
Sen et al. BMC Genomics 2013, 14:491
http://www.biomedcentral.com/1471-2164/14/491
RESEARCH ARTICLE Open Access
Differential impacts of juvenile hormone, soldier
head extract and alternate caste phenotypes on
host and symbiont transcriptome composition in
the gut of the termite Reticulitermes flavipes
Ruchira Sen1†, Rhitoban Raychoudhury1†, Yunpeng Cai2,4, Yijun Sun2,5, Verena-Ulrike Lietze3, Drion G Boucias3

and Michael E Scharf1*
Abstract

Background: Termites are highly eusocial insects and show a division of labor whereby morphologically distinct
individuals specialize in distinct tasks. In the lower termite Reticulitermes flavipes (Rhinotermitidae), non-reproducing
individuals form the worker and soldier castes, which specialize in helping (e.g., brood care, cleaning, foraging) and
defense behaviors, respectively. Workers are totipotent juveniles that can either undergo status quo molts or
develop into soldiers or neotenic reproductives. This caste differentiation can be regulated by juvenile hormone
(JH) and primer pheromones contained in soldier head extracts (SHE). Here we offered worker termites a cellulose
diet treated with JH or SHE for 24-hr, or held them with live soldiers (LS) or live neotenic reproductives (LR). We
then determined gene expression profiles of the host termite gut and protozoan symbionts concurrently using
custom cDNA oligo-microarrays containing 10,990 individual ESTs.

Results: JH was the most influential treatment (501 total ESTs affected), followed by LS (24 ESTs), LR (12 ESTs) and
SHE treatments (6 ESTs). The majority of JH up- and downregulated ESTs were of host and symbiont origin,
respectively; in contrast, SHE, LR and LS treatments had more uniform impacts on host and symbiont gene
expression. Repeat “follow-up” bioassays investigating combined JH + SHE impacts in relation to individual JH and
SHE treatments on a subset of array-positive genes revealed (i) JH and SHE treatments had opposite impacts on
gene expression and (ii) JH + SHE impacts on gene expression were generally intermediate between JH and SHE.

Conclusions: Our results show that JH impacts hundreds of termite and symbiont genes within 24-hr, strongly
suggesting a role for the termite gut in JH-dependent caste determination. Additionally, differential impacts of SHE
and LS treatments were observed that are in strong agreement with previous studies that specifically investigated
soldier caste regulation. However, it is likely that gene expression outside the gut may be of equal or greater
importance than gut gene expression.
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Background
The successful maintenance of social insect colonies
relies on the efficiency of workers. Functions like foraging,
cleaning, brood care, colony defense, etc. are carried out
by individuals, which are often differentiated into worker
sub-castes that each performs specific duties. Such differ-
entiation is either morphological, where physical features
determine the tasks (polyphenism), or age-based, where
workers carry out different functions at different ages
(polyethism) [1]. In both types of caste differentiation,
juvenile hormone (JH) is known to play a significant role
in most social insects [2]. Experimental application of JH
to workers of different social insects has been shown to
induce two major types of changes; such as (i) stimulating
young workers to carry out functions that are usually
performed by older individuals [3] or (ii) inducing workers
to go through physical changes and differentiate from one
phenotype to another [4].
Termite colonies contain one or more pairs of repro-

ductives and a large number of non-reproductives that
are morphologically differentiated into workers, nymphs
and soldiers. Workers and nymphs carry out foraging,
brood care and cleaning while soldiers, with bigger and
stronger mandibles, are dedicated to colony defense. As
hemimetabolous insects, termites go through several ju-
venile instars before reaching adulthood; in each of these
juvenile instars JH is presumed to perform its stereotypical
“status quo” function [2]. In lower termites, including
Reticulitermes flavipes, helper castes are juvenile stages
composed of both workers, which are eyeless and wing-
less, and nymphs, which are immature imagoes [5].
Nymphs and workers diverge from undifferentiated “larvae”
after the second instar. Workers have three alternate devel-
opmental trajectories that include (i) status quo molts into
workers, (ii) molts into presoldiers (followed by terminal
soldier differentiation), or (iii) molts into apterous neotenic
reproductives. Nymphs, conversely, have two alternate
developmental trajectories that include molts into (i)
brachypterous neotenic reproductives or (ii) adult imagoes
that eventually become primary reproductives that start
incipient colonies. Aside from two caste-regulatory genes
and two soldier-derived primer pheromones linked to
presoldier caste regulation [5-7], relatively little is known
about the molecular mechanisms of caste differentiation
in termites and the factors that initiate this process.
Different juvenile hormone analogues (JHAs) have been

tested for their effect on caste differentiation in many
species of termites through various bioassay methods [8].
Most of these experiments demonstrated increased pro-
duction of presoldiers, intercastes and pseudoimagoes and
increased or decreased production of neotenic reproduc-
tives. The application of JH also resulted in defaunation
of protozoan symbionts and bacterial endosymbionts,
inhibition of ecdysis and feeding, atrophication of the
prothoracic gland, and apparent toxicity [8]. It can thus be
hypothesized that JH and host-symbiont interactions within
the gut may impact caste differentiation processes.
In R. flavipes and other species of the genus Reticulitermes,

JH and JHAs predominantly induce presoldier differenti-
ation [7,9-12]. Moreover, Elliott and Stay [13] have sug-
gested that, in R. flavipes, workers that are destined to
become presoldiers have a 2.5-fold higher JH titer com-
pared to workers destined to become neotenic reproduc-
tives. Park and Raina [14,15] also reported an increased
titer of JH in presoldiers and new soldiers of a closely re-
lated species, Coptotermes formosanus. Soldiers are known
to have inhibitory effects on presoldier differentiation
mediated by soldier-derived primer pheromones in lower
termites [16-18]. Two primer pheromone candidates, ɣ-
cadinene (CAD) and its aldehyde ɣ-cadinenal (ALD) have
been identified in R. flavipes soldier head extract (SHE),
which, when applied in combination with JH, increases
soldier caste differentiation [7,12]. However, SHE alone
does not impact caste differentiation, survivorship, or
any other aspect of worker biology [7,12,18]. Also, two
fat body-expressed hexamerin-encoding genes (Hex-1
and Hex-2) play a key role in maintaining a develop-
mental status quo in workers by being JH-inducible,
sequestering JH and thereby promoting high worker caste
proportions [11,19-22].
In addition to endocrine effects, social effects on gene

expression have been investigated to some extent in
R. flavipes. For example, being held with soldiers increases
levels of the primer pheromone ALD by 10× in workers
[7] and such workers are less likely to undergo presoldier
formation [7,18]. However, with respect to reproductive
effects, while some phenotypic impacts have been noted
in R. speratus [37], in R. flavipes the impact on workers of
being held with live reproductives is not known. Termite
biology, however, is also influenced by the numerous sym-
bionts that are harbored in the termite gut. In R. flavipes,
these symbionts consist of both pro- and eukaryotes and
include over 5,000 ribotypes of prokaryotes [23] and 11–12
different protists [24]. The protists, especially, have been
shown to be in a nutritional symbiosis with R. flavipes [25].
Despite this emerging understanding, no studies have yet
focused on the worker termite gut or its resident symbionts
as potential molecular determinants of caste differentiation.
Since the lower-termite gut environment is centrally im-
portant to nutrition, physiology and symbiotic relationships
with protists and bacteria, we hypothesized that gene
expression in this environment is substantially altered
in response to caste-regulatory factors and caste com-
position. Raychoudhury et al. [26] recently tested the
effects of different diets on gene expression of both the
termite gut and protist symbionts using an oligonucleotide
cDNA microarray. Here we use the same protocol to test
the effects of hormones (i.e., JH), primer pheromones
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(SHE) and the presence of live reproductives (LR) and live
soldiers (LS) on host and symbiont gene expression in the
gut of R. flavipes workers. We show that JH has the most
pronounced effect while SHE treatment and the presence
of live reproductives or soldiers have much lower impacts
on gene expression in the gut environment. We further in-
vestigated the expression level of a few selected upregulated
and downregulated genes (as found by microarray) in ter-
mites independently treated with JH, SHE and the JH +
SHE combination. Lastly, we report details on a previously
un-annotated 50-kDa midgut protein gene that was the
most significantly JH-upregulated EST.

Results
JH-presoldier induction bioassays
Presoldier induction bioassays were conducted on one
Florida colony used for microarray studies (B1) and another
from Indiana used in “follow up” qPCR bioassays (WI-9).
After a limited 24-hr exposure period identical to that
employed in microarray and follow up bioassays, the B1
and WI-9 colonies had average ± std. deviation presoldier
formation of 90.0 ± 7.1% and 91.1 ± 11.5% after 25 days
(n = 4-5 per colony). No presoldier formation (0%) oc-
curred in acetone controls.

Numbers of differentially expressed transcripts and
their annotation
A total of 10,990 distinct transcripts, represented in 15,208
array positions, were studied in this microarray experi-
ment (see Methods for details). To visualize the array
data, we calculated a fold change ratio for every array
position based on its normalized average intensity in each
treatment (i.e., JH, SHE, LS, LR) divided by its normalized
average intensity in the control (acetone) treatment. We
selected array positions that had significant fold ratios
(P <0.05) and mean log2 fold change ratios ≤ −0.25 and
≥0.25 (emphasized in the Volcano plots in Figure 1)
which corresponded to actual fold changes of <0.84 and
>1.19, respectively. Array positions with ≥0.25 mean
log2 fold change ratio represented ESTs which were
upregulated by the various treatments, and array positions
with ≤ −0.25 mean log2 fold change ratio represented ESTs
which were downregulated by the various treatments.

Effects of juvenile hormone III (JH)
A total of 179 and 981 JH up- and downregulated
microarray positions were identified. After contiging the
upregulated and downregulated ESTs separately (90%
similarity level), we found 96 and 12 unique sequences
of host and symbiont origin, respectively, in the upregulated
set; in the downregulated set, we found 44 and 349 unique
sequences of host and symbiont origin, respectively, along
with 6 sequences of mixed origin (Table 1, Figure 1). The
term “EST” is used hereafter to refer to both contigs and
non-contiguous orphan EST “singletons”. Significantly
more upregulated ESTs were from the host termite;
whereas, significantly more downregulated ESTs were from
protist symbionts (G test for independence, G = 242.7,
P <0.001). Out of 108 JH upregulated ESTs, 74 could be
annotated by BLASTx against the nr database through
BLAST2GO, and 332 out of 399 downregulated ESTs
could be annotated (Tables 2 and 3, Additional file 1:
Table S1A, S1B).

Effects of SHE (soldier head extract)
Three and 5 SHE up- and downregulated array positions,
respectively, were identified. Each of the 3 upregulated
ESTs was unique, i.e., they did not form any contig at 90%
similarity, whereas the 5 downregulated ESTs contiged
into 3 unique sequences. In the upregulated set, 2 out of
3 ESTs were of host origin while all 3 downregulated
contig sequences were of symbiont origin (Table 1, Figure 1).
Only 1 host EST out of the 3 upregulated ESTs and 3
symbiont downregulated ESTs could be annotated with
BLASTx searches of the nr database (Additional file 1:
Table S2A, S2B).

Effects of live reproductives (LR)
Ten and 3 LR up- and down regulated array positions
were identified. Only 2 upregulated host ESTs formed
contigs while all other ESTs were unique. In the
upregulated set, 6 (out of 9) ESTs were of host origin
while all 3 sequences in the downregulated set were of
symbiont origin (Table 1, Figure 1). Among the upregulated
ESTs, 4 host ESTs and 1 symbiont EST could be annotated
by BLASTx against the nr database (Additional file 1:
Table S3A); whereas all 3 downregulated symbiont ESTs
had nr database matches (Additional file 1: Table S3B).

Effects of live soldiers (LS)
The presence of live soldiers had a more pronounced
impact on worker gut gene expression. A total of 37 and
6 LS up- and downregulated array positions, respectively,
were identified (Figure 1). These 43 array positions contiged
into 12 host and 6 symbiont-derived up- and downregulated
sequences, respectively. The ESTs in the downregulated set
did not form any contigs and only 1 out of these 6 was of
host origin. Among the upregulated ESTs, 6 and 4 host
and symbiont ESTs, respectively, could be annotated by
BLASTx against the nr database through BLAST2GO.
In the downregulated set, only 2 symbiont ESTs set could
be annotated (Additional file 1: Table S4A and B).

Gene ontology and KEGG pathway analyses with
BLAST2GO and DAVID
Gene Ontology (GO) terms were obtained through
BLAST2GO and were performed in the three categories
Molecular Function, Cellular Location and Biological



0

1

2

3

4

5

6

-2 -1.75 -1.5 -1.25 -1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1 1.25 1.5 1.75 2

-lo
g 

10
 o

f P
 v

al
ue

log2 FC

A Down Regulated Up Regulated

0

1

2

3

4

5

6

-2 -1.75 -1.5 -1.25 -1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1 1.25 1.5 1.75 2

-lo
g1

0 
of

 P
 v

al
ue

log2FC

B

0

1

2

3

4

5

6

-2 -1.75 -1.5 -1.25 -1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1 1.25 1.5 1.75 2

-lo
g1

0 
of

 P
 v

al
ue

Log2 FC

C

0

1

2

3

4

5

6

-2 -1.75 -1.5 -1.25 -1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1 1.25 1.5 1.75 2

-lo
g1

0 
of

 P
 v

al
ue

log2FC

D

Host  44
Symbiont  349

Host  96
Symbiont  12

Host  0
Symbiont  3

Host  2
Symbiont  1

Host  0
Symbiont  3

Host  6
Symbiont  3

Host  1
Symbiont  5

Host  12
Symbiont  6

Figure 1 Volcano plots illustrating microarray results. Shown
are numbers of significantly (P <0.05) upregulated (blue; ≥1.19-fold)
and downregulated (red; ≤0.84-fold) microarray positions from four
treatments that included juvenile hormone (A), soldier head extract
(B), live reproductives (C) and live soldiers (D). The fold ratios on the
x-axis represent the ratio of EST abundance for each of the four
treatments relative to untreated controls. The numbers of contigs
formed from ESTs of host or symbiont origin are given in
each panel.
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Process for the JH, SHE, LR and LS datasets, with results
for each passing EST shown in Additional file 1: Table
S1-S4. In addition, Molecular Function GO results were
tallied across all 4 treatment categories and are summa-
rized in Table 4. As expected, the highest numbers of
GO-Molecular Function terms were in the JH up- and
downregulated categories (411 and 91 terms). In most
other treatments categories, numbers of passing ESTs
had proportional numbers of associated GO-Molecular
Function terms; however, the SHE downregulated category,
which had only 2 passing ESTs (dna replication licensing
factor mcm7 and serine/threonine-protein kinase mph1),
had 19 GO-Molecular Function terms.
Next, KEGG pathway analysis was carried out on

the JH dataset to understand the general effects of JH
(Tables 2 and 3) on cellular metabolism in the gut
transcriptome. Only the JH dataset was examined because
of the relatively large numbers of genes available as com-
pared with the SHE, LR and LS datasets. All annotated
upregulated ESTs were of host origin, while all but one
of the downregulated ESTs were of symbiont origin. Al-
dehyde dehydrogenase and peroxidase enzymes were
abundant in the upregulated dataset and found to be in-
volved in various pathways that included intermediary
and amino acid metabolism and cuticle biosynthesis
(Table 2). The downregulated KEGG dataset was much
more diverse but most notably included enzymes and
pathways linked to terpenoid biosynthesis (e.g., HMG
Co-A reductase; Table 3).
Finally, the program DAVID [27] was used for further

bioinformatic analyses of ESTs with identifiable homologs
in Drosophila melanogaster. DAVID utilizes the back-
ground annotation information from various sequenced
genomes to assign enrichment scores. Out of the 74 and
332 annotated up- and downregulated ESTs, respectively,
50 and 156 D. melanogaster homologs were obtained.
(Additional file 1: Table S1A, and S1B). This result sug-
gests JH-related pathways are well conserved between
D. melanogaster and R. flavipes. We present three sets
of analyses with JH treatment which show enrichment
of GO-Molecular Function terms in the sequences that
were downregulated from both host and symbiont li-
braries and upregulated from the host library. From
the symbiont library there were only three annotated
ESTs that were upregulated, which proved insufficient
for enrichment scores. Additional file 1: Table S1C
shows the GO-Molecular Function terms that were
enriched from the upregulated host fraction. In general,
molecular functions related to iron binding, peptidase
activity and cuticle formation were enriched. However,
molecular functions related to peptidase activity were
also enriched among the downregulated host ESTs
(Additional file 1: Table S1D). Clearly, ESTs with similar
molecular functions were both up- and downregulated



Table 1 Number of upregulated and downregulated ESTs
in different treatments compared to acetone controls

Treatment Upregulated Downregulated Total unique
ESTs and contigsHost Symbiont Host Symbiont

JH 158
(96)

21 (12) 82
(44)

899 (349) 501

SHE 2 1 0 5 (3) 6

LR 7 (6) 3 0 3 12

LS 22 (12) 15 (6) 1 5 24

The numbers in parentheses are numbers of unique sequences that were
found after contiging at 90% sequence similarity.
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by JH treatment; however, further details cannot be
elucidated by the present analyses. The downregulated
sequences from the symbiont fraction, conversely, show
a clear trend of shutting down vital cellular functions
like translation, transcription and other enzymatic activities
(Additional file 1: Table S1E). Whether this reflects the cap-
ability of the protists to detect the presence of JH and the
ensuing molt of the workers towards non-feeding pre-
soldier phenotypes, or other host functions which suppress
their cellular activities, remains to be investigated.

Candidate genes of interest
The JH microarray dataset contained 501 significantly dif-
ferentially expressed EST contigs (Table 1, Additional file 1:
Table S1A, B). The most highly JH up- and downregulated
of these ESTs encoded homologs of a host 50 kDa midgut
protein (50MGP), which was upregulated 2.9-fold with JH
treatment, and a protist symbiont cysteine synthase a,
which was downregulated 3.1-fold with JH treatment.
Other highly upregulated genes in the JH dataset included
nli interacting factor-like phosphatase, Arylsulfatase B,
and several apolipoproteins, chymotrypsins and serine
proteases. Two cytochrome P450 homologs from families
6 and 4 were upregulated in the JH dataset and five others
from families 6 and 4 were downregulated. Genes related
to cuticle formation were upregulated by JH, including
larval and pupal cuticle proteins, resilin, Tyramine beta
hydroxylase and Dopamine N-acetyl transferase. The JH
dataset also contained a number of upregulated host genes
with links to phosphate related post-translational modifi-
cation, e.g., nli interacting factor-like phosphatase, seven
de-phosphorylating phosphatases, seventeen kinases (pre-
dicted to add phosphate groups), and an insulin receptor
homolog with predicted kinase activity.
SHE arrays revealed only 6 ESTs with significant dif-

ferential expression. The most highly SHE up- and
downregulated transcripts were an un-annotated host gene
upregulated 2.0-fold and a symbiont serine/threonine-
protein kinase mph1 homolog that was 1.4-fold down-
regulated. Also, a DNA replication factor, dna replication
licensing factor mcm7, was downregulated 1.2-fold by
SHE treatment.
LR arrays revealed 12 significantly differentially
expressed ESTs. The two most highly LR upregulated
genes were both from the host and had ~2.2-fold in-
creased expression; the first was a serine protease 13
homolog, and the second had no significant database
matches. The most LR downregulated gene (1.6-fold)
encoded a symbiont linker histone h1 and h5 family protein.
LS arrays revealed 25 differentially expressed ESTs.

With 2.7-fold up-regulation, a host-derived venom
allergen 3-like homolog with predicted protease functions
was the most highly LS upregulated EST. Five additional
upregulated ESTs had predicted carbohydrate-active
and immune functions; these ESTs included two alpha
amylase homologs (2.0- to 2.4-fold), two lysozyme ho-
mologs (1.4 and 1.5-fold), and a C-type lectin homolog
(1.5-fold). The most downregulated ESTs in the LS
dataset included 1 host and 1 symbiont EST with no sig-
nificant database matches.

50 kDa midgut protein: cDNA sequence and amino acid
translations
As noted above, the 50MGP gene was the most highly
JH upregulated gene identified in this study. The full
length 50MGP cDNA was assembled from six overlap-
ping EST contigs [28] and verified by database searches
and independent resequencing as described under
Methods. The 50MGP cDNA and translated amino
acid sequences (Genbank Accession No. KC751537)
are provided in Additional file 2: Figure S1. The cDNA
sequence contains at least 60 base pairs (bp) of 5′
untranslated region (UTR) before the ATG start codon,
a 1419-bp open reading frame, and a 3′ UTR of 133 bp
between the “taa” termination codon and the first base
of the poly-A tail. The 3′ UTR also contains an “aataa”
polyadenylation signal 20 bp upstream of the poly-A
tail.
The translated 50MGP protein sequence had 473 amino

acids (AA) and begins with a 19-AA secretory signal
peptide “MKTQAILIAAVALLLGTEG”, indicating the
mature protein is soluble and secreted. The mature pro-
tein without signal peptide contains 454 AA with a pre-
dicted mass of 49.9 kDa and isoelectric point (pI) of
7.09. The translated AA sequence has 17 predicted
phosphorylation sites on 10 Ser, 4 Thr and 3 Tyr resi-
dues (see gray shading in Additional file 2: Figure S1).
There are no predicted glycosylation sites. The 50MGP
protein has predicted function as a cell-envelope en-
zyme with lyase and/or ligase activity. Gene ontology
categories predicted for the full length AA sequence,
from most to least probable, are “immune response”,
“stress response” and “signal transduction.”
A ClustalW alignment of homologous 50MGP proteins

from various insects is shown in Figure 2. The alignment
contained all homologs that could be identified by BLASTx



Table 2 KEGG pathways upregulated by JH treatment

Pathway Enzyme Ezyme ID Accession# Origin

1 Amino sugar and nucleotide sugar metabolism GDP-L-fucose synthase EC:1.1.1.271 FL638281 Host

2 Arginine and proline metabolism aldehyde dehydrogenase (NAD+) EC:1.2.1.3 FL638461 Host

3 Ascorbate and aldarate metabolism aldehyde dehydrogenase (NAD+) EC:1.2.1.3 FL638461 Host

4 Beta-Alanine metabolism aldehyde dehydrogenase (NAD+) EC:1.2.1.3 FL638461 Host

5 Chloroalkane and chloroalkene degradation aldehyde dehydrogenase (NAD+) EC:1.2.1.3 FL638461 Host

6 Fatty acid metabolism aldehyde dehydrogenase (NAD+) EC:1.2.1.3 FL638461 Host

Fructose and mannose metabolism GDP-L-fucose synthase EC:1.1.1.271 FL638281 Host

7 Glycerolipid metabolism aldehyde dehydrogenase (NAD+) EC:1.2.1.3 FL638461 Host

8 Glycolysis Gluconeogenesis aldehyde dehydrogenase (NAD+) EC:1.2.1.3 FL638461 Host

glyceraldehyde-3-phosphate dehydrogenase
(phosphorylating)

EC:1.2.1.12 FL642856 Symbiont

9 Histidine metabolism aldehyde dehydrogenase (NAD+) EC:1.2.1.3 FL638461 Host

10 Limonene and pinene degradation aldehyde dehydrogenase (NAD+) EC:1.2.1.3 FL638461 Host

11 Lysine degradation aldehyde dehydrogenase (NAD+) EC:1.2.1.3 FL638461 Host

12 Methane metabolism peroxidase EC:1.11.1.7 FL637172 Host

13 Pentose and glucuronate interconversions aldehyde dehydrogenase (NAD+) EC:1.2.1.3 FL638461 Host

14 Phenylalanine metabolism peroxidase EC:1.11.1.7 FL637172 Host

15 Phenylpropanoid biosynthesis peroxidase EC:1.11.1.7 FL637172 Host

16 Porphyrin and chlorophyll metabolism ferroxidase EC:1.16.3.1 FL636458 Host

17 Propanoate metabolism aldehyde dehydrogenase (NAD+) EC:1.2.1.3 FL638461 Host

18 Purine metabolism guanylate cyclase EC:4.6.1.2 FL639621, FL639829 Host

19 Pyruvate metabolism aldehyde dehydrogenase (NAD+) EC:1.2.1.3 FL638461 Host

20 Retinol metabolism retinal dehydrogenase EC:1.2.1.36 FL638191 Host

21 Tryptophan metabolism aldehyde dehydrogenase (NAD+) EC:1.2.1.3 FL638461 Host

22 Tyrosine metabolism dopamine beta-monooxygenase EC:1.14.17.1 FL640448 Host

23 Valine, leucine and isoleucine degradation aldehyde dehydrogenase (NAD+) EC:1.2.1.3 FL638461 Host

Pathways were obtained from sequences corresponding to upregulated spots from the array. Annotations were done with BLAST2GO. The table also indicates the
library of origin (host/symbiont) of the sequences.
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searches of the GenBank nr database as of Nov 2012. In-
cluded in the alignment were homologs sharing 20-35%
AA identity from R. flavipes, the sandfly Phlebotomous
papatasi, the bark beetle Dendroctonus ponderosae, and
the red flour beetle Tribolium castaneum (two homologs).
There were 38 invariant AA residues in the alignment, with
P. papatasi sharing the most identity with R. flavipes (24.5%),
followed by D. ponderosae (22.8%), and T. castaneum
(22.2 and 21.6%). All homologs are equally rich in phos-
phorylation sites. The sandfly 50MGP is most similar to
the termite 50MGP protein; it shares a secretion signal
peptide, predicted cell envelope interaction, and pre-
dicted ligase/lyase, immune, stress response and signal
transduction functions with the termite protein.

Validation of microarray results by qRT-PCR
Correlation analysis
A subset of 52 ESTs was used to validate relative expres-
sion levels determined from microarray hybridization data
(Figure 3). This subset included 18 and 22 JH up- and
downregulated ESTs, 1 and 2 SHE up- and downregulated
ESTs, 3 and 6 LR up- and downregulated ESTs, and 6 LS
upregulated ESTs. Template cDNA used in these qRT-
PCR reactions was reverse-transcribed from the original
RNA samples used for microarray hybridizations. A test of
correlation was carried out between the 2-ΔΔCT values
(obtained from qPCR CT values) and microarray fold
change values of the JH up- and downregulated ESTs. The
ΔΔCT values were positively correlated (Spearman Rank
Correlation, Rs = 0.874, P <0.001) with array fold change
values as expected since higher fold change indicates
presence of more transcripts, which provides smaller CT

values. The sample sizes for other treatments were too
small for conducting statistical tests; however, ΔΔCT

values for all but one tested ESTs showed similar nega-
tive correlation trends (i.e., there were negative ΔΔCT

values for upregulated ESTs and positive ΔΔCT values
for downregulated ESTs, Additional file 3: Table S5).



Table 3 KEGG pathways downregulated by JH treatment

Pathway Enzyme Ezyme ID Accession # Origin

1 Amino sugar and nucleotide sugar
metabolism

glucose-6-phosphate isomerase EC:5.3.1.9 FL643307 Symbiont

2 Beta-Alanine metabolism dihydropyrimidine dehydrogenase (NADP+) EC:1.3.1.2 FL641335 Symbiont

3 Butanoate metabolism hydroxymethylglutaryl-CoA synthase EC:2.3.3.10 FL641384 Symbiont

4 C5-Branched dibasic acid metabolism succinate—CoA ligase (ADP-forming) EC:6.2.1.5 FL641410, FL643051,
FL644288, FL645720

Symbiont

5 Carbon fixation in photosynthetic
organisms

malate dehydrogenase (oxaloacetate-decarboxylating) (NADP+) EC:1.1.1.40 FL642239, FL642831,
FL645272, FL645325

Symbiont

triose-phosphate isomerase EC:5.3.1.1 FL642787 Symbiont

phosphoglycerate kinase EC:2.7.2.3 FL643941 Symbiont

fructose-bisphosphate aldolase EC:4.1.2.13 FL644124 Symbiont

6 Carbon fixation pathways in
prokaryotes

succinate—CoA ligase (ADP-forming) EC:6.2.1.5 FL641410, FL643051,
FL644288, FL645720

Symbiont

ATP citrate synthase EC:2.3.3.8 FL641410, FL643051,
FL644288, FL645720

Symbiont

7 Citrate cycle (TCA cycle) succinate—CoA ligase (ADP-forming) EC:6.2.1.5 FL641410, FL643051,
FL644288, FL645720

Symbiont

ATP citrate synthase EC:2.3.3.8 FL641410, FL643051,
FL644288, FL645720

Symbiont

succinate—CoA ligase (GDP-forming) EC:6.2.1.4 FL641410, FL643051,
FL644288, FL645720

Symbiont

succinate—CoA ligase (GDP-forming) EC:6.2.1.4 FL641015, FL643186 Symbiont

succinate—CoA ligase (GDP-forming) EC:6.2.1.4 FL642416, FL643639 Symbiont

phosphoenolpyruvate carboxykinase (GTP) EC:4.1.1.32 FL641109, FL642604,
FL643416

Symbiont

8 Cysteine and methionine metabolism cysteine synthase EC:2.5.1.47 FL643652 Symbiont

9 Drug metabolism - other enzymes dihydropyrimidine dehydrogenase (NADP+) EC:1.3.1.2 FL641335 Symbiont

10 Fructose and mannose metabolism 6-phosphofructokinase EC:2.7.1.11 FL641526 Symbiont

6-phosphofructokinase EC:2.7.1.11 FL642304 Symbiont

diphosphate—fructose-6-phosphate 1-phosphotransferase EC:2.7.1.90 FL642304 Symbiont

triose-phosphate isomerase EC:5.3.1.1 FL642787 Symbiont

fructose-bisphosphate aldolase EC:4.1.2.13 FL644124 Symbiont

11 Galactose metabolism 6-phosphofructokinase EC:2.7.1.11 FL641526 Symbiont

6-phosphofructokinase EC:2.7.1.11 FL642304 Symbiont

12 Glycerolipid metabolism triacylglycerol lipase EC:3.1.1.3 FL636678 Host

13 Glycolysis/Gluconeogenesis phosphoenolpyruvate carboxykinase (GTP) EC:4.1.1.32 FL641109, FL642604,
FL643416

Symbiont

6-phosphofructokinase EC:2.7.1.11 FL641526 Symbiont

6-phosphofructokinase EC:2.7.1.11 FL642304 Symbiont

triose-phosphate isomerase EC:5.3.1.1 FL642787 Symbiont

glucose-6-phosphate isomerase EC:5.3.1.9 FL643307 Symbiont

phosphoglycerate kinase EC:2.7.2.3 FL643941 Symbiont

fructose-bisphosphate aldolase EC:4.1.2.13 FL644124 Symbiont

phosphopyruvate hydratase EC:4.2.1.11 FL645458 Symbiont

phosphopyruvate hydratase EC:4.2.1.11 FL645652 Symbiont

14 Inositol phosphate metabolism triose-phosphate isomerase EC:5.3.1.1 FL642787 Symbiont
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Table 3 KEGG pathways downregulated by JH treatment (Continued)

15 Methane metabolism 6-phosphofructokinase EC:2.7.1.11 FL641526 Symbiont

6-phosphofructokinase EC:2.7.1.11 FL642304 Symbiont

fructose-bisphosphate aldolase EC:4.1.2.13 FL644124 Symbiont

ferredoxin hydrogenase EC:1.12.7.2 FL644639 Symbiont

phosphopyruvate hydratase EC:4.2.1.11 FL645458 Symbiont

phosphopyruvate hydratase EC:4.2.1.11 FL645652 Symbiont

16 Nitrogen metabolism NADH:ubiquinone reductase (H + −translocating) EC:1.6.5.3 FL645309 Symbiont

17 Oxidative phosphorylation NADH:ubiquinone reductase (H + −translocating) EC:1.6.5.3 FL645309 Symbiont

18 Pantothenate and CoA biosynthesis dihydropyrimidine dehydrogenase (NADP+) EC:1.3.1.2 FL641335 Symbiont

19 Pentose phosphate pathway 6-phosphofructokinase EC:2.7.1.11 FL641526 Symbiont

6-phosphofructokinase EC:2.7.1.11 FL642304 Symbiont

glucose-6-phosphate isomerase EC:5.3.1.9 FL643307 Symbiont

fructose-bisphosphate aldolase EC:4.1.2.13 FL644124 Symbiont

20 Propanoate metabolism succinate—CoA ligase (ADP-forming) EC:6.2.1.5 FL641410, FL643051,
FL644288, FL645720

Symbiont

succinate—CoA ligase (GDP-forming) EC:6.2.1.4 FL641410, FL643051,
FL644288, FL645720

Symbiont

succinate—CoA ligase (GDP-forming) EC:6.2.1.4 FL641015, FL643186 Symbiont

succinate—CoA ligase (GDP-forming) EC:6.2.1.4 FL642416, FL643639 Symbiont

21 Purine metabolism adenosinetriphosphatase EC:3.6.1.3 FL643974, FL644936,
FL645181

Symbiont

adenosinetriphosphatase EC:3.6.1.3 FL642059, FL644213,
FL645137

Symbiont

adenosinetriphosphatase EC:3.6.1.3 FL644210 Symbiont

adenosinetriphosphatase EC:3.6.1.3 FL644425 Symbiont

22 Pyrimidine metabolism dihydropyrimidine dehydrogenase (NADP+) EC:1.3.1.2 FL641335 Symbiont

dihydroorotate dehydrogenase (quinone) EC:1.3.5.2 FL641335 Symbiont

23 Pyruvate metabolism malate dehydrogenase (oxaloacetate-decarboxylating)
(NADP+)

EC:1.1.1.40 FL642239, FL642831,
FL645272, FL645325

Symbiont

malate dehydrogenase (oxaloacetate-decarboxylating) EC:1.1.1.38 FL642239, FL642831,
FL645272, FL645325

Symbiont

phosphoenolpyruvate carboxykinase (GTP) EC:4.1.1.32 FL641109, FL642604,
FL643416

Symbiont

24 Starch and sucrose metabolism phosphorylase EC:2.4.1.1 FL642617 Symbiont

glucose-6-phosphate isomerase EC:5.3.1.9 FL643307 Symbiont

cellulase EC:3.2.1.4 FL645330 Symbiont

25 Steroid biosynthesis cholesterol Delta-isomerase EC:5.3.3.5 FL645075 Symbiont

26 Synthesis and degradation of
ketone bodies

hydroxymethylglutaryl-CoA synthase EC:2.3.3.10 FL641384 Symbiont

27 T cell receptor signaling pathway phosphoprotein phosphatase EC:3.1.3.16 FL643487 Symbiont

28 Terpenoid backbone biosynthesis hydroxymethylglutaryl-CoA synthase EC:2.3.3.10 FL641384 Symbiont

29 Valine, leucine and isoleucine
degradation

hydroxymethylglutaryl-CoA synthase EC:2.3.3.10 FL641384 Symbiont

Pathways were obtained from sequences corresponding to upregulated spots from the array. Annotations were done with BLAST2GO. The table also indicates the
library of origin (host/symbiont) of the sequences.
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“Follow-up” bioassays investigating select candidate
genes in JH, SHE and JH + SHE treatments
We also reassessed the microarray results using qRT-PCR
with cDNA samples from “follow-up” bioassays that
exposed new worker termites to JH and SHE for 1 day.
Additionally, a combination treatment of JH + SHE that
was not included in microarray studies was evaluated.
SHE extracts were prepared as described previously and



Table 4 Summary of molecular function gene ontology (GO) terms obtained for annotated expressed sequence tags
(ESTs) with BLASTx for treatments with juvenile hormone (JH), soldier head extract (SHE), exposure to live soldiers (LS)
and exposure to live reproductive (LR)

Molecular function JH SHE LS LR

Term Up Down Up Down Up Down Up Down Totals

Nucleotide binding 8 86 3 3 1 101

Hydrolase activity 4 65 1 1 1 72

Protein binding 7 60 1 1 69

Catalytic activity 17 39 1 57

Binding 15 41 1 57

Structural molecule activity 3 37 1 41

Peptidase activity 10 14 1 25

Transferase activity 3 14 1 18

Enzyme regulator activity 2 12 14

Protein kinase activity 1 10 1 1 13

Kinase activity 2 9 1 12

Calcium ion binding 1 10 11

Electron carrier activity 2 6 8

Transporter activity 3 1 1 5

Actin binding 2 3 5

Carbohydrate binding 2 3 5

Atpase activity 4 4

ATP binding 2 2 4

Receptor activity 3 3

Lipid binding 2 1 3

Nucleoside-triphosphatase activity 1 2 3

Structural constituent of chitin-based cuticle 2 2

Triglyceride lipase activity 2 2

DNA binding 1 1 2

Metal ion binding 1 1

Zinc ion binding 1 1

ATP-dependent DNA helicase activity 1 1

Chitin binding 1 1

DNA helicase activity 1 1

DNA-dependent atpase activity 1 1

GTP binding 1 1

Gtpase activity 1 1

Protein serine/threonine kinase activity 1 1

Single-stranded DNA binding 1 1

Structural constituent of cuticle 1 1

Totals 91 411 1 19 18 2 3 2 547

The total numbers of molecular functions obtained from ESTs upregulated by LS and downregulated by SHE show an interesting contrast, which supports the LS
and SHE + JH bioassay and gene expression results of Tarver et al. [7,12,18]. UP, up-regulated terms, DOWN, down-regulated terms.
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verified by HPLC [7]; Additional file 2: Figure S2). ESTs
tested in this experiment included 50MGP (two ESTs;
FL636982 and FL636656), Apolipoprotein d (FL640421),
Radial Spoke Protein (FL643521), Unknown Ribosomal
Protein (FL644772), DNA Replication Licensing Factor
(FL644436), and Soldier Specific Protein “NtSp1-like”
(FL637031). First, a correlation analysis comparing follow-
up bioassay results showed a high degree of correlation
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with microarray results (Rs = 0.874; Figure 4A). Second,
expression levels for all ESTs examined showed generally
opposite effects between JH and SHE treatments, i.e.,
when transcript levels were upregulated by JH they were
downregulated by SHE, and vice-versa (Figure 4B-4G).
With the exception of the DNA Replication Licensing
Factor (FL644436) and Soldier Specific Protein “NtSp1-
like” ESTs, expression levels in JH + SHE treatments
were always intermediate between JH and SHE treatments
(Figure 4B-4F). Also, the two 50MGP ESTs showed highly
similar expression profiles (Figure 4B & C). However,
only the two 50MGP ESTs showed significant variation
among treatments (Kruskal-Wallis test, P < 0.05);
nevertheless, we avoid over-interpreting this result due
Figure 2 A ClustalW multiple alignment of homologous 50 kDa Midgu
(current study), Phlebotomous papatasi (GenBank accession No. ABV4
castaneum (EFA 07930, XP976444). Gray shaded amino acids are ident
P. papatasi sequences are enclosed in boxes.
to our small sample sizes (3 biological replicates). The lat-
ter 50MGP results also provide additional support that
these two ESTs represent portions of the same cDNA.

Discussion
Overview
This study used a microarray-based approach to compare
the effects of a morphogenetic hormone (JH), soldier-
derived primer pheromones (SHE), live reproductives (LR)
and live soldiers (LS) on worker gut gene expression. We
focused on worker termites because in lower termites like
R. flavipes (i) workers compose >90% of colonies, (ii) their
guts house both eukaryotic and prokaryotic symbionts,
(iii) they are responsible for the majority of lignocellulose
t Protein sequences from various insects, including R. flavipes
4742), Dendroctonus ponderosae (AEE61518) and Tribolium
ical to the R. flavipes sequence. Signal peptides for the R. flavipes and



Figure 3 Significant positive correlation between fold change
and threshold cycle (CT) values (Spearman rank correlation,
Rs = 0.874, N = 40, P <0.001). Each data point represents 2-ΔΔCT of
quantitative real-time PCR performed on a subset of sequences to
verify the robustness of microarray results. Red and blue spots
represent down- and upregulated transcripts, respectively. The black
spots represent transcripts that were neutral to the treatment.
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digestion, and (iv) workers are totipotent juveniles that
retain the capacity to differentiate into both soldier and
reproductive caste phenotypes [1,20,29,30]. Our central
hypothesis is that the worker gut and its eukaryotic symbi-
onts are potential molecular determinants of termite caste
differentiation, eusocial polyphenism and, ultimately, so-
cial structure.
We found that variable numbers of expressed genes were

affected among the four treatment categories (Table 1). JH
treatment had the largest impact on gut gene expression
(501 total ESTs affected), followed by LS (24 ESTs), LR
(12 ESTs) and SHE (6 ESTs). The JH induced change is
consistent with JH’s well-established ability to induce
worker-to-soldier caste differentiation in lower termites
[4], as well as presoldier induction assays in which 90-91%
JH-induced presoldier differentiation was observed on a
sub-sample of two colonies (see Results). Interestingly, the
majority of JH upregulated genes were from the host
termite, whereas the majority of JH downregulated genes
were from protist symbionts. While the complement of
upregulated host genes seems to provide insights into
caste-regulatory physiology (discussed below), the down-
regulation of symbiont genes by JH seems more likely an
indicator of protist susceptibility to host hormones or a
purging of symbionts in response to rising hormone titers
[8,31]. The comparatively weak impact of SHE on gut
gene expression is consistent with its lack of impacts on
caste differentiation when applied alone [12,18]. Similarly,
the greater impact on gene expression in LS treatments is
consistent with the more pronounced impacts of live
soldiers on limiting JH-dependent caste differentiation
[7,18]. Finally, the unexpectedly small number of genes
impacted in LR treatments is consistent with worker-
derived apterous neotenic reproductives being relatively
uncommon in Reticulitermes colonies [32], as well as
mounting evidence of a genetic (rather than environmen-
tal) basis for reproductive differentiation in lower termites
[33-36]. However, it may also be possible the 12 genes
identified in LR treatments are mediating volatile primer
pheromone signals coming from Reticulitermes neotenic
females [37].
As shown by volcano plots (Figure 1), the SHE, LR

and LS treatments had a number of upregulated array
positions with large magnitudes of change but a lack of
statistical significance. These profiles imply physiological
heterogeneity among the test worker populations for in-
dividuals that are responsive to SHE, reproductive and
soldier-based cues, and suggest a need for targeted research
to better understand physiological variability among indi-
viduals in termite colonies. Also, as a contrast to directly
comparing numbers of differentially expressed genes among
the four treatment categories, GO analyses were performed
to gain insights based on predicted cellular location, bio-
logical process and molecular function of differentially
expressed genes. In particular, GO-Molecular Function
analyses revealed some notable trends (Table 4). First,
despite having only two passing genes, the SHE down-
regulated category had 19 GO-Molecular Function terms
suggesting broad pleiotropic impacts by these two passing
genes. Also, the numbers of GO-Molecular Function terms
in the SHE downregulated and LS upregulated categories
are consistent with previous bioassay results showing
contrasting impacts by these two treatments (i.e., SHE +
JH induces higher levels of caste differentiation, and
live soldiers limit JH-dependent caste differentiation
[7,12,18]).
Regarding the small expression fold changes obtained in

the current study, we conclude this to be a result of the
microarray-based platform that was used. This conclusion
is based on the larger fold-change expression magnitudes
obtained using qPCR relative to the microarray platform
in the current study (Tables 2 and 3, Figure 4), as well as
two previous studies that compared feeding impacts on
gut gene expression using microarrays and quantitative
pyrosequencing (showing higher expression by qPCR and
pyrosequencing [26,39]). In the sections that follow, we
further discuss candidate gene trends, related genes passing
in multiple treatment categories, insights into termite social
regulation and symbiosis, and overall conclusions.

Candidate gene trends
The most highly JH up- and downregulated ESTs encoded
homologs of a host 50 kDa midgut protein “50MGP” and
a protist symbiont cysteine synthase a. The cysteine syn-
thase a transcript was also the most highly abundant tran-
script identified previously with paper (cellulose) feeding
[26], which was the control condition (with acetone) in
the current study. Cysteine synthases catalyze production
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of acetate, which is an important metabolic intermediate
in the termite gut [38]. The 50MGP gene is novel to the
current study and discussed under Conclusions.
A majority of JH downregulated ESTs were of symbiont

origin and are considered indicators of general symbiont
decline in response to JH treatment. Most notably, the
list of downregulated symbiont genes includes five GHF7
cellulases. Because GHF7 cellulases play important roles in
R. flavipes digestion [26,39], this trend suggests compro-
mised digestive capabilities in association with JH-induced
caste morphogenesis. The remaining JH downregulated
symbiont ESTs are not discussed hereafter but can be found
in Table 3.
The second and third most highly upregulated ESTs in

the JH dataset were of host origin and included a nli
interacting factor-like phosphatase with predicted protein
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dephosphorylation function and an Arylsulfatase B homo-
log with predicted functions in cleaving sulfate groups
from glycosaminoglycans, including N-acetyl monosac-
charides that compose gut integument [40]. Other note-
worthy genes in the JH upregulated dataset include two
Apolipoproteins and three chymotrypsin/serine proteases
with potential roles in lipid- and protease-based
developmental signaling similar to JH responsive proteases
identified previously [41,42]. Additionally, two cytochrome
P450 homologs from families 6 and 4 were upregulated
in the JH dataset and five others from the same families
were downregulated. Interestingly, the cytochrome P450
Cyp15F1, which has been implicated in JH-dependent
presoldier induction in R. flavipes and is inducible in the
gut by wood feeding [6,26], was not impacted by JH treat-
ment in the current study.
ESTs related to cuticle formation were also upregulated

with JH treatment, including larval and pupal cuticle
proteins [21,43], resilin [44], and enzymes potentially
regulating melanin biosynthesis such as Tyramine beta
hydroxylase and Dopamine N-acetyl transferase [45,46].
Possibly related to the high number of phosphorylation
sites predicted on the translated 50MGP protein, the JH
dataset also contained a number of upregulated ESTs
with links to phosphate-related post-translational modi-
fication; for example, (i) the nli interacting factor-like
phosphatase noted above, (ii) other phosphatases potentially
involved in de-phosphorylation, (iii) kinases potentially
involved in protein phosphorylation, and (iv) an insulin
receptor homolog [47] with predicted kinase activity.
The most highly SHE upregulated EST was a host gene

with no significant GenBank nr database match; however,
translated searches of the GenBank EST database revealed
numerous un-annotated homologs of this EST in other
termite and cockroach cDNA libraries. The most SHE
downregulated EST was a symbiont serine/threonine-
protein kinase mph1 homolog related to mitotic function
[48]. Also, an important DNA replication factor, DNA rep-
lication licensing factor mcm7 [49], was downregulated by
SHE treatment. These two SHE downregulated genes had
a large number GO-Molecular Function terms associated
with them, suggesting broad pleiotropic impacts.
The two most highly LR upregulated ESTs were from the

host termite; one with no database matches and the other
was a serine protease 13 homolog. The most downregulated
EST in the LR dataset encoded a symbiont Linker histone
h1 and h5 family protein involved in DNA binding and
regulation of chromatin structure [50].
Finally, the most highly LS upregulated EST was a

venom allergen 3-like homolog, similar to a venom prote-
ase from the ant Solenopsis invicta [51]. Other highly
upregulated host ESTs from LS arrays had links to carbo-
hydrate hydrolysis/binding and immune function. These
ESTs included alpha amylase homologs, lysozyme
homologs from GHF 13 and 22, and a C-type lectin homo-
log from CBM Family 13 [52]. The most downregulated
ESTs in the LS dataset included one host and one sym-
biont EST, neither of which had significant database
matches.
Similar ESTs passing in multiple microarray
treatment categories
Kinases were a highly represented gene family in the JH
dataset and other kinases also appeared in the LS, LR and
SHE datasets. Of these kinases, only a serine/threonine-
protein kinase mph1 homolog appeared in more than one
dataset (JH and SHE), and was downregulated in both
cases. An Arylsulfatase B homolog was highly induced in
the JH dataset, and was also upregulated in the LS dataset.
A c-type lectin precursor presumably involved in carbohy-
drate binding was upregulated in the JH and LS datasets.
A number of protease, peptidase and/or chymotrypsin
homologs were differentially expressed among the JH,
LR and LS datasets; however, while each of these datasets
had highly differentially expressed protease-related ESTs,
the composition among each dataset was unique. None-
theless, it is noteworthy that JH-responsive proteases have
previously been identified in insect guts [41]. Lastly, host
alpha amylase homologs were upregulated in the LS and
LR datasets, but all were distinct. Thus, in summary,
major functional protein categories sampled across treat-
ment categories include kinases, proteases, and various
carbohydrate active proteins (amylases, arylsulfatases,
and lectins).
New insights into termite social regulation and symbiosis
Although JH and SHE may not be ingested by termites
in nature, the simple technique of placing them on JH
or SHE-treated diet ensured intake of JH and SHE by
the termites. We expect that JH and SHE are ingested
and absorbed by the cuticles of the termites exposed to
treated filter paper. Also, because trophallaxis plays such
a large role in termite sociality [1], this study in part,
investigates what could be happening if termites were
to acquire JH by trophallaxis [53]. We found significant
JH-dependent expression changes in gut-associated genes
from both the host termite and protist symbionts, as well
as significant long-term presoldier induction in JH bioas-
says conducted on a sub-sample of colonies used in the
current study (see Results). These correlated gene expres-
sion and phenotypic changes were elicited after just
one day of treatment, illustrating the strong impacts of
JH even after a short exposure. JH is a known caste-
regulatory hormone, and termites are known to go through
morphological changes after experimental JH exposure
[4]; however, the mechanisms by which JH influences gene
expression in termites are not well understood. This study
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takes us one step further in this interpretation. We have
shown that JH generally up-regulates host gene expression
and generally down-regulates that of protist symbionts.
We do not expect that JH directly influences protist gene
expression but it can influence the purging of gut contents
[8,31], and our results might be indicative of a general de-
cline of protist populations (dissections, performed post-
hoc, revealed that some JH treated termites indeed lacked
any gut content or had purged guts; results not shown).
However, the changes brought upon by the absence of
protists in the termite gut also have to be considered. The
most significant effect in this respect would likely be on
digestion, implying that an absence of regular nutrients
could play a role in caste regulation [4,11,54]; for example,
several protist GHF7 cellulases were downregulated by JH
exposure (Table 3). It should also be noted that our cDNA
libraries were made with only gut-associated ESTs; there-
fore the differentially expressed genes shown here must be
only a fraction of the changes triggered by JH treatment in
the whole body of termites.
We also found that exposure to SHE and LS triggered

expression changes for comparatively small numbers of
genes relative to JH. Previous studies showed that SHE
and LS by themselves do not elicit any significant impacts
on caste differentiation [7,12,18], and the current results
are consistent with those findings. Also, relatively small
numbers of symbiont genes were downregulated by
SHE and LS treatments, supporting the idea that protist
populations are not dramatically affected by these fac-
tors and thus do not mediate their signals.

Conclusions
This research took a microarray-based approach to test
the hypothesis that the worker termite gut and its
eukaryotic protist symbionts are potential molecular
determinants of caste differentiation. This study builds
on a prior study by Tarver et al. [18] that investigated
whole-body expression of 49 host genes in response to
JH, SHE and LS treatments. Four treatments were
investigated in the current study that included JH, SHE,
LR and LS. With respect to JH, our hypothesis is strongly
supported. However, for SHE, LR and LS treatments our
hypothesis is not well supported. These results suggest
that, if they have impacts at all, the SHE, LR and LS treat-
ments might (i) be acting more substantially beyond 1-day
exposure periods [18], (ii) be acting in other body regions
or tissues than gut, and/or (iii) have minimal impacts on
expression of genes that influence caste differentiation
and caste homeostasis. Alternatively, as suggested by GO-
Molecular Function analyses, some of the small numbers
of gut genes impacted by SHE, LR and LS treatments may
actually have broad pleiotropic impacts. Despite these
vastly different impacts on gut gene expression among
treatments, major functional categories of responsive
genes sampled across treatment categories encoded in-
tegumental proteins, kinases, proteases, and various
carbohydrate-active proteins (amylases, arylsulfatases,
and lectins).
This study also revealed a novel 50MGP cDNA as the

most highly JH-inducible transcript in the R. flavipes
gut. Multiple ESTs for this gene assembled into an ap-
parent full-length cDNA that shares many common fea-
tures with other host termite cDNAs [28,39]. While the
function of the translated 50MGP is unknown, it is pre-
dicted to have a large number of phosphorylation sites, a
well-defined secretory signal sequence, and share a pre-
dicted JH-binding region with a homologous protein from
the bark beetle Dendroctonus ponderosae [55]. Other
known insect homologs of this protein are from the sand
fly Phlebotomous papatasi [56] and the red flour beetle
Tribolium castaneum [57]. The translated 50 kDa protein
has predicted immune, stress response and signal transduc-
tion functions; future functional studies will investigate
links to these processes and others.
Finally, previous studies testing the JH + SHE combin-

ation revealed unexpected increases in soldier caste differ-
entiation relative to treatments with JH alone, whereas
treatments with SHE alone had no such impacts [7,12,18].
In the current study, we conducted “follow-up” bioassays
and qRT-PCR on 6 significant genes from JH and SHE
microarrays to investigate possible interactions. Interest-
ingly, in these treatments JH and SHE had opposite im-
pacts, and in most cases the JH + SHE combination
resulted in gene expression intermediate between JH
and SHE alone. These results and those of Tarver et al.
[18] suggest next-generation transcriptome sequencing
as a potentially informative approach for investigating
whole-body gene expression impacts by JH + SHE treat-
ments, as well as individual SHE components. This study
in general provides important new insights into molecular
determinants underlying termite caste polyphenism and
homeostasis, including symbiont population decline in as-
sociation with the caste differentiation process.

Methods
Colony maintenance and bioassays
All colonies were verified as R. flavipes by mitochondrial
16S rRNA sequencing as described by Szalanski et al.
[58] (data not shown). Colonies were maintained in dark-
ness in sealed plastic boxes containing wet pine wood
shims and brown paper towels, within an environmental
chamber kept at 22°C and 60-100% relative humidity
(RH). Bioassays were conducted in darkness at 27°C and
60-100% RH. The termites used for microarray analysis
originated from five established laboratory colonies at
the University of Florida, Entomology and Nematology
Department, in Gainesville, FL: (1) B1#1 (established
05/20/2009); (2) B2 (06/03/2010); (3) K2 (07/11/2007);
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(4) K5 (08/02/2008); and (5) K9 (06/29/2010). Bioassays
for microarray studies were performed in August-September,
2010. Additionally, JH-presoldier induction bioassays were
conducted on workers from one Florida colony used for
microarray studies (B1#1) and another from Indiana
(WI-9). These bioassays used 100 μg JH III (Sigma-Aldrich;
Milwaukee, WI) per assay dish or acetone alone for con-
trols and followed the methods of Tarver et al. [7,12],
except only a 24-hr exposure was used. Six and four
independent replicates per treatment were done for the
WI-9 and B1#1 colonies. Finally, we conducted a
second “follow-up” bioassay experiment to see the effect
of JH, SHE and JH along with SHE on selected genes.
Termites used in this bioassay originated from a single
colony collected from Purdue University, West Lafa-
yette, IN, USA (“WI-9” established in 2012).

Hormonal microarrays
The hormonal bioassays were conducted as previously de-
scribed by Tarver et al. [12,18]. Twenty workers (pseudergates)
were used per assay and given moist filter paper discs
(Whatman #3 filter discs, GE Healthcare Bio-Sciences
Corp., Piscataway, NJ) as food. The filter paper discs re-
ceived either JH III or SHE or acetone (for control). JH III
(93% purity; Sigma; St. Louis, MO) was applied on one fil-
ter paper disc per assay and at 150 μg per disc in 150 μl
acetone. SHE was prepared by homogenizing soldier
heads in acetone with a Tenbroeck glass homogenizer and
applied at two soldier head equivalents per disc in 150 μl
acetone. Acetone (150 μl) was applied on discs for control
assays. After applying the solution, acetone was evapo-
rated from the discs for 20 minutes at room temperature
prior to each assay. The filter papers were then moistened
with 150 μl of distilled water and placed in 3.5-cm diam-
eter Petri dishes with the termites.

Social treatment microarrays
In social treatments, groups of twenty workers were
maintained with either two soldiers or two neotenic
reproductives originating from the same colony. Moist
filter paper discs were offered as food. Termites were
maintained for one day in 3.5-cm diameter Petri dishes in
darkness at 27°C and 60-100% RH.

Gut extraction and RNA isolation
Both social and hormonal treatments were conducted
for 24 hr, and the workers were then cold-immobilized,
surface-sterilized by a serial rinse in 0.3% sodium hypo-
chlorite (once) and sterilized water (twice), and dissected
on Parafilm® to collect digestive tracts including salivary
glands. Digestive tracts were transferred into RLA Lysis
Buffer (Promega, Madison, WI) and stored at −70°C
until RNA isolation. RNA Extraction and cDNA Synthesis
was done according to Raychoudhury et al. [26].
Microarray hybridizations
Experiments were designed after MIAME guidelines, and
microarray data obtained in these studies were deposited
at ArrayExpress [www.ebi.ac.uk/arrayexpress (accession
number E-MTAB-1417)]. A type II microarray [59] design
used with a common-reference strategy [60]. The com-
mon reference consisted of a normalized blend of all RNA
samples included in the experiment. This common refer-
ence was co-hybridized against each replicate sample on
single microarrays. Dye swaps [59] were performed be-
tween replicate samples and references to check for po-
tential dye impacts on spot intensity. Twenty-five total
microarray hybridizations were performed and consisted
of each of five colonies treated with JH, SHE, acetone and
exposed to live reproductives (LR) and live soldiers (LS).

Statistical analyses
The Matlab statistics toolbox was used for statistical
analysis of the intensity data of 25 hybridizations from
five different treatments [JH, SHE, exposure to live re-
productives (LR), live soldiers (LS) and acetone (A) for
control]. Before comparative analysis, the individual sig-
nal intensity values obtained from the microarray probes
were log-transformed (using 2 as the base) and normal-
ized among all individual samples included in the study.
Normalization was accomplished by scaling the individual
log-transformed signal intensities so that each dataset had
comparable lower, median and upper quartile values [61].
After the data were normalized, Student’s t-tests were
used to make probe-by-probe comparisons among each
treatment and control (JH vs. A, SHE vs. A, LR vs. A and
LS vs. A). In each comparison, a p-value and fold change
was computed for all microarray loci. In addition to
p-values, q-values were computed [62]. While the p-value
measures the minimum statistical false positive rate
incurred when setting a threshold for test significance,
the q-value measures the minimum false discovery rate
incurred when calling that test significant [62]. A volcano
plot for each comparison was generated that displays the
negative log10-transformed p-value versus log2-transformed
fold change for each array locus (Figure 1).

Bioinformatic analyses
Contig generation: All significantly differentially expressed
array positions that met the fold change criteria in each
bioassay were selected and processed through Sequencher
(Gene Codes Corporation, Ann Arbor, MI) with a mini-
mum match percentage of 95 to generate contigs. The
generated contigs and the remaining orphan sequences
were used for further analyses.
Gene Ontology analysis using BLAST2GO: The selected

contigs and the orphan sequences were analyzed using the
program BLAST2GO [63] for identification and annota-
tion. By using the inbuilt BLASTx algorithm, these

http://www.ebi.ac.uk/arrayexpress
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sequences were used as queries in BLASTx searches
against the GenBank non-redundant (nr) database with an
e-value cut-off of ≤ 1e-03 (last performed 06, 2012).
The putative identification, annotation, and Gene
Ontology (GO) terms [64] for the sequences were also
obtained through BLAST2GO. JH, SHE, LR and LS
influenced sequences are listed in supporting informa-
tion Additional file 1: Tables S1-S4.

Validation of microarray fold change data by quantitative
real-time PCR
The fold change data from the microarray results were
validated by performing sets of quantitative real-time
PCRs (qRT-PCR) with a CFX-96 Real-time System (Bio-
Rad, Hercules, CA) using the SYBR green detection method
(SensiMix SYBR & Fluorescein one-step PCR reagent;
Bioline, Taunton, MA). Fifty-two different sequences
(Additional file 3: Table S6) with varying degrees of fold
change were used to design primer sequences using the
web-based tool Real-time Design (http://www.biosearchtech.
com/realtimedesign). The housekeeping gene lim-1 was
used as a reference gene [18,26]. Two μl of total RNA
(from aliquots of 10 ng/μl) were taken from the original
mRNA pools used for microarray hybridizations from all
five colonies (5 treatments each) to synthesize cDNA
using the iScript cDNA kit (Bio-Rad, Hercules, CA). Trip-
licate qRT-PCR reactions were performed for each of the
25 sets of cDNA samples, along with a no-cDNA nega-
tive control, across the 52 primer sets (Additional file 3:
Table S6). Cycling conditions were an initial step of 95°C
for 3 minutes followed by 39 cycles of 95°C for 20 seconds,
56°C for 45 seconds and 68°C for 50 seconds. Quantifica-
tion was performed by first generating a standard curve of
primer amplification efficiency, using whole-gut cDNA
from colony B1#1 with a five-fold dilution series, and then
extrapolating the experimental samples onto the curve.
Each triplicate sample was averaged to one data point for
ease of graphical representation. The mean delta thresh-
old cycle (ΔCT) was calculated for each data point by
subtracting it from the average CT values of lim-1. Then
a ΔΔCT value was calculated by subtracting average
acetone data point from JH, SHE, LR or LS (see formula
below for JH). These ΔΔCT values were plotted against
the corresponding fold change levels from the micro-
array studies, and a correlation test was conducted.

ΔΔCT ¼ 1
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1
3

X3
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 !

−
1
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1
3
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j = number of biological replicates,
i = number of technical replicates,
P = given primer, lim1 = lim1 primer;
JHi = CT value of the ith technical replicate from the

JH treated termite gut cDNA,
Ai = CT value of the ith technical replicate from the

acetone treated termite gut cDNA

“Follow-up” bioassays
Follow-up bioassays were conducted with JH III and freshly
made SHE. The SHE was analyzed on HPLC to confirm
whether the chemical peaks, and thus overall composition,
matched with previous studies of Tarver et al. [7]. As
Additional file 2: Figure S2 shows, the composition of
SHE matched with that used in prior work demonstrat-
ing SHE transfer and efficacy by Tarver et al. [7]. Filter
paper discs were soaked with one of the following:
200 μl acetone (control), JH III (65% purity; Santa Cruz
Biotechnology Inc, Santa Cruz, CA) at 100 μg/μl of acetone,
SHE (2 head equivalents in 100 μl acetone) and a combin-
ation of JH III (100 μg/100 μl of acetone) and SHE (2 head
equivalent in 100 μl acetone). Then all filter papers were air
dried and moistened with 150 μl of distilled water before
offering to the termites in 6.5-cm diameter Petri dishes.
Twenty workers were used per assay with three replicates
for each treatment. Individual guts were extracted into
RNA lysis buffer, and RNA was extracted as described
above. cDNAs were produced using the iScript cDNA syn-
thesis kit (Bio-Rad, Hercules, CA). These cDNAs were used
for qPCR with lim1 and seven other primers that were se-
lected due to very high or very low fold change ratios from
JH and SHE microarray data (Figure 4). The ΔCT values
(for control and treatment) acquired from the qPCR were
used to calculate the 2-ΔΔCT values to compare the results
for different treatments.

50 kDa Midgut protein sequencing and sequence analysis
The full-length cDNA sequence for the 50MGP gene
was assembled from five overlapping clones/ESTs from a
previously described gut cDNA library (GenBank acces-
sion nos. FL639806, FL636982, FL638011, FL638525
and FL637656 from Tartar et al. [28]). The contig
sequence (GenBank no. KC751537) was verified by align-
ments having >99% identity with seven ESTs obtained
from different R. flavipes phenotype cDNA libraries [65].
Portions of the ORF sequence were further verified by
PCR amplification of cDNA fragments spanning nucleo-
tides 41–537, 366–1104, 510–807 and 656–1126, using
the forward and reverse primers described in Additional
file 3: Table S6. Database searches were performed at NCBI
(http://www.ncbi.nlm.nih.gov/) using BLASTn and
BLASTx under default settings. Peptide translations
were made using SDSC Biology Workbench (http://work-
bench.sdsc.edu/). Signal peptide, N-glycosylation, phosphor-
ylation, protein functional category and enzyme class
analyses were performed using the SignalP, NetNGlyc 1.0,

http://www.biosearchtech.com/realtimedesign
http://www.biosearchtech.com/realtimedesign
http://www.ncbi.nlm.nih.gov/
http://workbench.sdsc.edu/
http://workbench.sdsc.edu/
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NetPhos and ProtFun servers available at http://www.cbs.
dtu.dk/services/. Protein alignments were generated
using ClustalW in the Lasergene software package
(DNAstar; Madison, WI).

Additional files

Additional file 1: Identity, fold change and gene ontology terms for
passing host and symbiont genes from JH microarrays (Additional
file 1: Table S1-S4).

Additional file 2: 50 kDa midgut protein translation (Additional file 2:
Figure S1) and HPLC analysis of soldier head extract (Additional file 2:
Figure S2).

Additional file 3: Summary of ΔΔCT values for repeat bioassay
qPCRs (Additional file 3: Table S5) and the list of primers used for
qPCR validations (Additional file 3: Table S6).
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