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Abstract

Background: Many large-scale studies analyzed high-throughput genomic data to identify altered pathways
essential to the development and progression of specific types of cancer. However, no previous study has been
extended to provide a comprehensive analysis of pathways disrupted by copy number alterations across different
human cancers. Towards this goal, we propose a network-based method to integrate copy number alteration data
with human protein-protein interaction networks and pathway databases to identify pathways that are commonly
disrupted in many different types of cancer.

Results: We applied our approach to a data set of 2,172 cancer patients across 16 different types of cancers, and
discovered a set of commonly disrupted pathways, which are likely essential for tumor formation in majority of the
cancers. We also identified pathways that are only disrupted in specific cancer types, providing molecular markers
for different human cancers. Analysis with independent microarray gene expression datasets confirms that the
commonly disrupted pathways can be used to identify patient subgroups with significantly different survival
outcomes. We also provide a network view of disrupted pathways to explain how copy number alterations affect
pathways that regulate cell growth, cycle, and differentiation for tumorigenesis.

Conclusions: In this work, we demonstrated that the network-based integrative analysis can help to identify
pathways disrupted by copy number alterations across 16 types of human cancers, which are not readily
identifiable by conventional overrepresentation-based and other pathway-based methods. All the results and
source code are available at http://compbio.cs.umn.edu/NetPathID/.
Background
Recent high-throughput technologies have enabled re-
searchers to identify genomic alterations that could re-
sult in activation of oncogenes or inactivation of tumor
suppressor genes, and thus disrupt pathways and bio-
logical processes known to contribute to tumor forma-
tion [1,2]. Many anticancer drugs have been developed
to target proteins that act in these cancer-related
* Correspondence: taehyun.hwang@utsouthwestern.edu;
liu.jinfeng@gene.com
5Quantitative Biomedical Research Center, University of Texas Southwestern
Medical Center, Dallas, TX, USA
3Department of Bioinformatics and Computational Biology, Genentech Inc,
South San Francisco, CA, USA
Full list of author information is available at the end of the article

© 2013 Hwang et al.; licensee BioMed Central
Commons Attribution License (http://creativec
reproduction in any medium, provided the or
pathways. Therefore, the precise identification and sys-
temic characterization of altered activities in cancer-
related pathways could accelerate the development of more
effective targeted therapies, and aid in tailoring treatment
to the genetic causes of an individual patient’s cancer [2].
Many large-scale genomic studies have been performed

to define the cancer genome [3-11]. This effort is
epitomized by The Cancer Genome Atlas [12-14] and
its umbrella group, the International Cancer Genome
Consortium [15]. Typically, in these studies, enrich-
ment analysis was performed to identify statistically
significant overlap between the list of altered genes and
pathways or predefined gene sets [16-19]. For example,
publications based on TCGA data have identified disrupted
pathways in many cancer types, and these studies
attempt to integrate sequence data, expression data,
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epigenetic data and copy-number data to get a wholistic
view of the cancer genome [12-14].
In more advanced network analysis, altered genes (e.g.

differentially expressed genes or mutated genes) are first
projected onto an interaction network, and then clus-
ters are found in this network. Ideker and colleagues
pioneered this approach [16] and later extended the
approach to identify network signatures (e.g. pathways,
subnetworks, or functional modules) [20-27]. Similarly,
pathway-based methods have been developed to incorp-
orate interactions of member genes in known bio-
logical pathways to measure activities of pathways. These
pathway-based methods were shown to be more ac-
curate at identifying cancer-related pathways compared to
overrepresentation-based enrichment analysis [22,28].
A limitation is that these current methods are not

designed to determine which pathways are disrupted
in particular cancer types, and which are commonly
disrupted across many types of human cancers. In this
study, we describe an integrative network-based ap-
proach to identify pathways disrupted by copy num-
ber alterations in 2,172 cancer patients across 16
different types of cancers. Our approach is based on
the assumption that copy number changes of a gene
will affect the activity of the gene itself and the genes
with which it interacts since amplification or deletion
of genes could alter expression (or functions) of its
neighbor genes in the networks [29]. We define a
disrupted pathway as one whose members (genes) are
directly altered, or they interact (based on the protein-
protein interaction network) with many altered genes
A B

Figure 1 Conceptual models for disrupted pathways. This figure descri
(A) Three out of six member genes in the pathway are significantly altered
set enrichment analysis and pathway-based analysis could identify the path
genes in the pathway are altered in copy number changes. (B) No membe
member genes in the pathway are interacting with many other altered gen
enrichment analysis and pathway-based analysis would fail to identify the
genes with member genes in the pathway. However, by applying a machin
other genes by exploring cluster structures in the protein-protein interactio
pathway, since many member genes in the pathway are interacting with o
alterations could alter the activity (or function) of member genes through
(Figure 1). Using an integrative analysis of copy num-
ber alterations and protein-protein interaction net-
works, our approach infers activity scores of all genes
in the networks and makes use of inferred gene activ-
ity scores to identify pathways that are disrupted. Im-
portantly, while overrepresentation-based enrichment
analysis ignores altered genes not annotated in the
specific pathway being analyzed, our method incorpo-
rates these genes using label propagation based on a
protein-protein interaction database.
In the experiments, we first show the limitation of the

enrichment analysis and current network-based analysis
on DNA copy number, and then demonstrate that, al-
though there are distinct patterns of copy number alter-
ation in specific types of cancer, our method can identify
common pathways disrupted in more than 10 different
types of cancers. Our analysis of common and cancer-
type specific disrupted pathways will lead to a better
understanding of cancer network modules, and suggest
potential therapeutic targets for cancer treatment. We
also provide a network view of disrupted pathways to
show how copy number alteration can disrupt core
pathways that are essential for cancer development and
progression.

Results
Limitation of enrichment analysis and current
network-based analysis on DNA copy number alterations
Although many efforts have been made to build gene set
databases (e.g. KEGG, Biocarta, Reactome, or the Gene
Ontology database), and significant work has been done
bes two conceptual models for inferring activity of disrupted pathways.
by copy number changes. In this case, overrepresentation-based gene
way as an enriched pathway with altered genes, since many member
r gene in the pathway is altered by copy number changes, but
es in the protein-protein interaction network. Existing gene set

pathway as a disrupted pathway, due to the lack of overlapping altered
e learning method, which propagates the activity score of genes to
n network, our approach could identify the pathway as a disrupted
ther altered genes (i.e. significantly altered genes in copy number
interactions).
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to expand the current knowledge of gene functions and
roles in cellular systems, many human genes are not yet
annotated in existing gene set databases. Most notably,
we observed that more than 70% of the genes that are
identified as significantly altered based on copy number
alterations (see Methods) are not annotated in current
pathway databases (Additional file 1: Figure S1). Due to
this low coverage of gene annotation in significantly al-
tered copy number regions, overrepresentation-based
enrichment analyses, and standard pathway-based ana-
lyses are omitting some of the most significantly altered
genes in their analyses. Hence, they provide a limited
analysis of pathway activity that is based on the small
non-representative fraction of altered genes that are cur-
rently annotated in pathway databases.
Previous network-based methods suffer less from in-

complete gene annotations for inferring pathway activity;
they also have difficulty in analyzing pathway activity
across cancers. This is primarily due to the diverse copy
number alteration patterns that exist in different human
cancers. By performing copy number alteration analysis
using Genomic Identification of Significant Targets in
Cancer (GISTIC) [30] in 16 types of cancers, we have
found a diverse spectra of copy number alteration pat-
terns, and show that only a few significantly altered gen-
omic regions are present across multiple cancer types
(Additional file 1: Figure S2). This lack of coherence in
copy number alterations across cancers could lead to the
failure of some network-based methods to identify com-
mon biological pathways affected by copy number alter-
ations. Our method introduced below overcomes this
limitation by using a label propagation technique along
with a protein-protein interaction network that includes
these unannotated gene products.

A network-based approach for discovering disrupted
pathways based on copy number alterations across
multiple cancer types
We developed an algorithm called NetPathID (NETwork
based method for PATHway IDentification) to discover
pathways disrupted by copy number alterations across
cancers (Figure 2). The aim of our approach is to inte-
grate copy number changes of genes with the protein-
protein interaction networks, and incorporate additional
biological knowledge (e.g. pathway databases and con-
served subnetworks across species) to discover disrupted
pathways across human cancers. Our approach assumes
that the activity of a pathway disrupted by copy number
alterations can be quantified by the average of its mem-
ber genes’ activity scores. Activity scores of genes are
computed by a label propagation technique [31] that uti-
lizes the global topological information in the protein-
protein interaction network. This allows us to use genes/
proteins of unknown function when initially assigning
activity scores, and through label propagation, these
scores will affect the activity scores of the annotated
genes/proteins. The label propagation algorithm overlays
the label information (i.e., activity score) on the vertices,
and iteratively propagates scores among the neighboring
vertices. The propagation process will finally converge
toward the unique global optimum minimizing a quad-
ratic criterion. Recently, label propagation and its vari-
ants have been successfully applied in many contexts
including gene function prediction, disease gene prio-
ritization, biomarker identification, and disease outcome
prediction [31-36].
An illustration of NetPathID is provided in Figure 2.

First, we collect a list of genes with significant copy
number alterations in each type of cancer by using
GISTIC. We use this list of altered genes to generate
initial gene activity scores based on the log2 ratio values
of copy number changes of altered genes (Step A in
Figure 2). Second, we overlay initial gene activity scores
on the protein-protein interaction networks, and apply
label propagation to assign activity scores to all other
genes in the protein-protein interaction networks. (Step
B in Figure 2). Finally, we summarize computed activity
scores of member genes in predefined pathways (or sub-
networks) to identify altered activities of the pathways in
each type of cancer (Step C in Figure 2). Larger activity
scores indicate that the pathways are highly disrupted
based on copy number alterations. We repeat these steps
to identify altered activities of pathways for all 16 types
of cancer. This allows us to generate a global map of
pathway activity across cancers (Figure 3). We also provide
a network view of disrupted pathways, which provides a
wholistic impression of how copy number changes influ-
ence core pathways essential for the development and pro-
gress of cancers.
We performed extensive evaluation of NetPathID by

comparing it with overrepresentation-based gene set en-
richment analysis using hypergeometric testing, the
method of Lee et al. [27,28] (Additional file 2). We
found that NetPathID can accurately identify cancer-
related pathways from negative controls (i.e., randomly
generated decoy pathways). We also confirmed that
commonly disrupted pathways identified by NetPathID
are related to cancer biology (see Additional file 2).
Finally, we found that NetPathID is robust with
regards to the bias in the protein-protein interaction
networks (see Additional file 2).

Patterns of disrupted pathways based on copy number
alterations across cancers
We applied our approach to copy number data from 16
types of human cancers, using information from protein-
protein interaction network and predefined annotated
pathway databases (see Methods). Statistical significance
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Figure 2 Overview of NetPathID. This figure describes steps to discover disrupted pathways across cancers. The aim of the approach is to
integrate the copy number data with protein-protein interaction networks to quantify pathway activity for discovering disrupted pathways across
cancers. (A) A list of significantly altered genes residing in copy number regions is generated using GISTIC. (B) We initialize activity scores of
these genes using their average log2 ratios of amplification or deletion in copy number data, and overlay initial gene activity scores on the
protein-protein interaction networks. To fully utilize network topological information, we apply a label propagation algorithm to assign gene
activity scores to all the genes in the protein-protein interaction networks (see “Methods” section). (C) Finally, pathway activity scores are
computed by average activity scores of member genes in each predefined pathway from prior knowledge (e.g. pathway database or conserved
subnetworks in the protein-protein interaction networks cross species). We repeat step (A) and (B) to generate a matrix containing pathway
activity scores from multiple cancer types.
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of the pathway score was assessed through permutation
(Additional file 1: Figure S7). Pathways with significant
Benjamini- Hochberg adjusted p-values were selected
by using a false discovery rate cutoff of 0.005 for
Biocarta, and 0.10 for both the KEGG and Reactome da-
tabases. In addition, to determine if a pathway was sig-
nificantly disrupted in the given cancer type, we further
filtered the selected pathways that were ranked in the
top 20% based on pathway activity scores in each cancer
type. Finally, 488, 456, and 855 (14%, 15%, and 12% of
the total) pathways from Biocarta, KEGG, and Reactome
pathway databases, respectively, were found to be sig-
nificant across 16 types of cancers, and used for further
analysis.

Co-disruption of pathways by copy number alterations in
human cancers
Biological pathways often function cooperatively to con-
tribute to phenotypes such as cancer. Thus, advances in
understanding these pathways and their interconnectiv-
ity will accelerate the development of molecular targeted
therapies that promise to change the practice of oncol-
ogy [37]. We first explored patterns of disrupted path-
ways by using two-way hierarchical clustering to identify
clusters of pathways that are statistically co-disrupted
(Figure 3A). Our analyses identified clear relationships
among disrupted pathways such as telomerase (TEL),
TGF-beta, RB, and P53 pathways. For example, the tel-
omerase pathway is co-disrupted with TGF-beta, ATM
signaling, and CTCF: First Multivalent Nuclear Factor
(CTCF) pathways (Figure 3B (1)). A recent study experi-
mentally validated that the TGF-beta signaling pathway
negatively regulates the telomerase pathway, and other
studies also reported that MDM2, which is a gene in the
ATM pathway, and CTCF both inhibit the expression of
telomerase [38-40]. Another interesting example of co-
disrupted pathways includes ARF, p53, and RB pathways
(Figure 3B (2)). Disruption of the RB pathways could ac-
tivate the ARF pathway, and the activation of ARF could
trigger the p53 pathway, which induces growth arrest
and/or apoptosis [41]. These consistent observations with
previous studies demonstrate that NetPathID is capable of
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Figure 3 Pathway activity view of cancers. (A) Heat map describing the two-way hierarchical clustering of inferred activity of 217 Biocarta
pathways across 16 types of cancers. Each row is a different type of cancer, and each column is a pathway. Color bar represents Z-score
transformation of the activity score of the pathway. Red indicates significantly disrupted pathways, and green indicates pathways that are not
disrupted by copy number alterations. (B) Heat map describing the correlation coefficient of pathway co-disruption (red: positive correlation,
green negative correlation). The top 30 ranked disrupted pathways across cancers are included in the heat map. (C) Zoom-in plots including
cancer-type specific and commonly disrupted pathways. For example, Cytokine, DC (“Dendritic cells in regulating TH1 and TH2 Development”),
and INFLAM (“Cytokines and Inflammatory Response”) pathways are only disrupted in acute lymphoblastic leukemia and myelodysplasia.
Cytokines and inflammatory response, as well as dendritic cells as modulators of immune responses in DC pathway are known for development
of acute lymphoblastic leukemia and myelodysplasia. In contrast to cancer-type specific disrupted pathways, there is a set of commonly disrupted
pathways across cancers. For example, TGFB (“TGF beta signaling”) pathway is one of commonly disrupted pathways across more than 10 types
of cancers. Other commonly disrupted pathways include TEL (“Telomeres, Telomerase, Cellular Aging, and Immortality”), TRKA (or NTRK1)
(“Trka Receptor Signaling Pathway”), CTCF (“First Multivalent Nuclear Factor”), and SPRY (“Sprouty regulation of tyrosine kinase signals”) pathways.
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identifying valid patterns of co-disrupted pathways. Thus,
further analysis of co-disrupted pathways may help to pro-
vide novel insights into the nature of pathway associations.

Common and cancer-type specific disrupted pathways
based on copy number changes across cancers
We further attempted to identify common pathways
disrupted by copy number alterations across cancers.
We used the following strict criteria to define commonly
disrupted pathways: 1) Pathways must have significant
BH-adjusted p-values; 2) Pathways must be ranked
within the top 10% compared to other pathways in each
cancer study based on their activity scores, and; 3) Top
ranked pathways must be present in at least 10 different
types of cancer. Based on these criteria we found an
average of 14 commonly disrupted pathways from KEGG,
Biocarta, and Reactome (Figure 3, and Additional file 3:
Tables S1 and S2). Examples of commonly disrupted
pathways from the Biocarta pathway database include
telomerase, transforming growth factor beta (TGF-Beta)
signaling pathway, NTRK1 (TrkA) signaling and Cell
Cycle pathways. Some of these pathways were already
known to be altered broadly across many cancer types,
such as TGF-Beta [42], Cell Cycle [43] and telomerase
[44]. Other pathways, though, have only been impli-
cated in a few cancers. For example, TrkA signaling is
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known to play a role in neuronal cancers as well as a few
non-neuronal cancers such as medullary thyroid carcin-
oma, lung, pancreatic, ovarian and breast cancers [45].
However, TrkA signaling has not been functionally associ-
ated with cancers such as ALL, GIST, mesothelioma and
renal cancer, which were identified in our analysis. This
could have important implications because therapeutics
have been developed that target TrkA signaling [46].
As we expected, NetPathID identified cancer re-

lated pathways such as the KEGG annotated Pancreatic,
Colorectal, Glioma, Lung, Prostate and Bladder cancer
pathways. Likewise, using the Reactome annotated path-
ways our method identified well known cancer-related
pathways that regulate cell growth, death and proliferation
including the EGFR signaling pathway, NF-kb activation,
and Ras signaling pathway as commonly disrupted across
many types of cancers (Additional file 3: Table S1). Import-
antly, our method also identified pathways that were not
previously considered to be universally disrupted in can-
cers, such as the Adherens Junction and PECAM1 path-
ways [47]. Our analysis found these pathways to be
significant in all 16 cancer types in the KEGG annotated
pathways and Reactome annotated pathways (Additional
file 3: Table S1). These results support the idea of using
novel targeted therapies, such as the monoclonal antibody
targeting PECAM1 [48], in a wider array of cancer types.
In addition to pathways disrupted in the majority of

cancers, we also found that there are sets of pathways
that are only disrupted in specific types of human
cancers (Figure 3C). Some examples include Cytokine
Network (cytokines), Cytokines and Inflammatory Re-
sponse (INFLAM), Dendritic cells in regulating TH1
and TH2 Development (DC) pathways, which are all
only disrupted in acute lymphoblastic leukemia and
myelodysplasia. These disrupted pathways are widely
involved in T cell and B cell activities that are associ-
ated with immune responses, and activation and prolif-
eration of specific differentiated immune cells. Other
cancer-type specific disrupted pathways include the
Sonic Hedgehog/Patched1 (SHH) Receptor Ptc1 Regu-
lates cell cycle (PTC) pathway disrupted in renal and
glioma cancers, and Role of Ran in mitotic spindle
regulation (RANMS) pathway disrupted in colorectal
cancer (Additional file 3: Table S13). These findings are
supported by functional studies which have demon-
strated that inhibition of the Sonic Hedgehog signaling
pathway is known to induce renal cancer, and enhances
the efficacy of targeted therapy in glioma [49,50]. Ran,
which controls the cell cycle through the regulation of
mitotic spindle organization, was shown to be highly
expressed in many cancer types including gastric and
colorectal, and is known for its involvement in malig-
nant transformation and/or the enhanced proliferation
of cancer cells [51].
These observations suggest that commonly disrupted
pathways across many types of cancers could play a
major role in the development of cancers, while the set
of disrupted pathways that are specific to certain types
of cancers could help to characterize these types of can-
cers and provide options for different targeted therapies.
Current pathway databases cover only a small fraction

of human genes. Therefore, although the use of these
pathway databases as prior knowledge helps to define
and identify disrupted pathways, it is possible that there
are many more gene modules as yet undescribed that
contribute to cancer. To tackle this challenge, we obtained
4,620 protein-protein interaction subnetwork modules
that are conserved across different species, and use
them as additional pathway data [52]. The conserved
subnetworks were identified by PathBLAST [53] among
two (or more) species, and cover more than 8,558 pro-
teins (genes). We used NetPathID with these 4,620 sub-
network modules and identified 41 commonly disrupted
subnetworks that are present in at least 10 types of cancer
and are ranked within top 5% in each cancer study (see
Additional file 3: Table S1). This nicely illustrates how
NetPathID is not simply biased to genes in existing data-
bases, and is able to highlight modules of uncharacterized
genes that are worthy of further study.

Commonly disrupted pathways across cancers correlate
with clinical outcomes
We investigated whether we could use disrupted path-
ways discovered by NetPathID to identify subgroups of
patients that correlate with different clinical outcomes,
such as survival. Specifically, we hypothesized that com-
monly disrupted pathways reflect molecular mechanisms
contributing to the biological/clinical behavior of cancers.
Thus, we could use member genes in disrupted pathways
as gene signatures to identify patient subgroups having
different clinical outcomes.
To test our hypothesis we collected gene expression

data with clinical information from four independent
microarray gene expression datasets [54-57]. The genes
used for clustering were the set of 331 genes in the 42
commonly disrupted subnetworks identified by NetPathID.
We identified patient subgroups by visual examination of
the clustering results, and generated Kaplan-Meier curves
for the subgroups (Figure 4). In the lung cancer data set
[56], we found three patient groups, with group C patients
having significantly worse survival outcomes than group A
(logrank test p-value < 0.0000198, Hazard ratio = 1.4910),
with a median survival time of 40 months for group A and
23 months for group C. Similarly, in a breast cancer data
set and two ovarian cancer data sets, we were able to parti-
tion the patients into different groups using the same gene
set, and noted that these patient groups have significantly
different survival profiles (Additional file 1: Figure S9).



Figure 4 Commonly disrupted pathways across cancers correlate with clinical outcomes. (A) Two-way hierarchical clustering of lung
cancer patients using member genes in commonly disrupted pathways. (B) Kaplan-Meier survival plots for the clusters of patient subgroups from
lung cancer microarray gene expression dataset. Colors (Red, Black and Blue) indicate patient subgroups used for Kaplan-Meier analysis.
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These results suggest that the analysis of top ranked
disrupted pathways may allow stratification of cancers
at the pathway level, which could have prognostic value
and possibly aid in diagnosis and treatment decisions.

Cancer-related genes are enriched in commonly disrupted
pathways
We also investigated the commonly disrupted pathways
in terms of their enrichment for known cancer-related
genes. We hypothesized that commonly disrupted path-
ways across many types of cancers have many cancer
“driver” genes as key components. More specifically, the
presence of known cancer-causing genes with well-
defined biological properties in a functional module can
be used to make reasonable guesses about other candi-
date “driver” genes in the same functional module. To
validate our hypothesis, we defined a functional module
as the union of our commonly disrupted pathways (i.e.,
ranked within top k% in each cancer study, and present
in more than 10 cancer types), and computed the frac-
tion of known cancer-causing genes based on the Cancer
Gene Census database from the Sanger Institute in the
functional module. A higher cancer gene fraction for the
functional module indicates more enrichment for cancer-
causing genes. For comparison, we use the Lee et al.
method [22,28] that overlays gene scores obtained from ag-
gregated and pooled analyses to pathways, and then ranked
them to identify the top-ranked disrupted pathways.
We observed a significantly higher fraction of known

cancer-causing genes in functional modules from our
commonly disrupted pathways and subnetworks than
random, aggregated or pooled analyses. On average, the
fraction of known cancer genes was 2-fold higher than
the control groups. For example, Figure 5(A) shows the
fraction of known cancer causing genes in the functional
modules from the Biocarta pathway database. Reassur-
ingly, the fraction of known cancer genes in our func-
tional modules were consistently higher than the fraction
in the two baseline datasets when analyzing the top 1 to
5% of the disrupted pathways (see Additional file 2). In
three of four of our functional modules, the fraction
remained higher even when including up to 20% of the
top disrupted pathways.
The higher fraction of known cancer-causing genes in

functional modules from our commonly disrupted path-
ways is consistent with our hypothesis that commonly
disrupted pathways across many types of cancers would
have many cancer “driver” genes. Thus, we predict that
the other genes in these functional modules could also
be cancer “drivers” and warrant further study.

An example of a disrupted signaling pathway: TGF-beta
signaling pathway
Using NetPathID, we identified the TGF-beta signaling
pathway as one of the commonly disrupted pathways
from the Biocarta, KEGG, and Reactome pathway data-
bases. To visualize our findings, we generated a network
view of the TGF-beta signaling pathway from Biocarta,
and displayed the pathway in colorectal cancer and ovar-
ian cancer in Figure 6. We also present a network view
of the TGF-beta signaling pathway across all cancers
(Additional file 1: Figure S3).
It is evident from the network visualization that many

of the annotated genes in TGF-beta signaling pathway
have a relatively low recurrent frequency, which would
imply that the pathway is only disrupted in a small cohort
of cancer patients. However, by including interacting
genes it becomes apparent that many genes that directly
interact with members of the TGF-beta signaling path-
way are altered in a significant percentage of cancer
types. We also noted that the interacting partners are dif-
ferent for different cancer types. For example, in colorec-
tal cancer, MAPRE1 binds to the tumor suppressor
protein APC which is often mutated in familial and spor-
adic forms of colorectal cancer. MAPRE1 is also involved
in processes including cell migration and adhesion, tran-
scriptional activation, and apoptosis. In our data, the
copy number of APC is not significantly altered by copy



Figure 5 Cancer-related genes are enriched in commonly disrupted pathways. Fraction of known cancer genes in top k% ranked disrupted
pathways based on pathway activity score using pathway information from (A) Biocarta, (B) Reactome, (C) KEGG, and (D) conserved protein-protein
interaction subnetworks.
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number, but our network view indicates that amplifica-
tion of MAPRE1 could affect pathways and processes in-
volved in APC regulation. In a similar manner, other
highly amplified genes that are not annotated with the
TGF-beta signaling pathway are interacting with genes in
the TGF-beta signaling pathway, and thus, those highly
amplified genes could affect activity of the TGF-beta sig-
naling pathway. Another example is the relationship be-
tween HNF4a and colorectal cancer (Additional file 1:
Figure S13a). HNF4A, a transcription factor regulated by
TGF-beta signaling [58], is associated with diabetes and
HCC, but has only recently been linked to intestinal tract
pathology including ulcerative colitis [59] and Crohn’s
disease [60]. Our results indicate it may also be playing a
role in colorectal cancer,
In ovarian cancer, the annotated genes in the TGF-beta

pathway also have a relatively low recurrent frequency,
while genes that directly interact with these annotated
genes are altered in a high percentage of cancers. Interest-
ingly, the interacting genes are not the same interacting
genes found in the colorectal cancer network. In ovarian
cancer, a few of the interesting interacting genes include
MYC, a well-known oncogene and TRIB1, a novel
regulator of the MAP kinase pathway recently linked
to leukemogenesis [61].
These network views provide biologically meaningful

insights into how copy number alterations in different
genes, among different types of cancers could affect com-
mon pathways. The illustrations also demonstrate the use-
fulness of an integrative analysis to discover disrupted
pathways, which contain many member genes each having
low significance with respect to copy number changes.

Discussion
Despite the success of our approach, there are limita-
tions to the method. First, we use both amplified and de-
leted genes without distinguishing the two types. Thus,
it would not be straightforward to interpret the effect on
the activity of the pathways across cancers, because the
disruption may be caused by either amplified or deleted
genes. It would be possible to extend the method by sep-
arating amplification and deletion, but this could limit
the ability to identify pathways with both amplified and
deleted genes. In fact, we found many pathways disrupted
by both amplified and deleted genes. Thus, one promising
direction for further improvement of the method would be
to incorporate other complementary genomic datasets to
determine the role of disrupted pathways. For example, we
could include datasets measuring expression of genes
downstream of the pathways to determine the effect of
copy number alterations on the pathways.
Another limitation in our analysis is the relatively

sparse coverage of current protein-protein interaction
databases. Instead of using the protein-protein interaction
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Figure 6 Network view of TGF-beta signaling pathway alterations in colorectal and ovarian cancer. (A) Network view of genes altered by
copy number changes in colorectal cancer in the TGF-beta signaling pathway (diamond nodes) or genes directly interacting with TGF-beta
signaling genes (circular nodes) based on the protein-protein interaction database. (B) The same network view for ovarian cancer. Size of node
represents frequency of amplification or deletion in patient population. Color of node indicates whether gene is amplified (red), deleted (green),
or unchanged (gray). Lines indicate interactions. Blue dotted line separates genes within the pathway from genes that interact with the pathway
based on the protein-protein interaction database.
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databases we could, instead, use functional linkage net-
works, which have more comprehensive coverage of a
broad variety of gene relationships, and could allow for
more sensitive discovery of network signatures under vari-
ous conditions of interest [62]. While existing network-
based methods cannot handle the high density of these
large-scale functional networks, the label propagation-
based methods were successfully applied to functional link-
age networks in a recent study [62]. Thus, it would be
interesting to use functional linkage networks to discover
robust and reliable disrupted pathways across cancers.
As with all studies that use annotated pathways, there

is the problem of overlap between pathways and the de-
cision to include/exclude proteins when the pathway is
annotated. For example, ERK1/2 and AKT are members
of many of the annotated pathways such as TGF-beta,
TRKA, and Telomerase that were identified in our
study, yet the pathways specifically named “MAPK” or
“AKT” by the annotating organization did not register as
significantly altered. Our findings suggest that these
pathways as a whole are not commonly dysregulated,
but only specific aspects of these pathways are co-opted
by cancer.
In this work, we have presented analysis using input

from GISTIC with default settings. To test the robustness
of NetPathID we tested different cutoff levels using
GISTIC to see if the list of disrupted pathways would
change. We found that NetPathID was remarkably ro-
bust even when the cutoff values were raised from the
default setting of 0.1 to 0.3 or 0.5. Most of the rankings
of commonly disrupted pathways and the rankings of
pathways that were specific to one type of cancer re-
mained constant (see Additional file 2 and Additional file 3:
Tables S15–S21).
Another possible bias could arise from the inclusion

of whole chromosome arm deletions or amplifications
(e.g., 11q is clearly lost for neuroblastoma in Additional
file 1: Figure S3), because it is likely that the majority of
the genes on the chromosome arm are not driving tumor
growth. We adapted NetPathID so that we could run the
analysis with or without including whole chromosome
arm gains and losses. Again, surprisingly, most of the
rankings did not change significantly (see Additional file 2
and Additional file 3: Tables S15–S21).
One possible explanation for the robustness of

NetPathID is that NetPathID is not limited to the set of
genes in the genomic regions detected by GISTIC. The
gene set is expanded using our label propagation method
which results in pathway activity scores based on a larger
gene set. In addition, NetPathID is initiated using the



Hwang et al. BMC Genomics 2013, 14:440 Page 10 of 13
http://www.biomedcentral.com/1471-2164/14/440
average log2 ratio of the amplified or deleted gene
detected by GISTIC. Therefore, genes with low log2 ratios
will have less of an effect than genes with high log2 ratios.
Finally, although our study focused on the discovery of

disrupted pathways from datasets of copy number alter-
ations, the algorithm is general and can be readily ap-
plied to other types of genomic data, including, gene
expression, mutation, and methylation.

Conclusions
We have described a network-based integrative method
for discovering disrupted pathways based on copy num-
ber alterations in human cancers. NetPathID integrates
copy number data and the protein-protein interaction
networks to quantify activity scores of pathways. Specif-
ically, NetPathID effectively utilizes information in the
protein-protein interaction network and copy number
changes with label propagation to quantify altered activ-
ities of pathways. This approach has the potential to un-
cover disrupted pathways that cannot be discovered by
using overrepresentation and pathways-based methods,
which rely on a limited number of annotated genes.
Thus, NetPathID is uniquely suitable for providing a glo-
bal analysis of disrupted pathways across cancers.
We applied our approach to copy number data from 16

types of cancers, and discovered commonly disrupted
pathways and pathways that are only disrupted in specific
types of cancer. Functional enrichment analysis of com-
monly disrupted pathways demonstrated that many cancer
types share common biological processes that define the
malignant state, including self-sufficiency in growth signal-
ing, insensitivity to antigrowth signals, inactivation of
apoptosis, and genomic instability. Of particular signifi-
cance, we identified a patient subpopulation with poor
survival using member genes in disrupted pathways, im-
plying the potential of these disrupted pathways to serve
as a guide to therapy in a subgroup of patients.

Methods
Copy number data preparation
The copy number data from 16 human cancer types were
collected from a recent study after removing cell lines and
datasets with fewer than 15 patients samples (Sept. 2010)
[63] (http://www.broadinstitute.org/tumorscape/pages/por
talHome.jsf). Copy-number measurements were obtained
using the Affymetrix 250 K SNP arrays. For the details of
preprocessing and segmentation of copy number dataset,
please refer to [63]. To detect significantly altered copy
number regions, we use GISTIC with default settings, with
exceptions indicated in the text [30].

Human protein-protein interaction and pathway data
We obtained the protein-protein interaction network
from the Human Protein Reference Database (May
2010) [64]. This network contained 9,667 proteins and
76,132 binary edges. We obtained KEGG, Biocarta, and
Reactome gene sets from MsigDB (Sept. 2010) [18] and
4,620 conserved subnetworks in the human protein-
protein interaction network from [52]. To reduce bias to
disease proteins in the protein-protein interaction net-
work, we use the extended protein-protein interaction
network suggested by [65]. The extended protein-
protein interaction network is generated by combining
the HPRD, OPHID, BIND, and MINT database, and has
a similar degree of interactions for both disease and
non-disease proteins. For details of network preparation
and statistics, please refer to [65].

NetPathID algorithm
The algorithm identifies pathways disrupted by genes
with copy number alterations. Disrupted pathways are
found based on high pathway activity scores across can-
cers. There are three main steps in NetPathID:

1. Collecting altered genes based on copy number
alterations

Our approach requires lists of genes with copy
number alterations, and corresponding gene scores
representing the log2 ratio of copy number changes.
We use GISTIC as a filter to identify recurrently
altered regions in each type of cancer. The genes
within these regions define a seed gene set of
frequently amplified and deleted genes, and Gamp

where gi is a frequently amplified or deleted gene if
gi ∈Gamp or Gdel, respectively.

2. Computing gene score
After collecting a seed gene set based on GISTIC, the
next step is to compute gene activity scores. We use a
label propagation algorithm to compute gene scores,
and this label propagation takes two inputs: 1) an
adjacency matrix describing the gene network, and
2) an initial gene activity score vector. We define the
adjacency matrix of the gene network to be G(n×n)

where n is the number of genes in the protein-protein
interaction networks. We generate an initial gene score
vector g = [g1, g2,…, gn]

T denoting the average log
ratio of a frequently amplified or deleted gene in each

dataset, where gi ¼ ∑m

j¼1Si;jamp

m if gi ∈Gamp,

or gi ¼ ∑m

j¼1
Si;jdelj j

m if gi ∈Gdel, otherwise gi = 0, and
n and m represent the number of genes and patients
in dataset, and Si;jamp

, and Si;jdel represent log ratio of
an amplified and deleted gene gi in j th patient in
dataset. Specifically, we compute the average log2
ratio of each amplified or deleted gene across patient
samples to use it as an initial gene activity score to

http://www.broadinstitute.org/tumorscape/pages/portalHome.jsf
http://www.broadinstitute.org/tumorscape/pages/portalHome.jsf
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compute its final gene activity score. To fully utilize
the network topological information to compute the
final gene activity score, we generate �G, the graph
Laplacian of the gene network G(n×n), to use to
propagate initial gene activity scores to genes in the
network. Here �G ¼ D

−1
2

G GD
−1
2

G , and DG is a diagonal
matrix with diagonal elements DG = ∑ jGi,j. A vector
~g for final gene activity scores is derived from the
following optimization problem [35].

ming̃∑i;j
�Gi;j ~g i−~g j

� �2
þ 1−α

α
∑
i

~g i−gi
� �2 ð1Þ

In equation (1), the first term is a smoothness
penalty, which forces connected genes to receive
similar activity scores, and the second term ensures
the consistency with the initial gene scores. Label
propagation combines the neighboring information
in the network with the consistency with the initial
gene activity scores to provide global activity scores
to genes in the network. Parameter α ∈(0,1)
balances contributions from two penalties. Note that
we use 0.5 for our parameter in this work (see
Additional file 1: Figure S11 for the effects of
different parameter choices of the alpha). The closed
form solution of equation (1) is ~g ¼ 1−αð Þ
I−α�Gð Þ−1g. Empirically, to avoid computing the
inverse of I−α�Gð Þ, an iterative algorithm can
efficiently compute the closed-form solution with
the following update rule at each time step t,
~g t ¼ 1−αð Þg þ α�G~g t−1:

3. Computing the pathway activity score
After computing activity scores of genes in each type
of cancer, we summarize activity scores of the
member genes in the pathways to compute activity
scores of pathways as

Pathway score ¼ Mjk ¼ ∑i∈NMj
~g ik

NMj

�� �� ;

where Mjk is activity score of the jth pathway in kth
type of cancers, and NMj is the member genes in
pathway Mj [52].
Pooled and aggregated analysis
To perform the pooled analysis, we first incorporate all of
the copy number data from 2,172 patients into one
dataset. Then, we run GISTIC to identify the set of genes
with significant copy number alterations. To discover
disrupted pathways enriched with this set of genes, we
rank genes based on –log10(qval) from GISTIC, and then
select the top k% genes to perform overrepresentation-
based analysis using hypergeometric testing. To perform
the aggregated analysis, we run GISTIC to calculate the
significance of the altered genes in each cancer type. After
running GISTIC on all datasets, we summarize –log10
(qval) for each gene across all datasets. Then we rank
genes based on aggregated –log10(qval), and select the top
k% genes to perform overrepresentation-based analysis
using hypergeometric testing. Note that if one gene has a
qval from GISTIC for both amplification and deletion, we
select the more significant qval for the gene.
Significance of pathway scores
To assess significance of the pathway score, we
performed the analysis on random datasets. To con-
struct these control datasets we randomly shuffled initial
gene activity scores and pathway member assignments
10,000 times to generate a background distribution of
pathway scores. From this control dataset we were able
to derive the empirical p-value of the actual scores.
Analysis of patterns of disrupted pathways
In each cancer type, pathway activity scores were Z-
score transformed. Then, we perform two-way hierarch-
ical clustering using Cluster 3 with complete linkage to
analyze patterns of pathway co-disruption based on the
inferred pathway activity for each cancer type in the
dataset. To validate the correlation between clustered
pathways, we use the Matlab corrcoeff function. Then,
two-way hierarchical clustering was performed to plot
the heat map describing the correlation coefficient of
pathway co-disruption.
Network view of disrupted pathways
To generate the network view of the pathway, we col-
lected annotated genes in the pathway, and genes that
directly interact with one of the annotated genes based
on the protein-protein interaction database. Interacting
genes were only included in the network if their
GISTIC-q-value was among the top 500 values out of
18,932 ranked genes.
Microarray gene expression data preparation, and
clustering
Four microarray gene expression datasets were used for
the identification of patient subgroups. The lung cancer
dataset was downloaded from [56]. We downloaded
two ovarian cancer datasets (GSE9891, GSE3149) and
one breast cancer dataset (GSE2034) from Gene Ex-
pression Omnibus (GEO). All datasets were RMA nor-
malized, log transformed, and expression values were
median centered. To perform unsupervised hierarchical
clustering, we use Matlab clustergram function with
average linkage.
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Additional file 1: Figure S1. The fraction of annotated genes in copy
number alterations. Figure S2. The significance of copy number
alterations across cancers. Figure S3. TGF--‐beta signaling pathway is
commonly disrupted by genes in copy number alterations across
multiple types of cancers. Figure S4. Telomerase pathway is commonly
disrupted by genes in copy number alterations across multiple types of
cancers. Figure S5. NTRK1 (TrkA) signaling pathway is commonly
disrupted by genes in copy number alterations across multiple types of
cancers. Figure S6. Distribution of pathway activity scores. Figure S7.
Heat map describing the correlation coefficient of pathway co--‐disruption.
Figure S8. False discovery rate using decoy pathways. Figure S9. Clustering
and Kaplan--‐Meier analysis. Figure S10. A functional map of commonly
disrupted pathways across cancers. Figure S11. Effects on different
parameter choices of alpha.

Additional file 2: Comparisons with Lee et al. method and
overrepresentation-based enrichment methods, and HotNet.

Additional file 3: Table S1. Commonly disrupted pathways using
NetPathID. Table S2. Disrupted pathways using aggregated and pooled
analysis. Table S3. Baseline comparision. Table S4. Commonly disrupted
pathways using extended PPI network. Table S5. GO biological process
enriched with genes in commonly disrupted pathways from Biocarta
pathway database. Table S6. GO molecular function enriched with genes in
commonly disrupted pathways from Biocarta pathway database. Table S7.
GO biological process enriched with genes in commonly disrupted
pathways from Reatome pathway database. Table S8. GO molecular
function enriched with genes in commonly disrupted pathways from
Reactome pathway database. Table S9. GO biological process enriched
with genes in commonly disrupted pathways from KEGG pathway database.
Table S10. GO molecular function enriched with genes in commonly
disrupted pathways from KEGG pathway database. Table S11. GO biological
process enriched with genes in commonly disrupted pathways from
conserved subnetwork modules. Table S12. GO molecular function
enriched with genes in commonly disrupted pathways from conserved
subnetwork modules. Table S13. Top ranked disrupted pathways by all the
methods from Biocarta pathway database. Table S14. Data statistics for
each cancer type. Table S15. Commonly disrupted pathways using GISTIC
with different cutoffs. Table S16. Top ranked disrupted pathways by
NetPathID with different GISTIC cutoffs from Biocarta pathway database.
Table S17. Data statistics for top ranked disrupted pathways from GISTIC
with different cutoffs. Table S18. Data statistics for # genes detected by
GISTIC with different cutoffs. Table S19. Commonly disrupted pathways
before vs after arm-level copy number alterations. Table S20. Top ranked
disrupted pathways by NetPathID with after removing arm-level copy
number alterations. Table S21. Data statistics for top ranked disrupted
pathways from before and after removing arm-level copy number
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