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Abstract

Background: Copy number variation (CNV), an important source of diversity in genomic structure, is frequently
found in clusters called CNV regions (CNVRs). CNVRs are strongly associated with segmental duplications (SDs), but
the composition of these complex repetitive structures remains unclear.

Results: We conducted self-comparative-plot analysis of all mouse chromosomes using the high-speed and large-
scale-homology search algorithm SHEAP. For eight chromosomes, we identified various types of large SD as tartan-
checked patterns within the self-comparative plots. A complex arrangement of diagonal split lines in the self-
comparative-plots indicated the presence of large homologous repetitive sequences. We focused on one SD on
chromosome 13 (SD13M), and developed SHEPHERD, a stepwise ab initio method, to extract longer repetitive
elements and to characterize repetitive structures in this region. Analysis using SHEPHERD showed the existence of
60 core elements, which were expected to be the basic units that form SDs within the repetitive structure of
SD13M. The demonstration that sequences homologous to the core elements (>70% homology) covered
approximately 90% of the SD13M region indicated that our method can characterize the repetitive structure of
SD13M effectively. Core elements were composed largely of fragmented repeats of a previously identified type,
such as long interspersed nuclear elements (LINEs), together with partial genic regions. Comparative genome
hybridization array analysis showed that whereas 42 core elements were components of CNVR that varied among
mouse strains, 8 did not vary among strains (constant type), and the status of the others could not be determined.
The CNV-type core elements contained significantly larger proportions of long terminal repeat (LTR) types of
retrotransposon than the constant-type core elements, which had no CNV. The higher divergence rates observed in
the CNV-type core elements than in the constant type indicate that the CNV-type core elements have a longer
evolutionary history than constant-type core elements in SD13M.

Conclusions: Our methodology for the identification of repetitive core sequences simplifies characterization of the
structures of large SDs and detailed analysis of CNV. The results of detailed structural and quantitative analyses in
this study might help to elucidate the biological role of one of the SDs on chromosome 13.
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Background

Copy number variation (CNV) of genomic segments is
a common phenomenon that affects approximately
12% and 10.7% of the human and mouse genomes,
respectively [1-5]. Comprehensive genomic analyses
have shown that CNV sequences often overlap and
form clusters of variable regions [3,6,7]. These regions,
known as CNV regions (CNVRs), are associated with
variations in gene expression and phenotype [3,5,7-15].
Frequently, CNVRs of intermediate size and larger
(>10 kbp) are associated with segmental duplications
(SDs) in the human and mouse genomes [3,6,7,16]. An
SD is defined as a block of highly homologous (>90%)
duplicated genomic DNA that, in the human genome,
can range from 1 kbp to several hundred thousand bp
[13,15]. In the mouse genome, SDs can be as large as 1
Mbp in size [17,18]. Many of the large SDs contain re-
petitive sequences with ambiguous borders and copy
numbers that vary among strains. These sequences are
called complex CNVRs [7]. A previous study proposed
that CNVRs are associated with differences in gene ex-
pressions among strains, possibly through changes of
local chromatin structures in CNVRs [7]. Previous
studies identified SD regions through systematic ana-
lysis of the mouse genome and characterized CNV in
these regions [17,18]. However, the detailed character
of the repeating unit and the structure of the duplica-
tion pattern remained to be resolved. To better under-
stand the evolution of SDs and the biological role of
CNVRs, the repetitive structure of SDs must be eluci-
dated in more detail. In this study, we aimed to iden-
tify repetitive “core elements” as well as copy numbers
of the elements and the detailed structure of large SDs
in the mouse genome. Core elements were defined as
consensus sequences of repetitive sequences and were
expected to be the basic units that formed SDs.

We characterized the organization and variation in
copy number of core elements in one of the large SDs
on chromosome 13 in mice. The strategy implemented
in this study involved four steps: (i) self-comparison of
the DNA sequences of entire mouse chromosomes
(self-comparative-plot analysis) using the high-speed
and large-scale-homology search algorithm, Similarity/
Homology Efficient Analyze Procedure (SHEAP), to
identify candidate SDs [19], (ii) identification of core
elements and description of the repetitive structure of
the SD, using the newly developed stepwise ab initio
method, blast-based Systematic analysis of HErPlot to
Extract Regional Distinction (SHEPHERD), (iii) com-
parison of the CNV found in the core elements among
mouse strains by comparative genome hybridization
array (aCGH), and (iv) characterization of core elements
that contain CNV (CNV type) and those that do not
(constant type).
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Results

Detection of segmental duplications by SHEAP

In order to detect candidate SDs, we conducted self-
comparative-plot analysis of mouse genome sequences
using the SHEAP method. For certain chromosomes, the
output of the self-comparative-plot analysis contained
square dark patches (Additional file 1, arrowheads).
Additional file 2 shows an example of the output from
the self-comparative-plot for an entire chromosome
(chromosome 13) with a dark background. Further mag-
nification of these patches revealed a tartan-checked pat-
tern with a complex arrangement of diagonal split lines,
which indicated the presence of homologous repetitive
sequences (Figure 1A). We selected candidates for large
SDs as the regions that visually showed tartan-checked
patterns larger than 500 kbp. These large SDs comprised
repetitive sequences in both forward and reverse orienta-
tions, and were arranged in various patterns. All mouse
chromosomes were analyzed except chromosome Y. Of
the 20 chromosomes analyzed, eight contained large SD
regions. After previously known repetitive elements had
been masked using RepeatMasker [20], the number of
diagonal lines obtained in the self-comparative plot de-
scribed above was reduced in a large proportion of the
SDs (Figure 1A, lower left). This result indicated that
most of the SDs contained a large number of known re-
petitive elements (Table 1), as reported previously [7,18].
We focused on one of the SDs, named SD13M, which is
spans nucleotide 67,076,000 to 68,893,000 on chro-
mosome 13 (Figure 1 and Additional file 1 (red arrow-
head)). SD13M was chosen because this SD contains a
wide range of repeats in both forward and reverse orien-
tations. Furthermore, a previous study reported difficulty
in transferring the chromosomal segment including
SD13M from one mouse strain, MSM/Ms (MSM), to an-
other, C57BL/6] (B6), in the course of establishing a
consomic strain [21]. Therefore, SD13M may have an
important biological role. The reduction in the number
of diagonal lines in this region after the masking of
known repeats (Figure 1B) indicates that this region also
contained a large number of known repetitive elements.
The proportion of known repetitive elements in SD13M
was similar to those of other SDs (Table 1).

Identification of core elements for SD13M

We defined “fundamental repetitive sequences” as se-
quences that covered most of the repetitive structure of
SD13M and could be used to extract core elements. For
the identification of core elements, we developed
SHEPHERD (Figure 2), a stepwise ab initio method
that is designed to extract longer repetitive elements
than previous methods [22-27], and involves the fol-
lowing three steps:
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100 kbp

Figure 1 Tartan-checked structure of SDs visualized using SHEAP. Diagonal lines aligned in the same column or row represent repetitive
sequences. The lower left triangle of each panel shows a self-plot of the sequence after known repeat sequences have been masked using
RepeatMasker. Each of the upper right triangles shows a self-plot of the intact sequence. (A) All of the SDs detected by SHEAP for all
chromosomes except Chr Y. Rough estimates of the genomic positions of segmental duplications were: Chr. X-1, 33,454-43,954 (10,500); Chr. 12,
25,264-32,863 (7,599); Chr. 14-1, 8,647-14,424 (5,776); Chr. 7-1, 10,860-14,710 (3850); Chr. 7-4, 24,250-28,000 (3,750); Chr. 14-2, 45,553-49,106
(3,553); Chr. 2 T, 177,898-181,042 (3,144); Chr. 7-5, 34,938-37,919 (2,981); Chr. X-3, 122,800-125,582 (2,782); Chr. 5-2, 96,512-99,314 (2,802);
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Chr. X-4, 146,542-148,959 (2417); Chr. X-2, 53,082-54,812 (1730); Chr. 4-2, 61,950-64,050 (2,100); Chr. 13-2, 67,076-68,893 (1817); Chr. 4-1, 42,923~
44,207 (1284); Chr. 7-2, 11,339-12,249 (910); Chr. 13-1, 62,919-64,168 (1,249); Chr. 5-1, 11,973-13,221 (1,249); Chr. 7-3, 12,327-13,309 (982); Chr.
13-3, 68,702-69,433 (730). Numbers in parentheses indicate the sizes of SDs (kbp). (B) Higher magnification for the self-plot of SD13M, located
from 65,370,000 to 67,000,000 on Chr 13. The diagonal lines from top left to bottom right, which indicate a complete match between SD13M
sequences, were eliminated by the algorithm. To remove redundant and overlapping sequences from 2,638 repetitive sequences, the sequences

directions, respectively) were eliminated.

represented by diagonal lines that were located in the same column or in the same row (enclosed by two lines in the horizontal and vertical

Extraction of fundamental repetitive sequences from a self-
comparative-plot matrix

All diagonal lines in Figure 1B that comprised at least
three consecutive dots [each dot represents 300 bp] were
extracted from a self-comparative-plot of SD13M that
consisted of a dot-plot matrix (Figure 1B). Consequently,
16,872 repetitive sequences, which ranged from 0.9 kbp
to 79.5 kbp in length, were extracted (Figure 3A). Given
that many repetitive sequences had different lengths
(Figure 1B), we determined the most appropriate length
for fundamental repetitive sequences to be one that was

not too short but still covered most of the SD13M re-
gion. In terms of the distribution of the lengths of the
repetitive sequences, one major peak was detected at ap-
proximately 1.2 kb, and four small peaks were identified
at approximately 3, 3.6, 4.1, and 6-8.1 kbp, respectively
(Figure 3A). When the minimum length was set to
0.9 kbp, the selected sequences covered more than 96%
of the entire SD13M region (Figure 3B, red line). An in-
crease of the minimum length resulted in a decrease in
the coverage rate. When repetitive sequences of >3.0 kbp
in length were selected, the coverage rate was still 94% of
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Table 1 Comparison of the proportion of known repeats in SD13M with the values for the entire genome and average

values for SDs

Repeat Ratio in SD13M (%) Segmental duplication average (%) [18] Whole genome average (%) [18]
DNA 0.18 036 0.86
LINE 239 344 203
Low_complexity 082 0.58 0.79
LTR 183 195 102
Satellite (MMSATA4) 1.92 0.32 0.05
Simple_repeat 1.94 1.66 247
SINE 520 3.80 742
SNRNA 0.00 0.01 0.01
tRNA 0.01 0.01 0.01
Unknown (MurSatRep) 597 0.54 0.05
Total 582 61.2 422

the entire SD13M (Figure 3B, red dotted line). In contrast,
when the maximum length was decreased, the coverage
rate decreased. When repetitive sequences of lengths <4.5
kbp were selected, the coverage of SD13M was greater
than 94% (Figure 3B, blue dotted line). These analyses in-
dicate that the most appropriate length of the fundamental
repetitive sequences is between 3 kbp and 4.5 kbp.
Among the 16,872 repetitive sequences identified in
SD13M, there were 2,638 sequences within the range of
3-4.5 kbp. To eliminate redundant and overlapping se-
quences from among these 2,638 repetitive sequences,
we selected one sequence out of the 2,638 repetitive se-
quences and removed the other sequences represented
by diagonal lines that were located in the same column
or in the same row as that sequence in the self-
comparative-plot map (Figure 1B). This step has the ad-
vantage of reducing machine loading given that the pair-
wise analysis that is most commonly used requires
approximately 7 million (2638 * 2637) pairs, and thus

SHEAP Drawing self-plot of SD13M (1.6 Mbp)

|
SHEPHERD Extraction of repetitive sequences by dot-plot matrix
Repetitive sequences ( > 0.9 kbp, total 16872 repetitive elements)

3 -4.5 kbp of repetitive sequences (total 2638, 84% coverage of SD13M)

Rule out overlapping sequences by image analysis and pairwise alignment
(547 fundamental repetitive sequences)

Cluster fundamental repetitive elements into 59 groups

Select consensus region (>1 kbp)

60 core elements

Figure 2 Flowchart of core element identification for analysis
of CNVs. The figure provides an overview of the steps used to
identify core elements.

require many days to complete. In contrast, by eliminat-
ing redundant and overlapping sequences from 2,637 se-
quences, the use of a self-comparative-plot map enables
the analysis to be completed within a short period of
time. After repeating this process for different sequences
until all redundant sequences had been removed, 547
nonredundant and nonoverlapping repetitive sequences
remained, which covered approximately 80% of the
SD13M region. We defined these sequences as funda-
mental repetitive sequences.

Clustering of fundamental repetitive sequences

We clustered the fundamental repetitive sequences into
groups, such that there was the maximum redundancy
in sequence similarity within each group, but the least
possible redundancy between the groups. The overlap of
these fundamental repetitive sequences was tested by
pairwise alignments using bl2seq (without filtering op-
tion; —FF) [28,29]. We counted the number of sequences
that overlapped with other sequences for different
lengths of overlap (Figure 3C). The sequences of 92% of
the total number of fundamental repetitive sequences
shared at least 2.7 kbp in length, and 14% of the se-
quences shared 4 kbp with at least one other sequence.
Given that most of the sequences that were shared had a
size equivalent to that of fundamental repetitive se-
quences, which are between 3.0 and 4.5 kbp in length,
the fundamental repetitive sequences could be classified
into a smaller number of groups as follows. We consid-
ered that the most representative sequence in each
group should have the highest number of matching
counts with other sequences in the group, and that se-
quences similar to the representative sequence should
belong to that group. As a result of this process, we
clustered the 547 fundamental repetitive sequences into
59 groups (representative sequences).
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(See figure on previous page.)

Figure 3 Determination of the sizes of fundamental repetitive sequences for the identification of core elements. (A) The distribution of
16,872 repetitive sequences. Four small peaks at 3, 3.6, 4.1, and 6-8.1 kbp are indicated by arrows. (B) The minimal lengths of the extracted
repetitive sequences are plotted against the coverage ratio as a red line. The maximum lengths of the repetitive sequences are plotted against
the coverage ratio as a blue line. The red line shows that SD13M is covered almost completely (>96%) by the extracted repetitive sequences, and
the broken red line shows that 94% of SD13M is covered by repetitive sequences larger than 3 kbp. The broken blue line shows that most of
SD13M (>94%) is covered by repetitive sequences smaller than 4.5 kbp. (C) The minimum lengths of the regions shared when two repetitive
sequences were aligned are plotted against the number of sequences in which such regions are shared. The broken red line shows that 92% of
pairs share 2.7 kbp of consensus sequences, whereas the broken blue line shows that 14% of pairs share 4.5 kbp of consensus sequences.

Identification of core elements

In each clustered group, we identified core elements,
which are defined on the basis of two criteria: (i) the
length should be >1 kbp (without gaps) which is an arbi-
trary threshold, and (ii) the majority of sequences in
each clustered group should share the consensus
sequence of a given core element. Because one of the 59
groups contained two core elements, a total of 60 se-
quences was identified. The sequences of the core ele-
ments are shown in Additional file 3. Alignment of these
core elements using MUSCLE revealed a radial pattern,
which suggested that most of the core elements have
similar divergence and that there is no strong homology
among them (Figure 4A). Given that sequences homolo-
gous to the core elements (>70% homology) covered ap-
proximately 90% of the SD13M region, our method can
characterize the repetitive structure of SD13M effi-
ciently. The positions and directions of each core elem-
ent within SD13M are shown in Figure 4B, and
additional information on the core elements mapped in
SD13M is summarized in Additional file 3. The pattern
of distribution of the core elements also indicates the ex-
istence of a higher order of repeating units of various
sizes because there are many places where multiple core
elements are clearly located adjacent to each other
(Figure 4B). However, because the borders between these
regions are not clear, and the sizes vary from short to
long, we could not characterize the larger repeating
units further.

Characterization of core elements

To characterize the core elements, we annotated them
with RepeatMasker and with BLASTN using the
RefSeqGene database. The known repeats and RefSeq
sequences that were detected in each core element are
listed in Additional file 4. As expected from the results
of the self-plot analysis with masked sequences, all of
the core elements contained at least a partial sequence
of a known repeat, such as a long interspersed nuclear
element (LINE), short interspersed nuclear element
(SINE), or long terminal repeat (LTR) type of retrotrans-
poson, as well as uncharacterized repeats such as
MurSatRepl. The average proportion of known repeats
in the core elements was 59.5% (Additional file 5), which

indicated that core elements consisted largely of known
repeats. Most of these known repeats were fragmented
and overlapped with each other. One-third of the core
elements (20 out of 60) contained partial sequences of
RefSeq genes (Additional file 4). These partial sequences
could be divided roughly into three types of reported or
predicted genes: members of the zinc finger protein
(Zfp) family, members of the vomeronasal 2 receptor
(Vmn2r) family, and chromobox homolog 3 (Cbx3). The
average proportion of the total lengths of these anno-
tated gene-like sequences that was found in the core ele-
ments were 8% for Zfp, 16% for Vmn2r, and 37% for
Cbx3 (Additional file 6).

CNV of core elements among mouse strains

The SD13M region comprises variously sized forward
and reverse repetitive sequences, and was defined previ-
ously as a complex CNVR (Cahan et al. 2009). If core el-
ements are sources of CNVRs as well as of SDs, they
should correspond to distinctive strain-specific CNV. To
test this hypothesis, we conducted aCGH analysis using
a tiling array designed for the SD13M region to compare
the copy numbers of the core elements between the
mouse strains B6 and MSM, and between B6 and BLG2
(Figure 5A). The average copy numbers of the probes
for the entire region of SD13M were greater in BLG2
and MSM than in B6 (Figure 5A, red and green horizon-
tal lines, respectively). The aCGH values of a total of
9,929 probes were mapped on 53 out of the 60 core ele-
ments (see Methods). The mapped aCGH log2 values
for BLG2 or MSM to the reference (B6) on each core el-
ements are shown in Figure 5 and Additional file 5. In
most core elements, the mapped aCGH values deviated
from zero, and they had a similar distribution pattern
throughout each core element. This observation indi-
cated that the copy numbers of the core elements varied
among strains. A t-test showed that 42 out of 53 core el-
ements differed significantly in copy number, both be-
tween B6 and BLG2 and between B6 and MSM, and
that three core elements differed significantly in only
one pair of strains (Figure 5B, Additional file 5). These
results indicated that most of the core elements
displayed distinctive CNV among strains (CNV-type
core elements), which suggests that they are the basic
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Figure 4 Identification and characterization of core elements for SD13M. (A) MUSCLE analysis of identified core elements. The radial pattern
with branches of similar length indicates that the levels of difference between the 60 types of core elements are similar. (B) Map of sequences
homologous to each core element on SD13M. The locations and directions of homologous sequences for each core element are mapped on the

horizontal line. Red and blue diamonds indicate positive and negative orientations, respectively.

Position at SD13M [kbp]

units related to the formation of both SDs and CNVs.
The remaining eight core elements, which did not differ
significantly in copy number between B6 and BLG2 or
between B6 and MSM, should not be considered as

CNV-type. These core elements were
constant type. The estimated copy

average aCGH values of the core elements are listed in
Additional file 5. The mapping of a representative CNV-

The results of the aCGH were confirmed by quantitative
PCR analysis using genomic DNA as the template with
several sets of primers (Figure 6A and 6B, Additional files
7 and 8; see Methods). The qPCR analyses showed that
the relative amount of core element 541 increased addi-
tively as the dosage of the MSM allele in a given consomic
strain increased (Additional file 8A). Conversely, the rela-
tive amount of core element 454 remained almost con-
stant when the dosage of the MSM allele increased in the

defined as being of
numbers and the

type (core element 541) and a constant-type (core elem-
ent 454) is shown in Figure 6A and 6B, respectively. same consomic strain (Additional file 8B). These results
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Figure 5 Copy number analyses of core elements. (A) Results of aCGH for the entire SD13M region. Mapped aCGH log2 values in SD13M that
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respectively. Dots indicate outliers. The boxplots are aligned in the order of the average aCGH values from the comparison of BLG and Beé.

indicate that the copy number of core element 541 is
greater in MSM than in B6, whereas the copy number of
core element 454 does not differ between B6 and MSM.

Comparison of constant-type and CNV-type core

elements

Next, we compared the sequence characteristics of the
CNV and constant types of core element. The results of
the annotation for both types of core element are listed
in Table 2. All of the constant-type core elements are
listed, together with the 10 CNV-type core elements that
showed the greatest variation in copy number among
strains. The CNV-type core elements preferentially
contained various classes of LTR transposable elements,

such as ORRI1. Figure 7A shows the average proportion
of known repeats, classified into six categories (SINE,
LINE, LTR, DNA transposon, simple/satellite repeats,
and uncharacterized repeats), in the core elements. Not-
ably, the average proportion of LTR sequences was sig-
nificantly higher in CNV-type core elements than in the
constant type. In contrast, the average proportion of
LINE sequences was significantly lower in CNV-type
core elements than in the constant type. We investigated
the divergence of homologous sequences in each group
of core elements (Additional file 5). The average diver-
gence of CNV-type core elements was greater than that
of the constant type (Figure 7B). Furthermore, diver-
gence was correlated with the number of duplications of
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Figure 6 Copy number analyses in representative core elements. Mapped aCGH log2 values in the core elements that compare MSM
(musculus subspecies group) or BLG2 (musculus) with B6 (domesticus) are shown by green and magenta diamonds, respectively. Relative copy
numbers estimated by gPCR with unique probes using genomic DNA from BLG2, MSM, and B6 are shown by X in the same colors. Average
aCGH values for MSM compared with B6, and for BLG2 compared with B6 in the relevant regions are shown by red and green lines, respectively.
(A) Mapping of aCGH log2 values to a representative CNV-type core element (core element 541). Three relative values obtained by gPCR plotted
around 1.0 (indicated by X), which shows that the copy number of core element 541 is higher in BLG2 and MSM than in B6. Primers for gPCR
were designed for three regions of core element 541 (320-456, 1599-1693, and 2050-2162) (Additional file 5: Table S5). (B) Mapped aCGH values
on a representative constant-type core element (core element 454) were distributed around zero. Furthermore, all the gPCR values plotted
around zero (indicated by X). These results showed no CNV between B6 and MSM within core element 454.

the core elements in each group (Figure 7C). These re-
sults suggest that constant-type core elements emerged
more recently than CNV-type core elements in SD13M.

Discussion

It has been reported that the mammalian genome con-
tains many complex arrays of repetitive sequences in the
centromeric and subtelomeric regions, as well as other
SD regions in which many repetitive sequences coexist
in a complex manner [30,31]. However, many complex
arrays of repetitive sequences, in particular large SD
regions, have been neglected during the detailed charac-
terization of genome structure, partly owing to the lack
of an appropriate method for the comprehensive analysis
of such highly complex structures. In the present study,
we conducted a whole-genome search for complex ar-
rays of repetitive regions by the self-comparative-plot
method using the SHEAP program. The advantages of
SHEAP are: (i) its applicability to massively long se-
quences (i.e, whole genome sequences of human or

mouse), (ii) its applicability to sequences that contain
many global repetitive structures, and (iii) its ability to
complete the analysis within a reasonable time frame.
With respect to the last point, SHEAP can complete the
self-comparison of one human or mouse chromosome
within 20 minutes when using a conventional personal
computer. As a result, in this study, it was possible to
visualize remarkably large SD regions, which covered
more than 500 kbp and were composed of complex ar-
rays of duplicated sequences in both forward and reverse
directions, as square dark patches.

The mouse genome has been systematically searched
for regions that contain SDs [18]. All of the large SD re-
gions that were identified in the present study were also
reported as SD regions in an earlier study [18]. However,
other SD regions that were reported previously, such as
those on chromosomes 1, 6, 8, and 17, were not detected
as dark square patches in the self-comparative-plots of
whole chromosomes that were generated by SHEAP.
The results indicate a limitation of this approach based
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Table 2 Annotation of known repeats in core elements with large CNV and without CNV

Expected copy number®

Core element Type Length Known repeats and Probe Total length in
(bp) RefSeq genes ? Ratio® B6 BLG2 MSM (N) B6 (bp)

Core element 042 Constant 3000 LINE, Vmn2r, @ 0610 9 10 9 252 27000
Core element 108 Constant 3000 Cbx3, LTR, SINE 0.250 3 3 3 154 9000
Core element 127 Constant 2700 Vmn2r , LINE 0.158 12 13 13 196 32400
Core element 244 Constant 3247 LINE, Vmn2r , SINE 0.563 8 8 8 68 25976
Core element 352 Constant 3900 LINELTR, Simple, SINE 0911 8 8 8 264 31200
Core element 454 Constant 3372 Vmn2r, LINE 0.123 11 10 1 348 37092
Core element 462 Constant 2700 LINE, SINE, 0910 6 7 6 40 16200
Core element 484 Constant 3000 LINE, Simple, SINE 0.839 4 4 4 54 12000
AVERAGE (Constant) 3115 0.545 8 8 8 172 23859
Core element 103.1 CNV 1802 LTR, SINE 0.959 14 20 19 127 25228
Core element 103.2 CNV 1686 Zfp , LINE, LTR 0.225 8 15 12 129 13488
Core element 146 CNV 2877 LINE, SINE 0.979 19 33 26 103 54663
Core element 154 CNV 2691 LTR, SINE 0.749 24 30 28 236 64584
Core element 177.1 CNV 3900 Simple, Zfp 0.110 23 28 27 112 89700
Core element 182 CNV 2629 LINE, @, MurSatRep1 0.622 20 27 25 305 52580
Core element 364 CNV 1468 SINE, LTR 0.343 13 16 18 190 19084
Core element 447 CNV 2248 LTR, SINE, Simple/Sat 0.768 24 35 30 108 53952
Core element 510 CNV 2735 LINE, Simple/Sat 0.094 13 19 16 348 35555
Core element 541 CNV 3195 Simple/Sat, Zfp 0.076 14 21 20 413 44730
AVERAGE (CNV) 2523 0492 17 24 22 207 45356

? Detailed information on the known repeats and RefSeq genes that were detected in each core element is provided in Additional file 5. LTR retrotransposons are
underlined. Core elements with large CNV were selected by two criteria: 1) a P value lower than the significance value; 2) the 10 core elements that showed the
greatest variation among strains. ® Proportion of each core element that comprised the known repeat. The proportion was calculated by dividing the total length
of the known repeat in the core element by the total length of the core element. © Expected copy numbers in B6 were calculated from the number of
homologous sequences in each of the 60 groups (Additional file 5). Expected copy numbers in BLG2 and MSM were calculated from the average of the aCGH

values and the copy number in B6 (Additional file 7).

on self-comparative plots because dark square patches
were not apparent in some SD regions. Nevertheless, they
were detected at higher magnification (Additional file 9),
and showed different patterns to those of the dark square
patches. These results suggest that different types of
SD exist in the mouse genome. Indeed, in the self-
comparative-plot analysis of sequence similarity among
large SD regions (Additional file 10), we found that most
of the SDs comprised unique repetitive sequences, al-
though all of the SDs share many known repetitive ele-
ments. Furthermore, this observation suggests that
interchromosomal nonallelic homologous recombination
has occurred rarely among the SDs in the mouse genome,
consistent with a previously described finding [18], and
that the SDs have formed and evolved independently.

The present study is the first detailed analysis of re-
petitive elements in SD13M, which is one of the large
SDs of the mouse genome. The results showed that six
core elements within SD13M contained the functionally
uncharacterized satellite repeat MurSatRep. The pres-
ence of this satellite repeat was characteristic of SD13M

because its frequency was greater in SD13M than in SDs
overall (Table 1). The transposable element MurSatRepl
is presumed to be associated with pericentromeric dupli-
cations (Repbase database). These results support the
contention that core elements might have structural sig-
nificance, similar to repetitive sequences in the centro-
meric region [32,33]. In addition, four core elements
contained MMSAT4, which has been reported to be a
satellite sequence that encodes zinc finger proteins. The
presence of this repeat was also characteristic of SD13M,
but its function is unknown. Other core elements
contained known repetitive elements such as LINEs,
small regions of RefSeq sequences, and LTR sequences.
LINEs are known to be enriched in intermediately sized
and larger SDs (>10 kbp) and duplicated gene regions,
and are supposed to facilitate nonallelic homologous re-
combination [7,18,34,35]. The existence of these repeti-
tive elements in the core elements strongly supports the
hypothesis that SD13M was formed by combinations of
nonallelic homologous recombination events. Further-
more, regions with abundant transposable elements are
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Figure 7 Characteristics of core elements. (A) Comparison of known repeats in CNV-type and constant-type core elements. Average proportions
of the known repeats, classified into six categories (SINE, LINE, LTR, DNA transposon (DNA), simple/satellite repeats (Simple/Sat), and unknown repeats)
in each core element were compared between the CNV and constant types of core element. *, P < 0.05; **, P < 0.001. Average proportions were
calculated from the proportion of each type of repeat in each type of core element. (B) Comparison of divergence between CNV-type and constant-
type core elements. Divergence is represented by percentage values for the number of mutations and insertions or deletions that were detected after
pairwise comparison of sequences. (C) Correlation between the divergence of the sequences and the number of duplications of core elements. Core

elements 177 and 254 were excluded from these analyses because their sequences are contained within core elements 541 and 244, respectively.

thought to be targeted preferentially by other transpos-
ition events [35]. The presence of a higher proportion of
LTR sequences in CNV-type than in constant-type core
elements suggests that retrotransposition of LTRs also
promotes nonallelic homologous recombination and
caused CNV in SD13M. This model is very similar to
the case of centromere expansion in rice, in which
retrotransposons and satellite repeats were duplicated by
intra-element homologous recombination [36].

Conclusions

In the present study, we characterized both the struc-
tures and the relative quantities of the repetitive ele-
ments in a complex SD region on chromosome 13 of
mouse. Although we did not address the functional sig-
nificance of SDs in this study, their characteristic repeti-
tive structure indicates that they are similar to the

functionally important centromeric region [32,33]. Inter-
estingly, SD13M is included in the region of chromo-
some 13 that was difficult to substitute from strain B6 to
MSM during the course of establishing a consomic
strain [21]. The results of structural and quantitative
analyses in this study may help to elucidate the bio-
logical role of SD13M.

Methods

Self-plot analysis

In order to detect SDs, we conducted self-plot analysis
using genome sequence data (Jul. 2007 assembly of the
mouse genome, mm9, NCBI Build37). The Y chromo-
some was excluded from the analysis because the se-
quence data for this chromosome included uncertain
nucleotides at the level of 83.0%. SDs were visualized
and detected using SHEAP, an algorithm capable of
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efficient discovery of similar short substrings [19].
SHEAP can draw a self-comparative-plot more rapidly
than harplot or BLAST-based programs [37-39]. The
regions that contained SDs were detected simply as clus-
ters of dots that formed complex diagonal lines on
images of Figure 1. For the rough detection and
visualization of SDs in each chromosome, the criteria of
the SHEAP analysis were set to assign a dot to a pixel
whenever a pair of sequences of 3,000 bp shared more
than three 30-bp homologous sequences (<2 mis-
matches), and the overall distance between the paired
sequences was larger than 300 bp.For the detailed ana-
lysis of repetitive elements in SDs, dots were assigned to
pairs of 300-bp sequences when they shared at least one
30-bp homologous sequence (<2 mismatches).

Database analysis

For further detailed analysis of SD13M, we used sequence
data from B6 (NCBI Build37). Before conducting further
analysis, we checked assembly data of BAC contig, and
found no apparent errors (data not shown). Although we
cannot rule out the possibility of small errors, the overall
sequence is reliable. The detection of known repeats and
masking of SD13M were conducted with Repeatmasker
(downloaded from http://www.repeatmasker.org/) using
Repeatmaskerlibraries -20090604 (downloaded from
http://www.girinst.org/, megablast —p megablast —W 28 —
G 0 -E 0 —q -2 —i filenameA -jfilenameB). The pairwise
alignments of fundamental repetitive sequences were
conducted using bl2seq (bl2seq —ifilenameA —jfilenameB —
p blastn —FF). Known repeats were characterized using
Repbase (http://www.girinst.org/repbase/). All RefSeq
genes in masked core elements were identified with
BLASTN (2.2.24+) [40-42] using the RefSeqGene database
(Mus musculus, NCBI Transcript Reference Sequences). A
MUSCLE analysis was conducted through a web site
(http://www.ebi.ac.uk/Tools/msa/muscle/) in March 2011.

Mouse strains

Three inbred strains of mouse, BLG2/Ms (BLG2), C57BL/
6] (B6), and MSM/Ms (MSM), were maintained in the
animal facility at the National Institute of Genetics (NIG),
Mishima, Japan. Both BLG2 and MSM were established as
inbred strains after 20 generations of brother—sister mat-
ing [43,44]. The BLG2 and MSM strains belong to the
musculus subspecies group, whereas B6 belongs to the
domesticus subspecies group [45]. All mice were kept in
accordance with NIG guidelines, and all procedures were
carried out with approval (No. 18-18 and 19-6) from the
Committee for Animal Care and Use of the NIG.

Comparative genome hybridization array (aCGH)
To conduct aCGH analysis on the SD13M region, we
designed four types of custom tiling array probe. The first
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and second types of probe covered a region of approxi-
mately 6 Mbp that surrounded SD13M (63,267,529—
69,226,366; NCBI Build37). Probes of the first type were
completely unique within that genomic region, whereas
the second type of probe appeared more than twice in the
genomic region covered, but did not appear in other gen-
omic regions. When the first and second types of probe
were combined, the average interval between them was
46.3 bp. These probes should detect CNV only in SD13M.
The third type of probe covered a small area of chromo-
some 17 (80,000,245-80,099,784, NCBI Build37) that does
not contain an SD and was used for normalization. Owing
to the fact that the probes were isothermal, the lengths of
the probes ranged from 50 to 75 bp. All of the probes were
arrayed in triplicate. The total number of probes in an
array was 75,000 (25,000 types of probe x 3). As a result of
the aCGH analysis, a total of 9,929 types of probe were
mapped on 53 core elements. It was not possible to map a
sufficient number of probes on the remaining seven core
elements because appropriate sequence probes for the
aCGH tiling array were not well represented on these ele-
ments (number of probes/core element: < 30).

Genomic DNA was purified from the nuclei of kidney
cells from B6, MSM, and BLG mice, and then purified fur-
ther with DNeasy (Qiagen). Reference DNA (B6) and test
DNA (BLG2 or MSM) samples were labeled differentially
with Cy3 and Cy5, respectively, and hybridized com-
petitively to a microarray chip. Labeling and hybridi-
zation were carried out by a commercial aCGH service
(Nimblegen Systems, Roche). The fluorescence ratio be-
tween Cy3 and Cy5 was normalized against the average
value for the control probes designed for chromosome 17.
Four sets of aCGH analysis were conducted between two
strain pairs, BLG2 and B6, and B6 and MSM. Each gen-
omic DNA sample had two biological replicates. Relative
CNV values as compared with B6 are described as the
log2 values for each probe on SD13M. Given that most of
the probes showed a higher copy number in the BLG2
and MSM strains than in B6, the strain that was the
source of the sequence information, the difference of the
CNV values was unlikely to have been caused by sequence
polymorphisms.

Quantitative PCR (qPCR) analysis using genomic DNA

Primers for qPCR of the core elements were designed by a
web-based service, PRIMER3 (http://frodo.wi.mit.edu/
primer3/), using a mispriming library (RODENT_AND _
SIMPLE). A single-copy-number gene, parathyroid
hormone-related protein (Pthlh, NM_08970), was used
to normalize the levels of genomic DNA [46]. The se-
quences of all the primers used in the present study are
listed in Additional file 7. The qPCR on the genomic
DNA of B6, BLG, and MSM mice was conducted using
SYBR® Premix Ex Taq™ II (TAKARA) and a Thermal
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Cycler Dice Real Time System (TAKARA), in accordance
with the manufacturer’s instructions. All reactions were
carried out with biological triplicates, each with experi-
mental duplicates. Relative comparative threshold cycle
(Ct) values were calculated on the basis of the second de-
rivative maximum method using dedicated software
(TAKARA TP800). Relative copy numbers of core ele-
ments were estimated by comparison with other strains or
genotypes on the basis of the Ct values. Genomic DNA
was prepared from different versions of consomic strain
B6-Chr13AMS™, which contains entire chromosome 13 of
MSM in a B6 genetic background. The homozygotes of
entire chromosome 13 infrequently appeared in the
crosses of the heterozygotes for chromosome 13 of MSM
and B6. The different versions were homozygous or het-
erozygous for the MSM allele of the SD13M region
(SD13MMSM/MSM 514 SD13MMSM/BE, respectively), or
homozygous for the B6 allele (SD13M"*°). By using gen-
omic DNA from these strains, we were able to investigate
the relative copy number of core elements by targeting the
SD13M region. The genotypes of these consomic mice are
shown in Additional file 7.

Divergence within each group of core elements

The pairwise divergences of the homologous sequences
in each group of core elements were calculated by
Repeatmasker using custom-made Repeatmasker library
files that contained each of the homologous sequences.
The divergence of a core element group was represented
by the average of these pairwise divergences. Average di-
vergences were calculated for the seven core elements
with constant copy number and for the 46 core elements
with CNVs. Core elements 177 and 254 were excluded
from the analysis because their sequences were partially
contained within core elements 541 and 244, respectively.

Programs and statistics
SHEAP is available online (http://research.nii.ac.jp/~uno/
codes.htm). All programs, including SHEAP, SHEPHERD,
and a pair-comparison program based on BLAST, are
available upon request. Free software, R (http://www.r-
project.org/), was used for graphics and statistical analysis.
For the analysis of CNV in core elements, the signifi-
cance of differences in copy number was determined by
a simple two-sided t-test. When the average of the
aCGH values (log2) mapped on each core element was
zero, the null hypothesis of no difference in copy num-
ber between two strains was applied. Thus, t-statistics
were calculated using the formula +/n(i)/U(i) X (i),
where 7(i) indicates the number of probes, and U(i) and
X (i) indicate unbiased estimates of the population vari-
ance and the average of the aCGH values mapped on
the core elements, respectively. The P value for each
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core element was calculated by t-statistics with a t-
distribution [df = (probe number) —1] under the null
hypothesis. We adjusted the P value for multiple com-
parisons (Bonferroni, N =54), and when it was below
the threshold for significance (<0.05), the core element
was interpreted as having significant CNV.

Additional files

Additional file 1: Self-plot of all mouse chromosomes. Detection of
large SDs in self-plots of chromosomes 1 to 19 and chromosome X.

Additional file 2: Output of self-comparative plot analysis for
chromosome 13. Dot-plot matrix showing candidate SD as a very small
square dot or even a small intense dot. However, at a larger
magnification, square dark patches became more obvious, and many
diagonal split lines became visible.

Additional file 3: Sequence information of identified core elements.
The group, position, proportion of matched sequence, and sequences of
homologous regions were determined for core elements in the SD13M
region.

Additional file 4: Annotation of the core elements. Known repeats of
RefSeq genes were detected using RepeatMasker and RefSeq BLAST.

Additional file 5: Mapped aCGH values and divergence of core
elements. Lengths of core elements, information of known repeats in
the core element, and number of probes and P values obtained by
analysis of aCGH values using the t-test.

Additional file 6: Size and number of RefSeq genes within the core
elements. The information on core elements that contained partial
RefSeq genes, including Cbx3, Vmn2r, and Zfp.

Additional file 7: Materials for quantitative PCR. The genotypes of
B6-Chr13AM*M consomic mice and the primer sequences used for
quantitative PCR are shown.

Additional file 8: Results of quantitative PCR analysis. Relative copy
number values were determined by qPCR analysis of genomic DNA from
consomic B6-Chr13AMM™,

Additional file 9: Detection of large SD regions at higher
magnification of the self-plot. SD regions on chromosomes 1, 6, 8, and
17, detected as dark square patches at higher magnification of the
self-plot.

Additional file 10: Analysis of sequence similarity among large SD

regions. No similarity was observed in large SDs except for a large
number of known repetitive sequences.
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