment and SNP calling, respectively. Cross-
bow harnesses cloud computing to efficiently and
accurately align billions of reads and call SNPs in a few
hours. Data from an over 35× coverage of a human gen-
ome can be analyzed by Crossbow in three hours for 85
US dollars using a 40-node, 320-core cluster hosted in
the Amazon cloud. When Crossbow was applied to large
WGS projects in which multiple subjects were se-
quenced, various limitations were observed. The focus of
this paper is to describe the development of Rainbow to
address these limitations, and to demonstrate its prac-
tical usage by analyzing the genomic sequencing data
from a large number of subjects in the Amazon cloud.

Implementation
Gaps and challenges for large-scale WGS analysis using
cloud computing
A major challenge with WGS analysis in the cloud is the
process of transferring large data files. The raw sequence
data generated by large-scale WGS studies are generally
multiple terabytes (TB) in size. It is impractical to trans-
fer this data to the Amazon cloud via a typical network
connection. Amazon Import is an efficient service for
uploading large volumes of data to the Amazon S3
(Simple Storage Service) platform [21]. Users can ship
multiple hard drives containing their data to Amazon via
FedEx. Amazon then copies the data directly to S3. This
process usually takes two to three days. After the data
are uploaded to S3, the large files still need to be trans-
ferred between the S3 platform and the Amazon’s EC2
(Elastic Cloud Compute) instance [22]; this remains a
practical challenge that is yet to be resolved. Currently,
Amazon does not offer a built-in command line tool to
facilitate the high-throughput transfer of large files be-
tween S3 and an EC2 instance.
Crossbow uses the s3cmd command line tool to down-

load data from S3 [23], but s3cmd cannot handle data
files larger than 5 GB. A typical FASTQ file for WGS is
a few hundred gigabytes, much larger than the limit for
s3cmd. [Author’s note: at the time of writing, a new
alpha version of s3cmd was released that addresses the 5
GB limit.] Therefore, FASTQ files have to be split into
smaller files for Crossbow runs. When Crossbow is exe-
cuted in a cluster, it loads sequence data in multiple files
in parallel to multiple nodes. Thus, file splitting reduces
the data transfer time when Crossbow is run in a cluster.
We developed a data pre-processing Python script that
automatically splits large FASTQ files into smaller files
and generates the corresponding manifest files as inputs
to Crossbow runs.
Multiple EC2 instances can be launched in Amazon to

split raw sequence data files in parallel. An EC2 instance
might fail, crash, hang, or run away, which is the second
challenge for Rainbow, namely, managing and monitor-
ing multiple EC2 instances in the Amazon cloud. For ex-
ample, when 100 EC2 instances are launched in the
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cloud, it is not practical to manually monitor this num-
ber of remote instances by logging into them one by
one. To be useful, Rainbow should be able to monitor
and detect some common hardware and network
failures, and respond accordingly. To manage large-scale
WGS data analysis in the cloud it is necessary to keep
track of the progress and status of the application’s exe-
cution, and collect and record runtime metrics such as
processing times, transfer times, and file sizes. To ad-
dress this issue, we developed a data pre-processing
Python script to log the necessary information for moni-
toring and to store the logs in S3. The script also per-
forms automated management to ensure no common,
foreseeable errors occur; if they do, the script can handle
them appropriately. Take data transfer as an example.
Data transfer from S3 to EC2 can sometimes fail because
of network congestion in the cloud. When this occurs,
instead of immediately terminating the EC2 instance, the
script waits for several minutes before re-fetching the
data. Other similar examples of automated management
to handle common problems encountered during devel-
opment and testing have been built into the script.
The third challenge for Rainbow is the aggregation of

SNPs from multiple samples in a WGS project. The out-
puts from SOAPsnp for the sequences from a single sub-
ject are chromosome-based plain text files in which each
SNP is annotated in detail. Unfortunately, the SOAPsnp
output is not in a standard format, making it difficult for
other genome-wide association studies (GWAS) tools
such as Plink [24] to use the data. Identification of SNPs
is one of the first steps in a WGS project. Other tools
are used in downstream analyses to understand the sig-
nificance of the identified SNPs. To address this prob-
lem, we developed a Perl script that can aggregate all the
SNPs from multiple samples and merge them into
chromosome-based genotype files, thereby allowing the
files to be used as inputs to other GWAS tools.
The fourth and final challenge for Rainbow is the de-

livery of data from sequence providers. No standard
has been set for providers, so data can be delivered in a
variety of different formats. Raw sequence data are
usually delivered as FASTQ files by shipping multiple
hard drives to the customers. However, sequence pro-
viders might run their analysis pipelines automatically
after sequencing and deliver BAM files to the cus-
tomers. (BAM is a binary version of a SAM (Sequence
Alignment Map) file; SAM is a tab-delimited text file
that contains sequence alignment data.) This reduces
the number of multiple hard drives that are required
for the data from large sequencing projects because a
BAM file is roughly one-third the size of the corre-
sponding FASTQ file. In a BAM file, all the raw reads
have been aligned, but customers may want to redo the
mapping using a different alignment program or a
different reference genome (for example, the hg19
version of the human assembly instead of the hg18
version). When raw data are stored in the BAM format,
the raw sequence reads first have to be extracted using
Picard [25], and then re-aligned with Bowtie [16] or
another alignment tool. Rainbow can use both BAM
and FASTQ files as input and extracts sequence reads
from BAM files on the fly.
Cloud as the execution environment for Rainbow
Many CPU hours are required to align raw reads in
large datasets to a reference genome. For a subject with
60× sequencing coverage, it takes about two weeks to
map 2 billion reads using Bowtie [16] on a local Linux
machine without parallel processing. On a single
machine, it would take about three years to align all
the reads in a WGS project consisting of 50 subjects.
In principle, it is possible to set up a local high-
performance computing cluster to meet the computa-
tional and storage challenges of large-scale WGS data
analysis; however, this option is not always available.
Furthermore, this option cannot be scaled up or down
quickly to meet the needs of different sequencing
projects. Cloud service providers give customers on-
demand access to a wide range of cloud infrastructure
services irrespective of the size of the data, and charge
only for the resources that are actually used. Cloud
service providers offer virtually unlimited storage and
CPU resources, and provide a computational environ-
ment that is ideally suited to large-scale WGS data
analyses.
We chose to build Rainbow using the Amazon Web

Services as the cloud provider for the following rea-
sons: (1) S3 centralizes data storage, including inputs,
intermediate results, and outputs from every computa-
tional step in Rainbow, and stores the data perman-
ently. A variety of tools are available to access the data
stored in S3, such as S3Fox, a web browser plug-in
[26], and s3cmd, a command line tool [23]. S3 provides
virtually unlimited storage space for cloud computing,
and data in S3 are stored as multiple copies. Multiple
data copies and redundancy guarantee the safety of
data in Amazon’s cloud. The objects in S3 seem to be-
long logically to the same folder, but they are not
necessarily on the same physical device (a hard drive
or a file system). All objects in S3 have unique identi-
fiers and can be fetched in parallel without input/out-
put (I/O) congestion. This parallelism is critical when
multiple instances or clusters are uploaded to or
downloaded simultaneously to files in S3, and EC2
instances or clusters requested by the user can be re-
leased after the computational tasks are complete, and
the user no longer needs to pay for those resources.
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Manifest file and name convention makes the use of
Rainbow easy
To support the centralization of all data files and to
manage different types of files in S3 in an automated
fashion, we used a master manifest file and naming con-
vention. For a large WGS project, the manifest file is the
only file that a user needs to prepare to run Rainbow. A
master manifest file is a plain text file used to describe
all subjects in a WGS project. Each subject has a corre-
sponding entry in the manifest file. The format for each
record is:

Test1 s3://test.bucket/test1.bam s3://test.results/
Test2 s3://test.bucket/test2_1.fastq; s3://test.bucket/

test2_2.fastq s3://test.results/

Each entry consists of three fields separated by spaces
or tabs: (1) a unique identifier; (2) locations of the raw
reads in S3; and (3) an output folder in S3. The raw
reads can be in either BAM or FASTQ files. The naming
convention that we have used, together with the unique
identifier for each genome, control how all the inter-
mediate and result files are named, where they are
stored, and how they are logically organized in S3. Each
individual step in the Rainbow workflow uses this single
manifest file as input, thus guaranteeing that all files are
named and stored consistently. This process ensures that
naming conflicts or overwriting of any file associated
with another subject is avoided.

Merging SNP outputs for multiple subjects
Individual SNP records generated using SOAPsnp are in
SOAPsnp output format, namely, one SNP per line with
several tab-separated fields per SNP. The fields include
SNP coordinate information, subject genotype, quality
score of subject genotype, the best base and the number
of uniquely aligned reads corroborating the best base,
and the second best base and the count of all aligned
reads corroborating the second best base. For each sub-
ject, the SNPs are organized into one gzipped result file
per chromosome, and the SNP records are sorted based
on their coordinates on the chromosome. We developed
a merge-sort-based algorithm to merge the SNPs
chromosome by chromosome. When merging SNPs
from multiple subjects, we wanted to ensure that only
high-quality SNPs were retained for downstream ana-
lysis. The criteria that we used to define a quality SNP
were: (1) the “quality score of subject genotype” attribute
is greater than 13, giving at least 95% confidence that
the genotype is correct. The number 13 was calculated
using the formula − 10 * log(1 − 95%); and (2) at least
two uniquely aligned reads corroborate both the best
and the second best bases. During the SNP merging
process, there is no need to load all the SNPs into
memory at once. As a result, our algorithm has a very
small memory footprint, and can merge SNPs from a
very large number of subjects. The merged genotypes
are stored as plain text files with one row corresponding
to one SNP marker, and with each column correspond-
ing to one sample.

Results
Description of Rainbow
The workflow of Rainbow is shown in Figure 1. A user
first ships multiple hard drives to Amazon via FedEx,
and Amazon copies the data to S3 directly. This process
typically takes two to three days. After the BAM or
FASTQ files have been uploaded to S3, they can be
processed in parallel by launching multiple EC2 in-
stances or clusters in the cloud. When the analysis is
complete, the results can be downloaded directly or
exported back via Amazon Export, which takes an add-
itional two to three days.
There are four major steps in WGS data analysis

(Figure 2). Step 1, the data pre-processing step, auto-
mates (1) the extraction of raw reads from BAM files;
(2) the splitting of large FASTQ files into smaller files;
and (3) the generation of manifest files as inputs to
Crossbow. In step 1, some user data are passed to the
EC2 instance through the Cloud-init mechanism [27].
This user data is an executable shell script that is re-
sponsible for downloading the pre-processing Python
code from S3. The Python script is responsible for
software installation, system configuration, fetching data
from S3, extracting raw reads, splitting files, and uploading
all the results to S3. Steps 2 and 3 are performed by Cross-
bow and are responsible for mapping reads to the reference
sequence and for SNP calling. A Perl script is used to parse
a master manifest file, prepare the Crossbow command
line, and launch the Crossbow run in the cloud for each
subject. Step 4 uses a Perl script that was developed to con-
solidate the SNPs for all samples.

A practical test run
We applied Rainbow to analyze the 44 subjects listed in
Table 1. All 44 subjects were pair-end sequenced on
Illumina HiSeq 2000 platforms. The estimated insert size
was approximately 300 bp. Each subject generated 1.1–2
billion 100-bp short reads. The largest BAM file was 190
GB, and the corresponding FASTQ files were 460 GB (2
× 230 GB). Sequencing coverage ranged from 30 to 60×.
All the raw data were in BAM format and delivered to
us on four 2 TB hard drives. We shipped the hard drives
to Amazon’s Import Service and loaded the data files to
S3. Then, we launched 44 m1 large instances in the
Amazon cloud to pre-process the raw data in parallel
and to upload all split files to S3. After data pre-
processing, 44 clusters were launched in parallel in the



Figure 1 The Rainbow pipeline. S3 centralizes data storage, including inputs, intermediate results, and outputs. A typical scenario to run
Rainbow to analyze large-scale WGS data is import → execute → export. Alignment and SNP call are performed by Crossbow in a cluster with
multiple nodes. AWS, Amazon Web Service.
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cloud to align the reads and make SNP calls. Finally, the
SNPs from all 44 subjects were merged and a master
chromosome-based genotype file was generated for fur-
ther analysis.
The total cost of shipping the four 2 TB hard drives

was 150 US dollars per 2 TB hard drive including (a) 30
US dollars for FedEx shipping, (b) a flat 80 US dollars
charge per device, and (c) 42 US dollars for the data
loading fee. The additional charge for data loading was
2.49 US dollars per data-loading-hour, and the actual
cost is dependent upon the I/O speed of the storage de-
vice and the data size. It took one business day to ship
the hard drives to Amazon by FedEx, and Amazon
started to upload the data within 24 h of receiving the
hard drives.
The running environments were as follows. For step

#1, we chose the Amazon m1.large instance, which has
two CPUs, 7.5 GB memory, and two 420 GB instance
Figure 2 The four main steps in WGS data analysis using Rainbow. St
multiple instances or clusters. Crossbow performs both the alignment and
drives. For each instance, an extra 220 GB EBS (Elastic
Block Storage) [28] volume was requested to store the
raw BAM file. When running Picard [25], 6 GB memory
was allocated to the Java Virtual Machine. Picard read
the BAM file from EBS, and output pair-ended se-
quences into two FASTQ files (Fastq_1 and Fastq_2)
stored in the two instance drives. When splitting files,
Fastq_1 and Fastq_2 were processed in parallel because
an m1.large instance has two CPUs, and Fastq_1 and
Fastq_2 were logically in different instance drives. All re-
quested resources (CPUs/storages) of the m1.large were
used fully, which made it the optimal choice. For steps 2
and 3, each compute cluster had 40 c1.xlarge nodes as
recommended by the Crossbow developers. Each c1.
xlarge node has eight CPUs, 7 GB memory, and 1690
GB instance storage.
The performance of Rainbow is summarized in Figures 3,

4, 5, 6. The relationship between the download time and
4. SNP
Integration 

and Merging

eps 1, 2, and 3 can be executed in parallel in the cloud by launching
the SNP call.



Table 1 Description of the WGS data for 44 subjects and a summary of the detected SNPs

Sample BAM File (GB) FASTQ (GB) #Reads(Millions) Homo_SNPsa Hetero_SNPsb Het2_SNPsc Total_SNPs

SG1226 150 427 1900 1503239 2507716 2105 4013060

SG1227 84 269 1220 1508162 2452631 1768 3962561

SG1229 115 283 1280 1548421 2242797 1480 3792698

SG1230 111 301 1362 1494063 2581379 1906 4077348

SG1231 128 388 1740 1481840 2626852 2138 4120830

SG1232 97 258 1162 1497747 2729469 2468 4229684

SG1233 72 244 1204 1707533 2145142 1710 3854385

SG1234 103 333 1496 1550433 2790889 3233 4344555

SG1235 89 283 1258 1479108 2370792 1465 3851365

SG1236 96 311 1382 1490258 2752238 2800 4245296

SG1237 115 346 1552 1520718 2715088 2983 4238789

SG1238 102 322 1432 1504343 2327337 1457 3833137

SG1239 93 260 1170 1463430 2517434 1596 3982460

SG1240 91 251 1122 1472236 2439010 1599 3912845

SG1241 89 251 1120 1477814 2477763 1617 3957194

SG1242 97 300 1360 1501310 2470358 1856 3973524

SG1243 93 305 1356 1476636 2467669 1646 3945951

SG1244 95 269 1202 1477605 2462121 1613 3941339

SG1245 98 277 1244 1504849 2401576 1716 3908141

SG1246 97 269 1202 1496063 2474375 1747 3972185

SG1248 149 363 1632 1461303 2493556 1876 3956735

SG1249 126 382 1702 1484862 2502888 2005 3989755

SG1250 141 418 1860 1491431 2556946 2249 4050626

SG1251 144 418 1860 1507550 2516188 2161 4025899

SG1252 146 427 1918 1470888 2633297 2108 4106293

SG1253 142 432 1940 1492478 2594146 2158 4088782

SG1254 127 374 1682 1527922 2504784 1971 4034677

SG1255 138 392 1760 1472663 2622476 2130 4097269

SG1256 143 420 1872 1470631 2666175 2235 4139041

SG1257 122 381 1712 1481487 2555804 2118 4039409

SG1258 112 284 1278 1608618 2267405 1681 3877704

SG1259 124 330 1492 1463934 2661886 1991 4127811

SG1260 133 307 1382 1523274 2414508 1616 3939398
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Table 1 Description of the WGS data for 44 subjects and a summary of the detected SNPs (Continued)

SG1263 112 349 1552 1470360 2653711 2075 4126146

SG1264 122 376 1690 1486174 2631507 2034 4119715

SG1265 101 307 1378 1489230 2495349 1800 3986379

SG1266 118 352 1576 1479540 2552931 2014 4034485

SG1267 99 310 1382 1486385 2490343 1874 3978602

SG1268 105 334 1488 1473782 3225627 2422 4701831

SG1269 114 358 1608 1512683 2477654 2043 3992380

SG1270 108 298 1340 1557762 2692982 2656 4253400

SG1271 127 388 1742 1516008 2596244 2149 4114401

SG1272 87 256 1134 1406043 2820949 1743 4228735

SG1273 183 461 1950 1488525 2393320 2188 3884033
aHomo_SNPs are SNPs where both alleles are the same but different from the reference.
bHetero_SNPs are SNPs where one allele is the same as the reference and the other allele is different.
cHet2_SNPs are SNPs where both alleles are different from the reference, and different from each other.
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BAM file size is shown in Figure 3. Outliers of the trend
line reflect fluctuations of network traffic. Downloading
was performed using boto [29], an open source Python
tool for easy connection to the Amazon Web Service. On
average, a data transfer speed of 1.3 GB per min was
achieved. Picard [25] comprises Java-based command-line
utilities that manipulate BAM and SAM files. One of the
utilities was used to extract raw sequence reads from
BAM/SAM files. The more reads in a BAM file, the longer
it takes to extract them, and the linear relationship be-
tween Picard processing time and the number of reads
represents this (see Figure 4). It usually takes one to two
days for Picard to complete a run on an m1.large node; it
would not have been faster if another more powerful EC2
instance had been chosen. In addition, there is no way to
run Picard in parallel to process a BAM file. The output of
a Picard run is two large FASTQ files. It takes another
eight to 16 h for FASTQ file splitting, compression, and
uploading to S3. Step 1 will of course take much less time
if the raw reads are in FASTQ files rather than in a BAM
file.
Steps 2 and 3 are much more time consuming than

step 1, but they can be completed in a much shorter
time in a cluster with multiple nodes (see Figures 5 and
6). In a 320-CPU cluster, the alignment of billions of
reads takes between 0.8 and 1.6 h, whereas, on a local
resource, it could take up to 12 days. The linear
relationship shown in Figure 5 is accurate because the
sequence data blocks in the HDFS (Hadoop Distributed
Filesystem) [30] were physically local to the nodes that
processed them, which reduces virtual I/O delays. Cross-
bow runs rarely failed because the Hadoop-based cluster
was built to run on commodity hardware, and Hadoop
has built-in mechanisms for failover and disaster recov-
ery. A Hadoop-based cluster not only reduces the run-
ning time by processing the data in parallel, but also
significantly improves the robustness of applications.
The SOAPsnp running time (see Figure 6) ranged from
1 to 1.8 h, which overall, was a little longer than step 2.
The numbers of SNPs identified from the 44 subjects
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Figure 3 Download time from S3 to EC2 instance in the cloud versus
are listed in Table 1. On average, about 4 million SNPs
were identified from a single subject. After combining
the SNPs from all 44 subjects, roughly 15 million unique
SNPs were obtained. It was very rare for both alleles to
be different from the reference sequence, indeed, only a
few thousand SNPs per subject fell into this category
(Table 1).
On average, it cost less than 120 US dollars to

analyze each subject, and the total cost for analyzing
44 subjects was around 5,800 US dollars, including
data import. All EC2 instances and clusters are termi-
nated immediately after the jobs on them finish, and
the large amount of data in S3 can be deleted after data
export to reduce continual charges. No upfront invest-
ment in infrastructure is required and there are virtu-
ally no additional administrative costs involved in
using the Amazon Web Service. More important than
the cost is the ability to scale Rainbow up or down so
that the analyses are accomplished in a short time.
Currently, we are working on a large whole-genome se-
quencing project in which 438 subjects are sequenced.
Rainbow will be able to process the data from these
438 subjects in less than two weeks, including the
physical data import and export with Amazon.
Compared with the 30 years or so it would take to
process this number of subjects sequentially on a local
machine, the time savings of parallel processing
enabled through Rainbow are obvious.
Discussion
Rainbow was built on Crossbow, but the complexity of
the Crossbow command line is hidden, which facili-
tates its use for large-scale WGS analysis in the cloud.
Rainbow has been well tested, and has proven to be ro-
bust and scalable. The implementation is open-source
based, and is available for third-party deployment and
use. Illumina HiSeq 2000 and 2500 are currently the
dominant sequencing platforms, and accordingly, the
default parameters in Rainbow have been optimized
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Figure 4 Running time of Picard versus the number of sequence reads.
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and finely tuned for data generated by these platforms.
User can tailor the parameters for other platforms,
but this is rarely needed in practice. For human WGS
data sequenced on an Illumina HiSeq 2000 or HiSeq
2500 platform, Rainbow can be used straight out of the
box.
The low cost of whole genome sequencing has led to

the rapid adoption of WGS for drug research and
development. To understand the relationship between
SNPs and disease better, and to obtain insights into the
relation between SNPs and drug response, large-scale
sequencing projects are continuously being initiated in
academic institutes and drug companies [31,32]. These
sequencing projects need high-performance comput-
ing capabilities for WGS data analyses. As we have
shown, cloud computing drives down infrastructure
costs both up-front and on an on-going basis, and
offers operational advantages, such as setting up
infrastructure in minutes rather than months, complet-
ing massive computational projects with a large
number of resources quickly, and scaling the architec-
ture up and down to provide the required computa-
tional resources.
Analyzing large datasets in the cloud is different

from performing the same analysis in a local
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Figure 5 Running time of Bowtie alignment versus the number of pa
environment. By implementing and running Rainbow
in the cloud, we have learned many valuable lessons.
Here we summarize what we have learned while devel-
oping and testing Rainbow.

� Boot time should be taken into account when new
resources are starting up. It is good practice to give
cloud providers 10–15 min before attempting to use
a newly requested resource.

� It is not trivial to move large datasets around in
the cloud. Users should be prepared to handle
network congestion or failures. When data
transfers fail, it is advisable to wait for 5–10 min
before retrying.

� Cloud providers typically offer a variety of
compute instances to choose from. It is necessary
to understand the bottleneck (CPU, I/O, or
network) for the algorithm that is to be run, and
choose the best option accordingly.

� When large amounts of data are moved between
cloud resources, it is essential to ensure that they
are in the same region or data center.

� It is difficult to debug workflows in the cloud
without heavy logging.
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Conclusions
We have described the motivation and implementation
of Rainbow for large-scale WGS data analyses in the
cloud. Rainbow has the capacity to process more than
500 subjects in two weeks using the Amazon Web
Service, including physical data import and export with
Amazon. The average cost to process a single sample in
the cloud was less than 120 US dollars. In essence,
Rainbow is a wrapper of Crossbow, which can handle
additional challenges in large-scale WGS data analyses.
Compared with Crossbow, the main improvements of
Rainbow include the ability (1) to handle BAM as well
as FASTQ files as inputs, (2) to split large sequence files
for better load balance downstream, (3) to log the run-
ning metrics in data processing and monitoring multiple
EC2 instances, and (4) to merge SOAPsnp outputs for
multiple subjects into a single file to facilitate down-
stream GWAS studies. Rainbow is scalable and easy to
use.

Availability and requirements
Rainbow is available for third-party use. Because it was
built for use with Amazon Web Services, users need to
first set up an Amazon account before launching Rain-
bow from a Linux machine. The source code for Rain-
bow is freely available for download; however, users
need to pay Amazon to run analyses in the Amazon
cloud. Detailed instructions on using Rainbow are avail-
able on the Rainbow website (http://s3.amazonaws.com/
jnj_rainbow/index.html) [33].
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