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A high-resolution cucumber cytogenetic map
integrated with the genome assembly
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Abstract

Background: High-resolution cytogenetic map can provide not only important biological information on genome
organization but also solid foundation for genetic and genomic research. The progress in the molecular and
cytogenetic studies has created the basis for developing the cytogenetic map in cucumber (Cucumis sativus L.).

Results: Here, the cytogenetic maps of four cucumber chromosomes (chromosomes 1, 3–5) were constructed by
fluorescence in situ hybridization (FISH) analysis on cucumber pachytene chromosomes. Together with our
previously constructed cytogenetic maps of three cucumber chromosomes (chromosomes 2, 6–7), cucumber has a
complete cytogenetic map with 76 anchoring points between the genetic, the cytogenetic and the draft genome
assembly maps. To compare our pachytene FISH map directly to the genetic linkage and draft genome assembly
maps, we used a standardized map unit—relative map position (RMP) to produce the comparative map alignments.
The alignments allowed a global view of the relationship of genetic and physical distances along each cucumber
chromosome, and accuracy and coverage of the draft genome assembly map.

Conclusions: We demonstrated a good correlation between positions of the markers in the linkage and physical maps,
and essentially complete coverage of chromosome arms by the draft genome assembly. Our study not only provides
essential information for the improvement of sequence assembly but also offers molecular tools for cucumber
genomics research, comparative genomics and evolutionary study.
Background
Cucumber (Cucumis sativus L., 2n = 2x = 14), which be-
longs to the family Cucurbitaceae, is an economically
important crop as well as a model system to study bio-
logically relevant characters such as sex determination
[1] and plant vascular biology [2]. For these reasons, se-
quencing of the cucumber genome and the development
of functional genomic tools are of great importance. Since
Huang et al. [3] first reported the draft genome sequence
of the ‘Chinese long’ inbred line ‘9930’ (database is hosted
at http://cucumber.genomics.org.cn/page/cucumber/index.
jsp), other two cucumber lines (the North American pick-
ling type inbred line ‘Gy14’ and the North-European
Borszczagowski cultivar ‘B10’ ) were also sequenced [4,5].
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Based on the genetic maps, draft genome assemblies were
developed in the three lines [3,5,6]. In inbred line 9930,
193.3 Mbp of the assembled sequences were anchored
onto the chromosomes to generate the draft genome as-
sembly based on the genetic map developed by Ren et al.
[7]. However, the quality of the 9930 genome assembly has
not been validated. A high-quality genetic map is necessary
to the draft genome assembly. The mapping population
used in Ren et al. [7] was derived from the inter-
subspecific cross between the cultivated cultivar Gy14 and
the wild accession PI 183967. Due to marker clustering
resulted by structure rearrangements between Gy14 and PI
183967, mapping distance (cM) on chromosomes 4, 5 and
7 was dramatically less than that detected on other four
chromosomes. Moreover, although genetic linkage map is
usually good indicator of the marker order, the exact phys-
ical positions of the genetic loci and genomic sequences on
the chromosomes are unknown. This is because crossovers
are not equally distributed over chromosome arms, and as
a result loci that are physically far apart on chromosomes
can be tightly linked on linkage maps and vice versa. Such
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discrepancies are impediments to applying linkage maps to
guide genome sequence assembly.
The molecular cytogenetic map constructed by localiz-

ing marker-tagged clones directly on pachytene chromo-
somes by FISH method provides directly visible physical
positions of the associated molecular markers along a
given chromosome [8]. Such map combines chromo-
some structure with recombination rate and physical
distance, thus providing integrated biological informa-
tion on genome organization. To date, high-resolution
cytogenetic maps are available for individual chromo-
somes in maize [9,10], rice [11,12], Brassica [13,14], to-
mato [15-17], soybean [18], cotton [19] and papaya [20],
and for the whole genome chromosomes in Sorghum
[21], potato [22-24], common bean [25,26] and cucum-
ber inbred line ‘Gy14’ [6]. The molecular cytogenetic
maps of three cucumber chromosomes in inbred line
9930 were constructed, correlating physical and genetic
distances, characterizing the distribution of the hetero-
chromatic regions in the chromosome complement, as
well as conducting comparative mapping to melon chro-
mosomes in our previous studies [27,28]. No such cyto-
genetic maps are currently available, however, for other
four cucumber chromosomes.
The different kinds of maps differ greatly in method of

production, units and the ways they are viewed. Integrat-
ing different map types with shared markers will provide
a comprehensive view of genome structure. The loci po-
sitions for the pachytene cytogenetic maps are usually
charted in fraction length (FL: the percentage of the dis-
tance from the FISH site to the end of the short arm
relative to the total length of the chromosome). To in-
tuitively display the relationship between the genetic and
physical distances, the positions of FISH mapped loci
were transformed into the product of fraction length
and the total length (cM) of corresponding linkage
group in some studies [12,22,27,28]. Figueroa and Bass
[10] used relative map position (RMP) unit, which was
the percentage distance of a locus from the centromere
along a given chromosome arm, to compare the different
maps of maize directly. This provides a new means for
intuitively comparing the cytogenetic, linkage, and phys-
ical maps of maize.
In the present work, we constructed the molecular

cytogenetic maps of the remaining four cucumber chro-
mosomes (chromosomes 1, 3–5) by FISH analysis using
8–14 fosmid clones per chromosome. These fosmid
clones distributed at regular intervals across the
chromosome-level cucumber draft genome assembly
maps and some clones carried major genetic markers.
Together with our previously published data [27,28], cu-
cumber inbred line 9930 has a complete molecular cyto-
genetic map with 76 FISH mapped loci. Referring to the
method used by Figueroa and Bass [10], we also used
similar relative map position (RMP) units, which was
the percentage distance of a locus from the end of the
short arm along a given chromosome, for direct com-
parative analysis between the cytogenetic, the genetic
linkage, and draft genome assembly maps of cucumber.

Results
The construction of molecular cytogenetic maps of
cucumber chromosomes 1, 3–5
To construct the molecular cytogenetic maps of the re-
maining four cucumber chromosomes, we selected a set
of fosmid clones distributed at regular intervals across
the chromosome-level cucumber draft genome assembly
maps. We first determined the physical order of adjacent
fosmid clones based on their positions in draft genome
assembly map by dual-color FISH on somatic metaphase
chromosomes (Figures 1a1-a4). On the basis of these re-
sults, multi-fosmid FISH probe cocktails were developed
and hybridized to the pachytene chromosomes together
with the cucumber centromere-specific DNA probe
Type III (Figures 1b1-b4). The cocktails produced alter-
nate red/green signals of all clones and marked centro-
meres on each chromosome. Although the pachytene
cucumber chromosomes are usually tangled with each
other, which makes it difficult to trace individual chro-
mosomes. We were able to strip the signals derived from
multi-fosmid clone cocktails and confirm chromosomes.
Two computationally straightened chromosomes from
two independent cells were shown (Figures 1c1-c4). The
left chromosome was straightened from the image
shown in Figures 1b1-b4.
A total of 16 fosmid clones distributed at an average

distance of 1.68 Mbp along the cumulative physical
length (29149675 bp) of the chromosome 1 were se-
lected for FISH mapping. Among these 16 clones, we
confirmed that 13 clones (1–1 to 1–13) showed unique
hybridization signals on mitotic metaphase chromo-
somes by FISH (see Additional file 1, Figure 1a1). The
remaining 3 clones which showed repetitive FISH signals
were not used (data not shown). Thirteen fosmid probes
together with the centromere-specific DNA probe Type
III were chosen to make a multicolor FISH cocktail mix.
The relative position of all probes can be clearly distin-
guished on spreads of pachytene bivalents (Figure 1b1).
Relative to a centromere repeat probe Type III, the short
arm of chromosome 1 was identified by the hybridiza-
tion of 7 fosmid clones and the remaining 6 clones hy-
bridized to the long arm of chromosome 1 (Figure 1c1).
Eleven fosmid clones distributed at an average distance

of 3.66 Mbp across the chromosome 3 (39782674 bp)
were selected for FISH mapping. Two clones which
showed repetitive FISH signals in mitotic metaphase chro-
mosomes were discarded (data not shown), one clone
(Ch3-1) yielded strong signals on other chromosomes but



Figure 1 FISH of fosmids on cucumber somatic and pachytene chromosomes 1, 3–5. a1-a4 FISH of fosmids on somatic chromosomes.
Adjacent probes were labeled with different fluorochromes and hybridized together to test the order and position. b1-b4 Cucumber chromosomes at
the pachytene stage were probed by a set of fosmid clones together with the Type III satellite repeat. c1-c4 Two straightened cucumber pachytene
chromosomes. The left chromosome was straightened from the image shown in Figures b1-b4. d1-d4 The chromosomes in Figures c1-c4 were
converted into black-white image. Bars, 5 μm.
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not signals on chromosome 3 was also discarded (see
Additional file 2 and Additional file 3a). The remaining 8
clones (3–1 to 3–8) with unique hybridization signals were
used for FISH mapping on the pachytene chromosomes
together with the Type III probe (see Additional file 1,
Figure 1a2-b2). The centromere was located between
fosmids 3–5 and 3–6 (Figure 1c2).
Thirteen fosmids distributed at an average distance of

1.95 Mbp on chromosome 4 (physical length: 23425844 bp)
were selected for FISH mapping. Two clones which
showed repetitive FISH signals in mitotic metaphase chro-
mosomes were discarded (data not shown). The remaining
11 (4–1 to 4–11) with unique hybridization signals were
chosen to make a multicolor FISH cocktail mix together
with the probe Type III (see Additional file 1, Figure 1a3-
b3). Interestingly, Type III sequence hybridized to two
regions located between fosmids 4–5 and 4–6 on
chromosome 4 and we cannot identify its functional
centromere region at present (Figure 1c3).
A total of 21 fosmid clones distributed at an average

distance of 1.52 Mbp on chromosome 5 (physical length:
28023477 bp) were selected. 6 clones which showed re-
petitive FISH signals in mitotic metaphase chromosomes
were discarded (data not shown), one clone (Ch5-1)
showed strong FISH signals on other chromosome
pair but not signals on chromosome 5 was discarded
(Additional file 2, Additional file 3b). One clone (Ch5-2)
which was assembled on long arm in genomic sequence
map but showed FISH signals on short arm of chromosome
5 was also discarded (see Additional file 2, Additional
file 3c). The remaining 13 clones (5–1 to 5–13) with
unique hybridization signals were used for FISH mapping
(Additional file 1). The order of individual fosmids along
chromosome 5 was generally concordant with the order
on the genomic sequence map, except that fosmids 5–1
and 5–2 showed different positions (Figure 1a4-c4). The
centromere was located between fosmids 5–2 and 5–8
(Figure 1c4).
The DAPI-stained pachytene chromosomes in

Figures 1c1-c4 were converted into a black-white image
to show heterochromatic distribution. Figures 1d1-d4
displayed converted images of these chromosomes, which
were straightened and stretched to equal length and
slightly sharpened for better heterochromatin differenti-
ation. The dark blocks represented the dense brightly
fluorescing heterochromatin regions, whereas the lighter
regions were euchromatic regions showed the fainter
DAPI signal intensity. Based on the DAPI staining, four
cucumber chromosomes showed different heterochroma-
tin and euchromatin distribution patterns, although simi-
lar heterochromatin domains were observed at both ends
of each chromosome (Figures 1d1-d4). To intuitively dis-
play the distributions and positions of heterochromatin
and fosmid clones on four cucumber chromosomes,
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ideograms were constructed based on measure on the
same 5 pachytene chromosomes without morphology dis-
tortion showing all hybridization spots. The relative map
position of individual fosmid and the length of hetero-
chromatin region along pachytene chromosome were cal-
culated and the results were listed in Additional file 1,
Additional file 4 and Figure 2.

Integration and analysis of clone positions across three
cucumber maps
To compare our pachytene FISH map directly to the
genetic linkage map and draft genome assembly map, we
used a standardized map-unit system in which the
Figure 2 Integrated genetic (left)/cytogenetic (middle)/genome assem
cytogenetic maps show physical locations of heterochromatin, fosmid clon
green, and chromosomes in light blue. Dark blue blocks represent approxim
indicate the RMPs of FISH-mapped loci.
percentage distance of each locus along the chromosome
in each map was used, denoted as RMP units. The RMP
values of FISH-mapped loci on all cucumber chromo-
somes based on this study and our previous works
[27,28] were summarized in Additional file 1. Figure 2
showed composite alignments of three maps. The align-
ments allowed a global view of the relations between the
genetic positions of the corresponding anchoring SSR
markers, chromosomal positions and physical positions
in draft genome map of the fosmid clones.
In comparing the pachytene FISH map to the genetic

linkage map [7], we found that the linear order of markers
in the linkage groups was in complete agreement with the
bly (right) maps of cucumber inbred line 9930. Ideograms of
es and the centromere repeat Type III. Clones are indicated in red and
ate locations of constitutive heterochromatin. Numbers in each map
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order of the corresponding fosmid clones along the chro-
mosomes except for 2–10 and 2–11 (Figure 2). Although
the majority of loci showed good RMP agreement, the
RMPs showed considerable variation (differing by more
than 10 RMP units) in some loci on chromosomes 2 (2–6,
2–7), 4, 5, 6 (6–6 to 6–8) and 7 (7–1 to 7–4). For example,
5–11 showed a maximum difference of 51.6 RMP units.
When marker intervals were compared between two
maps, some discrepancies were detected between genetic
distance and physical distance. Differences were particu-
larly obvious (more than 10 RMP units) for marker inter-
vals spanning the centromere regions of chromosomes 1,
2, 4 and 7. The markers flanking the centromeres were
separated by short genetic distance but long physical dis-
tance. The reduction of recombination around the
centromere is a common feature and the region of recom-
bination suppression correlates directly with sizes of
centromeric heterochromatic regions. Obvious region of
recombination suppression was not detected on chromo-
somes 3, 5–6 having small sizes of centromeric heterochro-
matin regions. In non-centromeric regions, recombination
was basically evenly distributed along the physical length
of chromosome.
We next compared the distributions of fosmid clones

on the 9930 draft genome assembly map and our cyto-
genetic map (Figure 2). The RMPs were remarkably
similar, showing comparable distributions along the
given chromosomes (Figure 2). The RMP differences
were less than 10 RMP units except for the loci on the
short arm of chromosome 5. Loci mapped closer to the
centromeres exhibited the greater RMP difference be-
tween the maps. The linear orders of the loci along a
given chromosome were congruent between two maps
except for 5–1 and 5–2, 7–1 and 7–2. One criterion to
judge the quality of a draft genome assembly map is its
physical coverage of the corresponding chromosome.
The cucumber chromosomal ends and centromeres were
occupied by several tandem repeat sequences (Type I/II,
Type III and Type IV) [29]. Each of these repeat classes
exists as large tandem arrays which pose significant
technical challenges in assembly accuracy. Thus, these
chromosomal regions were all left as “gaps” in the draft
genome sequence map. We founded that the FISH sig-
nals of fosmid clones selected from the distal ends of
each pseudo-chromosome in draft genome assembly
map were indeed physically located at the telomeric ends
of each chromosome. Except for the interval between 6–
5 and 6–6, RMP intervals were similar to the clones
flanking the centromeres between two maps when the
lengths of Type III regions weren’t considered. No large
gaps were founded in pericentromeric regions in draft
genome assembly map. The physical positions of the an-
chored fosmids along all chromosomes correlate well with
their positions in the genome sequence map. These results
showed that draft genome assembly map covered almost
the entire physical length of cucumber chromosomes.

Discussion
While a total of 72.2-fold genome coverage was gener-
ated for the cucumber genome. However, the total
length of the assembled cucumber genome was only
243.5 Mb, about 30% smaller than the 367 Mbp cucum-
ber genome. Consistent with this proportion, several
types of satellite sequences accounted for about 20-30%
of the total nuclear DNA in cucumber based on the pro-
portion of rDNA (3.3% of the genome), Type III (4.04%),
Type I/II and Type IV (15.92%) on mitotic chromo-
somes [3,29]. These repeat classes exists as large tandem
arrays, likely in the form of higher-order repeat units of
slight variants of the main consensus repeat which pose
significant technical challenges in assembly accuracy
[30,31]. The tandem arrangement could be left aside
during a genome assembly endeavor. Even the most
rigorous clone-by-clone sequencing approach has not
yielded data on the complete DNA sequences of a
centromere from any higher plant or animal species,
which have often abundant satellite DNA extending
over several hundreds of thousands or millions of
base pairs. Therefore, the majority of the remaining
30% of unassembled genome are likely to satellite
sequences.
Mis-assemblies are common when draft genome se-

quences have been generated by de novo assembly of se-
quences obtained with NGS technologies [32,33]. Since
the assembly of inbred line 9930 was done using the
SOAPdenovo software from mostly Illumina reads
(68.36 coverage) together with “Sanger” generated gen-
omic library end sequences (only 3.96 coverage), mis-
assembled scaffolds may exist in the draft genome. For
example, Yang et al. [6] identified five mis-assembled
scaffolds from the 9930 draft genome and their positions
were verified by FISH. However, so far, it did not incorp-
orate complete cytogenetic mapping data to assess con-
tiguity, collinearity and coverage of the 9930 draft
genome. In this study, we allocated some fosmid clones
from each chromosme to pachytene spreads by FISH
method, these fosmid clones distributed at regular inter-
vals across the chromosome-level cucumber draft gen-
ome assembly maps and some clones carried major
genetic markers. Although most clones yielded signals
on the corresponding chromosomes, we identified seven
misassembled clones which three clones yielded signals
on other chromosome(s) or chromosome arm (Ch3-1,
Ch5-1, Ch5-2) and four clones (5–1 and 5–2, 7–1 and
7–2) showed wrong positions on same chromosome
arm. We examined the distribution of misassembled
clones in cucumber inbred line Gy14 by searching the
Gy14 genome assembly using the sequence of each
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misassembled fosmid clone. We founded that the loca-
tion and order of 5–1 and 5–2 were same in Gy14 gen-
ome and the 9930 cytogenetic map of chromosome 5.
Clearly, the 5–1 and 5–2 were misassembled in the 9930
draft genome assembly map. However, the locations of
other clones (Ch3-1, Ch5-1, Ch5-2, 7–1 and 7–2) were
same in Gy14 and 9930 genome assembly maps. This
may be because these clones were misassembled in 9930
and Gy14 genome assembly maps. Of course, it cannot
be excluded that we used the wrong clones. More mis-
assemblies may exist in the 9930 draft genome map. But
nonetheless, our present results showed that the 9930
draft genome assembly map provided excellent coverage
of the corresponding chromosomes and no large gaps
were founded in draft genome.
The present developed molecular cytogenetic map in-

tegrated with genetic linkage map and physical map not
only verifies the quality of 9930 draft genome assembly
and provides essential information for the improvement
of cucumber genome assembly but also offers molecular
tools for cucumber genomics research. The majority
FISH-mapped fosmid clones carried major genetic
markers thus our analysis revealed the genetic and phys-
ical relationships in specific chromosome regions. This
can provide crucial physical information to positional
cloning projects that might otherwise be fruitlessly
aimed at a target gene on the basis of markers that are
very tightly linked but physically distant. In addition, the
integrated molecular cytogenetic map also forms a solid
foundation for future FISH-based comparative genomics
and evolutionary studies. The reference set of fosmid
clones can serve as a universal set of cytogenetic markers
to study synteny and chromosomal rearrangements be-
tween cucumber and other cucurbit genomes like our pre-
vious work [27].

Conclusions
The cytogenetic map incorporating genetic, cytological
and physical data can contribute significantly to the im-
provement of sequence assembly by confirming the
physical positions of markers on the linkage groups,
identifying mis-assembled clones and evaluating the size
of the putative remaining gaps. Such map also offers
molecular tools for cucumber genomics research, com-
parative genomics and evolutionary study. In the present
work, we constructed the molecular cytogenetic maps of
four cucumber chromosomes. Together with our previ-
ous results, cucumber has a complete molecular cyto-
genetic map. Furthermore, we used a standardized map
unit—relative map position (RMP) to produce the com-
parative map alignments. The alignments showed that
draft genome assembly map provided excellent coverage
of the corresponding chromosomes. The reference set of
fosmid clones can serve as a universal set of cytogenetic
markers for comparative genomics study between cu-
cumber and its close relatives.

Methods
Plant materials and chromosome preparation
C. sativus ‘Chinese long’ inbred line 9930 was used for
cytological studies. Root tips were harvested from germi-
nated seeds, pretreated in 0.002 M 8-hydroxyquinoline
at room temperature for 2 h to accumulate metaphase
cells, and fixed in methanol:glacial acetic acid (3:1). Root
tips were macerated in 2% cellulase Onozuka R-10
(Yakult Pharmaceutical, Tokyo) and 1% pectolyase Y-23
(ICN) at 37°C for 2 h and squashes were made in the
same fixative. Young panicles were harvested and fixed
in 3:1 (100% ethanol:glacial acetic acid) Carnoy’s solu-
tion. The procedure for meiotic chromosome prepar-
ation was largely the same as that used for preparing
mitotic chromosomes from root tips with the following
modification: anthers were digested in the enzyme mix-
ture for 4.5 h at 37°C. The digested anthers were mac-
erated on glass slides in 50% acetic acid solution with
fine-pointed forceps and then “flame-dried” over an al-
cohol flame.

Fluorescence in situ hybridization (FISH) and cytological
measurements
All fosmid clones were provided by the Institute of Veg-
etables and Flowers, Chinese Academy of Agricultural
Sciences. The fosmid clones screened from the 9930
fosmid library distributed at regular intervals across the
chromosome-level cucumber draft genome assembly
maps and some clones carried major genetic markers.
Fosmid DNA was isolated using QIAGEN plasmid midi
kit and further purified by Plant DNeasy spin columns
(QIAGEN). The centromere-specific DNA probe Type
III repeat [29] was used. FISH was performed according
to Jiang et al. [34]. DNA probes were labeled with
digoxigenin-dUTP or biotin-dUTP via nick translation
and detected with antidigoxigenin antibody coupled with
Rhodamine (Roche) or avidin-conjugated with FITC
(Vector Laboratories), respectively. Chromosomes were
counterstained by 4,6-diamidino-2-phenylindole (DAPI)
in a VectaShield antifade solution (Vector Laboratories).
Images were captured digitally using a CCD camera
(QIMAGING, RETIGA-SRV, FAST 1394) attached to an
Olympus BX63 epifluorescence microscope. Gray-scale
images were captured for each color channel and then
merged. Chromosome straightening was performed
using the ‘straighten-curved-objects’ plug-in of Image J
[35], and measurements were made on the digital images
of the FISH signals and chromosomes using Image-Pro
Plus 7.0C software (Media Cybernetics) and final image
adjustments were done with Adobe Photoshop (Adobe
Systems).
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Comparative mapping using standardized map units
We used relative map position (RMP) units for direct
comparative analysis between the cytogenetic, the gen-
etic linkage, and draft genome assembly maps of cucum-
ber. The RMP values for the pachytene cytogenetic map
were the percentage of the distance (in μm) from the
FISH site to the end of the short arm relative to the total
length of the chromosome (in μm). In order to establish
the position of each clone along the chromosomes,
hybridization signals on the same 5 pachytene chromo-
somes without morphology distortion showing all
hybridization spots were measured. The RMP values for
the SSR linkage map [7] were the percentage from the
genetic location (cM) of each locus along the total length
(cM) of the corresponding linkage group. The RMP
values for the 9930 draft genome assembly map were
calculated from the genomic location (bp) of each locus
along the cumulative physical length of chromosomes 1
to 7 (http://cucumber.genomics.org.cn/). These RMP
values were used to produce the comparative map
alignments.

Additional files

Additional file 1: FISH-mapped fosmid clones and their
corresponding RMPs in genetic, cytogenetic, and draft genome
assembly maps.

Additional file 2: Positions of three identified misassembled clones.

Additional file 3: FISH results of three identified misassembled
clones. a The signals of Ch3-1 (red) and 3–2 (green) weren’t in the same
chromosome pair. b The signals of Ch5-1 (red) and 5–10 (green) weren’t
in the same chromosome pair. c Ch5-2 (red) was not in the long arm
with 5–11 signals but in the short arm of chromosome 5.

Additional file 4: Heterochromatin distribution on cucumber
pachytene chromosomes 1, 3–5.
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