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Abstract

Background: Brassica rapa (AA) contains very diverse forms which include oleiferous types and many vegetable
types. Genome sequence of B. rapa line Chiifu (ssp. pekinensis), a leafy vegetable type, was published in 2011. Using
this knowledge, it is important to develop genomic resources for the oleiferous types of B. rapa. This will allow
more involved molecular mapping, in-depth study of molecular mechanisms underlying important agronomic traits
and introgression of traits from B. rapa to major oilseed crops - B. juncea (AABB) and B. napus (AACC). The study
explores the availability of SNPs in RNA-seq generated contigs of three oleiferous lines of B. rapa - Candle (ssp.
oleifera, tumnip rape), YSPB-24 and Tetra (ssp. trilocularis, Yellow sarson) and their use in genome-wide linkage
mapping and specific-region fine mapping using a RIL population between Chiifu and Tetra.

Results: RNA-seq was carried out on the RNA isolated from young inflorescences containing unopened floral buds,
floral axis and small leaves, using lllumina paired-end sequencing technology. Sequence assembly was carried out
using the Velvet de-novo programme and the assembled contigs were organised against Chiifu gene models,
available in the BRAD-CDS database. RNA-seq confirmed the presence of more than 17,000 single-copy gene
models described in the BRAD database. The assembled contigs and the BRAD gene models were analyzed for the
presence of SSRs and SNPs. While the number of SSRs was limited, more than 0.2 million SNPs were observed
between Chiifu and the three oleiferous lines. Assays for SNPs were designed using KASPar technology and tested
on a F,-RIL population derived from a Chiifu x Tetra cross. The design of the SNP assays were based on three
considerations - the 50 bp flanking region of the SNPs should be strictly similar, the SNP should have a read-depth
of =7 and no exon/intron junction should be present within the 101 bp target region. Using these criteria, a total
of 640 markers (580 for genome-wide mapping and 60 for specific-region mapping) marking as many genes were
tested for mapping. Out of 640 markers that were tested, 594 markers could be mapped unambiguously which
included 542 markers for genome-wide mapping and 42 markers for fine mapping of the tet-o locus that is
involved with the trait tetralocular ovary in the line Tetra.

Conclusion: A large number of SNPs and PSVs are present in the transcriptome of B. rapa lines for genome-wide
linkage mapping and specific-region fine mapping. Criteria used for SNP identification delivered markers, more than
93% of which could be successfully mapped to the F,-RIL population of Chiifu x Tetra cross.
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Background

The Next-Generation Sequencing (NGS) technologies are
being extensively used for genome-wide genetic marker
development through RNA-seq, reduced-representation
sequencing, restriction-site-associated DNA sequencing
(RAD-seq) and low-coverage genotyping [1]. Availability
of abundant markers will facilitate association map-
ping, marker aided selection (MAS), and fine mapping
of regions of interest for circumventing the problem
of linkage drag during introgressions and for map
based cloning.

NGS technologies have also contributed to completion
of reference genome sequences of many important crops
[2,3]. Availability of reference genomes will facilitate char-
acterization of variability within a crop and its wild
relatives by high throughput re-sequencing. In the fam-
ily Brassicaceae, model species Arabidopsis thaliana
was sequenced by the Sanger method using aligned
overlapping BACs [4]. Using NGS technologies, a large
number of ecotypes have been sequenced in a much
shorter span of time [5]. Eventually 1001 ecotypes will
be sequenced.

The first crop species sequenced from Brassicaceae is
Brassica rapa (2n =20, AA genome) [6]. The assembled
sequence of 283.8 Mb covers more than 98% of the gene
space. Sequencing was carried out using Illumina GA II
technology. Sequence data was integrated with BAC-end
sequences obtained through the Sanger sequencing method.
Sequencing work was carried out on line Chiifu, a leafy
vegetable type of B. rapa belonging to ssp. pekinensis. The
genome sequence of Chiifu is available on BRAD, a gen-
omic database created for B. rapa and other Brassica
species [7,8].

Genus Brassica contains some of the most important
vegetable and oleiferous crops of the world. The rela-
tionship of the six crop species namely, B. rapa (AA,
2n = 20), B. nigra (BB, 2n = 16), B. oleracea (CC, 2n = 18),
B. juncea (AABB, 2n=36), B. napus (AACC, 2n = 38),
B. carinata (BBCC, 2n = 34) was first described by U [9]
and later confirmed by others using molecular markers
[10]. Crop Brassicas display a range of morphotypes, which
include vegetable types where root, leaves, stems and
inflorescence have been modified for human consump-
tion, oilseed types and condiment types, all selected under
domestication [11]. Three of the species namely B. juncea,
B. napus and B. carinata are recent allopolyploids with
the full chromosome compliment of the two parental
genomes. The three diploids are paleohexaploids with
extensive chromosomal rearrangements, gene subfunc-
tionalization and loss [6,12,13]. Comparative genomic stud-
ies have shown that the gene blocks identified in A. lyrata
and A. thaliana are represented at least three times in
B. rapa, although every gene in a block is not necessarily
represented by three paralogs [12-15].
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B. rapa as a species shows enormous morphological
variability, containing both vegetable types and oilseed
types, and has extensive geographical distribution [11,16].
Different morphotypes have been classified under sub-
species (ssp.). There is however, no consensus on the re-
lationship of different types [17]. A recent classification
has recognised 10 ssp. in B. rapa [18]. The most extensive
study to date on variability within B. rapa, conducted on
161 accessions with AFLP markers, has shown that
oleiferous types of a region are closer to the vegetable
types of that region rather than to the oleiferous types
of the other regions, thereby implying independent do-
mestication of the oleiferous types in many regions [16].

In the present study we have carried out RNA-seq
of three different oleiferous lines of B. rapa namely,
YSPB-24 and Tetra (both belonging to the Yellow sarson
group, ssp. trilocularis), Candle (turnip rape, ssp. oleifera)
and a vegetable type line Chiifu using Illumina GA II
technology to find out if sufficient numbers of SNPs
are available for genome-wide mapping and for fine
mapping in specific regions of the genome. YSPB-24
has a typical bilocular ovary and Tetra is an interesting
variant in the Yellow sarson group as it has a tetralocular
ovary. The most probable region of origin of the Yellow
sarson lines is Eastern India. These lines are extensively
grown in this region. Candle is an oilseed line of European
origin. Therefore, the study includes two closely related
oleiferous lines (YSPB-24 and Tetra), which are distant
from the oleiferous line Candle. All the three lines are
divergent from the leafy vegetable type line Chiifu that
has been sequenced recently.

RNA-seq can provide the most informative SSRs and
SNPs for gene synteny based comparative genomics [19-22]
and association mapping. A number of programs have
been developed for SNP identification from the NGS data
[23,24]. Marking SNPs in the single-copy genes has been
worked out reasonably well. However, in paleoploid spe-
cies like B. rapa we require SNPs not only for marking
allelic variation but also for marking the paralogs as has
been the case for more recent allopolyploid species like
wheat or B. napus [25-28].

We report that a sufficient number of SNPs are avail-
able in the B. rapa single-copy genes for genome-wide
mapping and in the paralogs to mark both the allelic dif-
ferences and paralog specific differences to saturate a
specific region with unique marker probes. This strategy
for genome-wide mapping and specific-region fine map-
ping has been tested using a F,-RIL population of a
Chiifu x Tetra cross using KASPar oligo technology
[29]. A total of 542 SNPs have been mapped on the 10
linkage groups of B. rapa and 52 SNPs have been mapped
in a region of LG A4, which we have recently shown to
contain the tet-o locus that encodes the trait - tetralocular
ovary [unpublished].
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Results

Plant material and sequencing

Four Brassica rapa lines — YSPB-24 and Tetralocular
(Yellow sarson types, ssp. trilocularis), Candle (ssp. oleifera)
and Chiifu (ssp. pekinensis) were used for RNA sequencing.
Inflorescence, with all the unopened flower buds, along
with a few small leaves was used for RNA extraction. This
amalgam of organs represents most of the aerial tissues
of a Brassica plant. Paired end cDNA libraries, used for
sequencing, were prepared from the poly-A containing
RNA and sequenced as 2x101 nt reads on the Illumina
GAIIX sequencer.

Sequencing samples of Tetra, YSPB-24 and Candle were
run in two lanes of the flow cell for sequencing whereas
Chiifu sample was run in only one lane. As information
on more than 98% of the gene space is available for Chiifu
and has been organized as CDS in the BRAD database [8],
the limited Chiifu transcriptome sequencing was carried
out to check the overall quality of the assembly of the raw
sequencing data obtained in this study.

Data filtering and de-novo assembly of the transcriptome

Paired end sequencing of transcriptome generated
84,458,126, 117,128,230, 145,049,468 and 154,228,832
sequence reads for Chiifu, Tetralocular, YSPB-24 and
Candle, respectively (Table 1), the lowest being for
Chiifu for which the data was obtained from single lane.
After filtering low-quality and single-end reads, assem-
bly of the cleaned reads was carried out using the Velvet
de-novo assembly program [30] with default settings ex-
cept that the minimum contig length was set at 100 bp
as this length would be useful for designing oligos for
SNP analysis. Reads were assembled for different K-mer
values (K21 to K57) and the obtained data were analyzed
for the total number of contigs, percentage of reads as-
sembled, N50 values and the average contig length. Best
assembly was found at K-mer value of 47 in case of Chiifu,
Tetra and Candle and at K-mer value of 51 in case of
YSPB-24 (Figure 1). The number of contigs obtained for
the four B. rapa lines ranged from 38,220 for Tetra to
69,636 for Candle (Table 1). Approximately 61-78 per-
cent of the reads could be assembled into contigs with
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N50 values ranging from 515 to 1094 bp. The maximum
contig size obtained for Chiifu was 8956 bp whereas for
the other three lines it was more than 10 kb. The mean
depth of the line specific assemblies was found to be in
the range 76.3 to 181 (Table 1).

Sequence comparison of YSPB-24, Tetra and Candle
with Chiifu

We compared the Chiifu transcriptome sequence obtained
in this study with the Chiifu gene models described in the
BRAD database [8]. A total of 43,110 out of 44,972 contigs
obtained in this study could be aligned with the CDS
sequences reported in the BRAD database using the
parameter of minimum 96% identity, indicating quality
assembly of the raw reads in this study. However, the
assembled contigs of Chiifu and the three oleiferous
type lines were predominantly partial sequences (ESTs).
Therefore, in the rest of the study the contigs obtained
from the three oleiferous lines — YSBP-24, Tetra and
Candle were compared with the more detailed full-
length CDS (predicted gene models) available for the
line Chiifu in the BRAD database.

Assembled sequences of each of the three oleiferous
lines showing > 80% sequence identity in>100 bp se-
quence stretch with any of the predicted gene models of
Chiifu were considered to be homologous sequences. All
the contigs showing identity with a Chiifu gene model as
per the criteria described above were considered to be a
part of the gene model and collectively referred to as a
homolog. Around 90% contigs of Tetra, 88.2% contigs of
YSPB-24 and 89.2% contigs of Candle matched with one
or the other gene model of Chiifu listed in the BRAD
database. The BRAD database lists 17,562 single-copy
gene models for Chiifu in the syntenic paralog data
(http://brassicadb.org/brad/searchSynteny.php). We could
identify 13,808, 9,081 and 8,143 homologs in the lines
Tetra, YSPB-24 and Candle, respectively (Table 2). Ho-
mologs have been grouped-‘Chiifu vs YSPB-24; ‘Chiifu
vs Tetra’ and ‘Chiifu vs. Candle’ and these have been
described in the Additional file 1. Hitherto, gene models
and their RNA-seq based homologs will be referred to
as genes.

Table 1 Sequencing and assembly statistics of four different lines of B. rapa

Chiifu Tetra YSPB-24 Candle
Total number of reads 84,458,126 117,128,230 145,049,468 154,228,832
Paired ends (after filtering low quality reads) 64,690,910 78,907,790 105,468,958 115,144,542
Number of contigs 44,972 38,220 40,422 69,636
Percentage of reads assembled 613 69.9 786 76.0
Maximum length of contigs (bp) 8,956 15,582 10,001 13,504
N50 contig length (bp) 515 1,030 1,094 719
Mean depth of the contigs 763 1216 1812 1604
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Figure 1 Comparison of total contig number, average contig length and N50-length, obtained after the Velvet assembly. Figures A, B, C
and D represent the contig assembly results of B. rapa line Chiifu, Tetra, YSPB-24 and Candle, respectively. The bars indicate the total number of
contigs assembled (primary axis). The green line represents the N50 contig length while the red line indicates the average contig length.
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SSR identification

The MISA program [31] was used to identify SSRs in
the Chiifu gene models available in the BRAD database
and in the homolog-contigs of the three oleiferous lines.
The minimum cut off for the identification of mono-,
di-, tri-, tetra-, penta- and hexanucleotide SSRs was set
at 10, 6, 5, 5, 5 and 5 repeats, respectively. SSRs were
found in 4327, 8308, 6160 and 5296 genes of Chiifu and
in their homologs in Tetra, YSPB-24 and Candle, re-
spectively. Mono-, bi- and tri-nucleotide motifs were
found to be the most abundant in the three different lines
(Table 3). We have recorded more mono- and di- SSRs
in the contigs of Candle, YSPB-24 and Tetra as com-
pared to the SSRs present in the gene models described
in the BRAD database for Chiifu. This could be due to
the presence of UTR sequences in the RNA-seq data
while the CDS in BRAD database contains only those
sequences that are translated into a protein. When differ-
ent lines were compared in silico for the identification of
polymorphic SSRs using the stringent criteria of complete

Table 2 Homology based grouping of contigs of three
oleiferous B. rapa lines with Chiifu

Single-copy genes Two paralogs Three paralogs

Chiifu* 17,562 13,506 6,645
Tetra 13,808 10,260 4,647
YSPB-24 9,081 9400 4,515
Candle 9,343 9,604 4,692

identity in 50 bp flanks on either side of the repeat motif,
most of the SSRs were found to be monomorphic. The
maximum number of polymorphic SSRs (238) were found
between Candle and YSPB-24 and the minimum number
of polymorphic SSRs (92) were identified between Tetra
and YSPB-24. The number of polymorphic SSRs identified
between all the four lines in various combinations is
shown in Figure 2.

Identification of SNPs between different lines of B. rapa

Two different programs Maq [32] and MUMmer [33]
were used separately to identify the single nucleotide vari-
ations between different lines of B. rapa. For the Maq
based SNP identification between Chiifu and the other
three lines, the Chiifu CDS sequence was taken as the

Table 3 Number of repeat motifs identified in the gene
models of Chiifu and transcriptome sequences of the
three lines of B. rapa

Chiifu* Tetra YSPB-24 Candle

Mono- 150 2,087 2,028 1,282
Bi- 172 2,097 1,997 1,885
Tri- 3,976 2,634 2,455 2,859
Tetra- 3 32 36 32
Penta- 2 12 16 9

Hexa- 29 17 13 18
Complex 192 472 420 361

*From BRAD database. Genes with tandem repeats were counted as one.

* Sequences analysed were taken from the BRAD- Brapa_CDS dataset.
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Tetralocular Candle

Chiifu
YSPB-24

Figure 2 Polymorphic SSRs between different Brassica rapa
lines. Venn diagram showing the number of polymorphic SSR
markers available between four different lines of B. rapa.

reference and the short reads of each of the three
oleiferous lines (Additional file 1) were assembled inde-
pendently on the reference. The SNPs thus obtained were
filtered using SNPfilter script and SNPs with less than
read depth of 7 and a quality score of less than 40 were
discarded. This yielded 240,424, 277,237 and 346,189
SNPs for ‘Chiifu vs. Tetra; ‘Chiifu vs. YSPB-24’ and ‘Chiifu
vs. Candle, respectively (Table 4a). The identified SNPs
were sorted based on whether these were present in
single-copy genes, or in genes with two or three paralogs.
When homologs of different B. rapa lines (Additional
file 1) were analysed using the MUMmer tool, 249,671,

Page 5 of 13

231,259 and 266,349 SNPs were identified between
‘Chiifu and Tetra, ‘Chiifu and YSPB-24’ and ‘Chiifu and
Candle; respectively (Table 4b). These were further cate-
gorized on the basis of their being present in single-
copy genes, or in genes with two or three paralogs.

For the identification of SNPs between lines other
than Chiifu, homologs were compared in pair wise com-
binations of ‘Tetra vs. YSPB-24, ‘Tetra vs. Candle’ and
‘YSPB-24 vs. Candle’ using both Maq (Table 4a) and
MUMmer programs (Table 4b). Very high SNP frequen-
cies were found for Candle vs. the two Yellow sarson
lines. The least amount of polymorphism (20,310 SNPs
with the MUMmer program) was recorded between Tetra
and YSPB-24, the two closely related lines.

For the purpose of genome-wide mapping studies, one
SNP is enough for marking a gene. We, therefore, car-
ried out pair-wise analysis of SNPs in single-copy genes
and in genes with two or three paralogs of all the four
lines (Table 4). Except for ‘YSPB-24 vs. Tetra’ all others
comparisons showed that 60-70% of the single-copy
genes contained at least one SNP (Figure 3). For the
two closely related lines YSPB-24 and Tetra, only 2,557
homologs could be identified with at least a single SNP -
marking 14% of the single-copy genes, 9.6% of the two-
gene paralogs and 7.2% of the three-gene paralogs. This
number is sufficient for genome-wide linkage analysis
but may turn out to be insufficient for fine mapping in a
specific region.

In general, the number of SNPs recoded when the three
oleiferous lines were compared with each other was lesser
than the number recorded when the assembled contigs
were compared with the full-length Chiifu CDS sequences
available in the BRAD database (Table 4). As the contigs

Table 4 Number of SNPs identified between Chiifu and three lines of B. rapa using Maq and MUMmer tools

Total SNPs (filtered)

Single-copy genes

Two copy genes Three copy genes

(@) Mag software output

Chiifu vs. Tetra 240,424
Chiifu vs. YSPB-24 277237
Chiifu vs. Candle 346,189
Tetra vs. YSPB-24 28,768
Tetra vs. Candle 201,827
YSPB-24 vs. candle 258,201
(b) MuMmer tool output

Chiifu vs. Tetra 249,671
Chiifu vs. YSPB-24 231,259
Chiifu vs. Candle 266,349
Tetra vs. YSPB-24 20,310
Tetra vs. Candle 182,952
YSPB-24 vs. candle 176,149

99,845 98,740 41,839
109,985 108,679 46,276
137,934 136,632 56,873
10,765 11,823 6,180
88,426 81,127 32,274
104,678 107,860 45,663
120,504 90,431 31,840
113,408 82,699 29376
105,498 83,983 30,485
10,569 7457 2,284
106,078 59,974 16,900
102,255 58,096 15,798
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Figure 3 Percentage of genes that were marked with SNPs.
Percentage of single-copy genes (first column), genes with two
paralogs (second column) and genes with three paralogs (third
column), which could be tagged with at least one SNP marker in
pair-wise comparison of different lines of B. rapa. The least number
of SNPs were found in Tetra vs. YSPB-24 comparison.

generated through Velvet assembly in the study were
partial sequences, increasing the coverage could provide
more SNPs for fine mapping.

Marker development from the identified SNPs

A survey of the BRAD database showed that 42% of the
gene models have been reported as single-copy genes
and these are well distributed throughout the B. rapa
genome (Additional file 1). Developing markers from the
single-copy genes for genome-wide linkage analysis was
therefore considered to be the ideal strategy.

We used Chiifu vs. Tetra polymorphism data for SNP-
marker development as these could be tested on a F,-RIL
population of Chiifu x Tetra developed in our laboratory.
SNPs were identified using the following criteria

e SNPs should be surrounded with a conserved
flanking region of 250 bp on both sides. This length
of sequences would allow flexibility in positioning
the oligos for amplification.

e The region of 101 bp, containing the variable base at
the middle, should not have any exon-intron
junctions.

e Read-depth of each of the identified SNPs should
be 27.

A total of 6,451 single-copy genes that showed > 90%
sequence identity between Chiifu and Tetra were com-
pared for SNPs. Applying the first criteria of 50 bp con-
served sequences around the SNP, the number of useful
contigs was reduced to 4,990. The number got reduced
to 2,836 when sequences containing the intron/exon
junctions were removed. Further application of the read-
depth criteria reduced the number of contigs to 2,113,
which could be used for marker development. To test
our selection criteria for SNP marking, a set of 580
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sequences, all representing single-copy genes that are
well distributed throughout the genome were selected
for developing SNP assays.

For specific-region mapping, the region around the
tet-o locus was targeted. This locus has been earlier
mapped (unpublished) on LG4 (A4) in a region that con-
tains the S and I blocks of this linkage group. Sixty genes
from this area were selected for developing SNP markers
of which 42 were single-copy genes and 18 had two or
three paralogs present in the genome. For such multi-
copy genes, the paralogs were aligned and both the allele-
specific SNP and paralog-specific variations (PSVs) were
marked. Allele specific SNPs were selected wherein the
50 bp on either side of the SNP had some paralog specific
variations (PSVs), so that locus specific primers could be
designed for marking the specific paralog of interest.

Oligos for SNP genotyping were synthesized by KASPar
technology [http://www.kbioscience.co.uk] using FRET
quencher oligos competitor allele specific arrays. A total
of 640 SNP based markers were developed between
Chiifu and Tetra lines. The sequence of the marker
oligos are provided in Additional file 2.

Linkage mapping in Chiifu x Tetra F; RIL population

SNP marker assays were tested on a Chiifu x Tetra F,-RIL
population of 93 individuals. Out of 640 SNPs selected
from well-dispersed genes, successful assays could be
obtained with 613 SNPs using KASPar genotyping tech-
nology. Twelve of the markers showed significant segrega-
tion distortion and four were found to be monomorphic.
A total of 733 markers including 594 SNP markers gener-
ated in this study, 99 Intron Polymorphism (IP) markers,
39 SSR markers and one morphological marker (tet-o)
were mapped onto the 10 linkage groups corresponding
to the haploid chromosome number of B. rapa (Table 5).
The assignment of names to the linkage groups was based
on the earlier mapping work [15]. The map covered a total
genetic length of 679.7 centiMorgans (cM). The markers
were distributed over 653 intervals and the distance
among consecutive markers ranged from 0.8 ¢cM to 1.5 cM
with an average distance of 1.1 cM. The use of well-
dispersed SNP markers allowed excellent general cover-
age of the linkage groups. The number of markers varied
from 45 (linkage group A8) to a maximum of 108 (linkage
group A9) SNP markers. A linkage map based predomin-
antly on the SNP markers is given in Figure 4.

We further tested the use of SNP markers for fine
mapping of a specific-region containing the locus tet-o.
Of the 60 SNP markers developed for fine mapping in
the region containing the tet-o locus, 52 could be suc-
cessfully mapped with a mean marker interval of 0.5 cM.
All the 18 markers designed for the genes with paralogs,
marking both the SNP and PSV information for allele
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Table 5 Characteristics of 10 linkage groups of B. rapa map constructed with 594 SNP and 138 IP and SSR markers

LG Length (cM) Total number of markers SNP markers No. of intervals Average interval size (cM)
Al 82.0 59 46 54 1.5
A2 54.8 63 50 59 09
A3 635 76 58 69 10
A4 518 92 80 77 07
A5 94.0 75 55 64 1.5
A6 64.2 79 67 77 0.8
A7 711 68 54 66 1.1
A8 576 45 35 41 14
A9 758 108 89 87 09
A10 499 68 60 60 0.8
Total 669.7 733 594 654 1.1

# The total numbers of markers includes one morphological marker tet-o.

and paralog discrimination could be mapped without
any ambiguity. The detailed map of the region containing
the tet-o locus is shown in Figure 5.

We have earlier developed a linkage map of three dif-
ferent mapping populations in B. rapa — Chiifu x Tetra
RIL-Fg, Chiifu x Tetra F, and Chiifu x YSPB-24 F, using
IP (genic) and SSR makers (mostly non-genic). These
maps have now been integrated with the SNP map. A
comparison of the features of the four parental maps,
i.e. CTF,, CTF4, CYF, and CTF; is given in Additional
file 3. IP and SSR markers genotyped on CTF; in this
study have been mapped previously in all these three
mapping populations (unpublished) and these were used
as anchor markers for developing the integrated map.

The integrated map has a total of 1,036 markers (211
IP, 230 SSR and 594 SNP) and a morphological marker
‘tet-0’. The features of the integrated map have been de-
scribed in Additional file 4. The total genetic length
spanned by the 10 linkage groups of the integrated map
was 831.0 cM. The new integrated map is shown in
Additional file 5.

Discussion

Although NGS technologies can be used in a variety of
ways for mapping, we have opted in this study to use
them for testing whether RNA-seq could provide adequate
genic SSRs and SNPs for both genome-wide linkage ana-
lysis and for fine mapping of a specific region. Our results
show that the number of polymorphic genic SSRs is rather
limited, but abundant SNPs are available between the
distantly related (Chiifu and Tetra, Chiifu and YSPB-24
and Chiifu and Candle) lines. The extent of polymorphism
is low between the two closely related lines, YSPB-24
and Tetra. In general, the numbers of SNPs available are
adequate both for genome-wide mapping and specific-
region fine mapping.

A number of techniques are available for marking SNPs
[34]. These have been broadly classified as allele specific
hybridization, allele-specific single-base extension and al-
lele specific enzymatic cleavage. Different methods have
been developed for detection of allele specific products
and a number of technology platforms have been devel-
oped for allele based sequence determination. All the
technologies have been used in one or the other study of
SNP based mapping in plants. We chose KASPar technol-
ogy as it seems to be the most appropriate technology for
the most frequently encountered mapping situations in
crop genetics — (a) relatively small populations and a
reasonable number of markers for genome-wide linkage
mapping and (b) large populations and a small number
of markers for specific-region fine mapping. Markers for
640 SNPs were developed and 594 could be successfully
mapped. The technology also allows development of SNP
markers that can differentiate paralogs and allelic differ-
ences in one reaction.

Considerable difficulty has been encountered in mark-
ing allelic SNPs in allotetraploid species like Triticum
aestivum (wheat) [28,35,36], Gossypium hirsutum (cotton)
[37] and B. napus (rapeseed) [27] due to the presence
of homeologous chromosomes [26]. B. rapa, in contrast
to the three species mentioned above, is an ancient
paleoploid with three genomes that have gone through
extensive gene fractionation and chromosomal rearrange-
ments. At the genomic level there has been extensive gene
loss, leading to many genes being present as single-copy
genes besides some having two or three paralogs [6].

The data available for Chiifu in the BRAD CDS data-
base and NGS based RNA-seq carried out in this study
show that a very large proportion of genes present in
B. rapa (42% in Chiifu) exist as single-copy genes and
the nucleotide polymorphism that exists between the
single-copy genes of various lines is sufficient for genome-
wide as well as specific-region fine mapping. Sufficient
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( Al A2 A3 A4 A5 Figure 4 Linkage map for B. rapa developed from F,-RILs with
. SNP, IP and SSR markers. A total of 594 SNP, 39 SSR and 99 IP
o s markers were used for the development of the linkage map. Linkage
groups are named A1-A10. Markers are shown on the right of the
I linkage group bar and marker positions (cM) are on the left. SNP
oy e markers are with the prefix BC_CT_.
. nucleotide level polymorphism also exists between the
NpEE paralogs to mark these through PSVs. In our study, > 92%
I ‘ of identified SNPs could be converted to successful assays
= using the KASPar technology. Our success with KASPar
% : markers is higher than what has been reported in wheat
using this technology [36]. The possible reasons for this
could be — (a) a reference genome is available in B. rapa,
: (b) the frequency of single-copy genes in the genome is
ek g - very high and (c) more stringent criteria were used in this
iE S fHE i study for developing SNP detection assays.
ol “ 5 i Use of molecular markers for genetic mapping in
B. rapa began with an extensive use of RFLP markers
w % z : [38]. Use of AFLP and SRAP markers provided more ex-
il tensive marker densities [39,40]. These markers, though
o By B REo abundant, are anonymous and do not provide any infor-
mation on genomic synteny and therefore, are difficult
to use for fine-mapping. Markers obtained from the gene
A6 A7 As A9 A0 space of a species, are most informative. EST-cDNA probes
I [14,41], genic SSRs [42,43], intron polymorphism (IP)
; Eod markers [15,43] and InDels (Sequence Tagged Sites, STS)
[44], have all been successfully used for comparative map-
@ g2 ping and studying genomic synteny amongst the Brassica
i{ [t species belonging to the U’s triangle [9].
ss e The large number of SNPs available in B. rapa will allow
- 2| more involved genome-wide linkage mapping and also as-
M “#: = sociation studies. A core set of 168 B. rapa lines has been
et identified and used in a genome wide association study
S i7a % using predominately AFLP markers [45]. It should be pos-
: JH: E| sible to use SNPs in future genome-wide association stud-
H ies. However, we expect that major emphasis in Brassica
o Z JHi: 2| species will be on mapping specific traits like disease
E Jtis|  [46-49] and pest resistance and QTL for yield [50-52]
éﬂl;ﬁgﬁ A\ i through the use of populations derived from biparental
aE @ “f V=8| crosses. This is evident from extensive work that has been
s carried out on mapping of such traits using biparental
“ o 0 iz=|  crosses. Precise introgressions while avoiding linkage drag,
s 2 particularly when unadapted germplasm is used, is going
u Ef to be the key to improvement of a large number of vege-
o fm v e table and oleiferous crops available within the Brassica
R species belonging to the U’s triangle. The ready availability
of SNPs for both background selection (general markers)
and precise introgression (specific-area markers) will help
in introduction from unadapted to adapted germplasm
and from the diploid species to allotetraploid species.

Specific-area marking and mapping of genes, as has been
shown in this study for the region containing the tet-o
locus, will also be useful for map based cloning.
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Figure 5 Fine map of the tet-o locus. SNP markers mapped in the region of tet-o locus of B. rapa CTF, population. A total of 52 SNP markers
were mapped in the region. The map on the left was developed with the SNP markers for genome-wide mapping, the tet-o region specific
markers and their map distances in cM are shown in the map on the right side.

Methods

Plant material, RNA extraction and library preparation
The four Brassica rapa lines - YSPB-24, Tetralocular
(Yellow sarson types, ssp. trilocularis, seeds procured from
Indian Agriculture Research Institute, India) Candle (ssp.
oleifera, seeds procured from Gerhard Rakow, Agri-Food,
Canada), Chiifu (ssp. pekinensis, seeds procured from Lim
Yong Pyo, Chungnam National University, South Korea)
used for transcriptome analysis were grown in the field
during the mustard growing season (October — March).

Tissues for RNA isolation were taken from the field-grown
plants at the time of flowering.

Inflorescence with unopened flower buds along with a
few small leaves, was used for RNA extraction. Harvested
tissues were immediately frozen in liquid nitrogen. Total
RNA was isolated using Total RNA Spectrum Kit (Sigma),
following the manufacturer’s instructions. Contaminating
DNA was removed by DNase treatment (DNaseA Kit,
Ambion). RNA was further purified by treatment (thrice)
with acidic phenol: chloroform (1:1). RNA was quantified
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using Nanodrop ND1000 spectrophotometer (Nanodrop
Technologies). Integrity of the obtained RNA samples
was checked on Agilent 2100 Bio analyzer. RNA samples
with RIN value > 7 were used for further experiments.

Paired end cDNA libraries, used for sequencing, were
prepared from 20 pg of total RNA using predominantly
the reagents available in the mRNA-seq Sample Prepar-
ation Kit (Illumina). mRNA was isolated from the total
RNA with magnetic oligo (dT) beads. Purified mRNA was
fragmented by treatment with divalent cations for 5 min
(solution is provided in the kit). The obtained mRNA frag-
ments were transcribed into first strand ¢cDNA using
Superscript II reverse transcriptase (Invitrogen), followed
by second-strand cDNA synthesis using DNA polymerase
and RNaseH. Double stranded cDNA molecules were
purified by a QIAquick PCR purification kit (Qiagen).
End repair of the double-stranded ¢cDNA was carried
out using T4 DNA polymerase, the Klenow DNA poly-
merase and T4 polynucleotide kinase. DNA was purified
again using a QIAquick PCR purification kit. This was
followed by a single ‘A’ base addition at the 3’ end of the
double stranded cDNA molecules using Klenow 3’ to 5’
exo-polymerase followed by purification of modified
¢DNA molecules using a MinElute PCR purification kit
(Qiagen). Sequencing adaptors were ligated to the ‘A’
tailed fragments using T4 ligase. Adaptor ligated cDNA
fragments were separated on 2% agarose gel and frag-
ments ranging in size from 200-250 bp were excised
from the gel and purified using a QIAquick Gel Extrac-
tion Kit. PCR was performed for 15 cycles from the puri-
fied DNA molecules using the adaptor specific primers
(available in the Illumina kit) and the amplified fragments
were purified using a QIAquick PCR Purification Kit. The
size and quantity of the obtained enriched ¢cDNA libraries
was checked on an Agilent 2100 Bio analyzer. Libraries
with single discrete band of 200-250 bp were selected
for sequencing reactions. The libraries were sequenced
as 2 x 101 nt paired end reads on the Genome Analyzer
IIx instrument (GAIIx, [llumina).

Data filtering and de-novo assembly of the transcriptome
Data obtained from the sequencer were processed for image
deconvolution and quality value calculation of each base
using the CASAVA package [Version 1.6, Illumina]. Quality
check was done using Fastx-toolkit [53]. Reads with more
than 30% bases having a Phred quality score <20 were
removed from the analysis using fastq_quality_filter (-q
20, -p 70). Thirty-one bases of the tail region, which were
found to have low Phred score, were removed from the
obtained sequences using Fastx-quality_trimmer (-t 31).
The assembly of the filtered reads was done using Velvet
de-novo assembly program with the velvetg main param-
eters: -ins_length_sd 20 -ins_length (variable, depending
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on the insert length) -read_trkg yes -min_contig lgth
100 -scaffolding yes -alignments yes. Obtained contig
sequences are available on request.

SNP marker development

For marker development SNPs were mined from the EST
contigs of Tetra generated in this study and the reference
gene model sequence data of Chiifu available in the BRAD
database. For identifying SNPs in the single-copy genes,
the reference sequence dataset of 17,572 single-copy gene
sequences was compared against corresponding Tetra
contigs identified as single-copy genes. Sequences show-
ing > 90% homology were compared for SNPs using the
MUMmer software. After removing sequences with
insertions/deletions, sequences with SNPs and 50 bp
conserved flanking sequence on both sides of the SNP
were excised from the contigs using custom perl scripts.
For identifying allele specific SNPs in genes with two/
three paralogs, the Tetra contigs were compared against
the reference sequence of Chiifu by conducting a BLAST
search [54]. The paralogs were separated based on the
homology and paralog specific variations (PSVs). The al-
lelic variations were marked using custom PERL scripts
and SNPs with 50 bp on each side of SNP were excised as
before. PSV containing sequences were selected to design
paralog specific primers. As the SNPs were identified using
EST sequences, BLAST search was conducted with all the
excised 101 bp sequences containing SNPs against the
B. rapa genome sequences of Chiifu available in the BRAD
database (Brapla_genome_data_v2.1) to identify intron/exon
junctions. Selected SNPs showing the presence of such
boundaries in the flanking regions were discarded, as the
oligo designing at such positions would result in assay
failure.

The cut-off read depth for the identified SNP was set
at>7. For this, a Velvet assembly generated .afg file was
converted to .ace file and further pileup file was generated
using Samtools [55]. The depth of each of the base (A, T,
G and C) was calculated using custom perl scripts.

SNP genotyping and construction of linkage map
For validation and mapping of SNPs, KBioscience KASPar
assay [29] was used. The primer design and assay develop-
ment was undertaken by KBiosciences [29]. The ID and
features of identified putative SNPs along with 100 bp
sequences are provided in the Additional file 2.

For genotyping the SNPs markers, a Recombinant In-
bred Line (RIL) population of 93 individuals in the F; gen-
eration derived from a cross between the leafy vegetable
type line Chiifu and the oleiferous line Tetra was used.
From the already developed map of B. rapa using Fg -RIL
population of Chiifu and Tetra in our lab (unpublished),
randomly selected 99 IP and 39 SSR markers, well dis-
persed on all the 10 linkage groups were also genotyped
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on F;-RILS to develop a skeleton map. PCR reactions
and product separation for IP and SSR markers were
performed as described earlier [15]. Linkage groups were
established at a LOD > 6.0 with Join Map 4.0 [56] following
the mapping criteria of Pradhan et al. [57]. The recombin-
ation fractions were transformed to map distances with the
Kosambi function [58]. The graphical representation of the
linkage groups was generated by Map Chart 2.2 [59].

For the construction of an integrated map, marker infor-
mation from three mapping populations CTF, (Chiifu x
Tetra F,), CTFq (Chiifu x Tetra Fg) and CYF, (Chiifu x
YSPB-24 F,) [unpublished] along with the genotyped SNP
markers was used. Recombination fraction data from the
CTF,, CTFs and CYF, were merged with the recombin-
ation data of CTF, map and heterogeneity tests were
performed for pairs of markers common to the four map-
ping populations. A set of markers from each linkage
group was identified on the basis of the order among
the component maps (CTF,, CTFs, CTF, and CYF,)
and was used to define a fixed order for the construc-
tion of an integrated map. Common marker pairs that
differed significantly (p < 0.01) in the recombination fre-
quencies were excluded from mapping. An integrated
map was generated by Join Map 4.0 with the combine
groups for a map integration function using the regres-
sion mapping algorithm.

Conclusion

RNA-seq of three agronomically interesting oleiferous
lines of B. rapa using paired end sequencing provided a
large number of SNPs for both genome-wide mapping
and for fine mapping in specific areas of the genome. High
confidence SNPs in homologs were selected for KASPar
based genetic marker development by three-step selec-
tion criteria. High frequency (~96%) of markers could
be mapped successfully in the B. rapa genome. KASPar
technology can be effectively used for marking allelic
SNPs and PSVs for marking paralogs in B. rapa lines, and
can be used for marking genes with multiple paralogs in
any genome. Also, availability of large number of SNPs will
allow fine mapping of regions of interest.

Additional files

Additional file 1: The homology based groupings of ‘Chiifu vs
YSPB-24’, ‘Chiifu vs Tetra’ and ‘Chiifu vs Candle’ as a database. The
data contains the homology based grouping of Arabidopsis genes and
their corresponding genes in Brassica rapa line Chiifu (as available in the
BRAD syntenic paralog data) and contigs obtained for each of the three
oleiferous lines of Brassica rapa. Column A, B,C, D, E, F, G and H
represent the Arabidopsis gene, gene block, chromosomal position of the
Chiifu homolog 1, gene id of the Chiifu homolog 1, chromosomal
position of the Chiifu homolog 2, gene id of the Chiifu homolog 2 and
chromosomal position of the Chiifu homolog 3, gene id of the Chiifu
homolog 3, respectively. Column | onwards contain the contigs obtained
from oleiferous B. rapa types.

Page 11 of 13

Additional file 2: Sequences and descriptions of the oligos used for
marking SNPs in the study. The data contains the description of the
genes for which the SNP based markers were developed in this study.
Column B shows marker id, column C- Arabidopsis homolog id, column
D- chromosomal position of the Brassica gene, column E- block position
of the gene, column F- gene id in Chiifu, column G- homologous contig
id in Tetra, column H- alignment direction, column I- position of the
tagged SNP in the Chiifu gene sequence, column J- variable base in the
Chiifu gene sequence, column K- corresponding SNP base in the Tetra
contig sequence, column L- position of the tagged SNP in the Tetra
gene sequence, column M- depth of the tagged base in the assembled
Tetra contigs, columns N to Q- depth of the tagged base A, T, G and C at
the SNP base position in assembled Tetra contigs and column R-
sequence used for the marker development. The variable bases in the
sequences are shown in a bracket. Degeneracy was put in some of the
marker sequences. The Arabidopsis id and corresponding genes id for the
Chiifu have been obtained from the BRAD database.

Additional file 3: Comparison of the features of the four parental
maps, i.e. CTF,, CTFs, CYF, and CTF,, which were developed by a
cross between Chiifu and Tetra lines of B. rapa.

Additional file 4: Features of an integrated map of Chiifu x Tetra
F;-RIL population developed by using SNP, IP and SSR markers.
Additional file 5: An integrated map of CTF; with 1036 markers,
which include 594 SNP, 211 IP and 230 SSR markers.
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