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Abstract

Background: Lack of power and reproducibility are caveats of genetic association studies of common complex
diseases. Indeed, the heterogeneity of disease etiology demands that causal models consider the simultaneous
involvement of multiple genes. Rothman's sufficient-cause model, which is well known in epidemiology, provides a
framewaork for such a concept. In the present work, we developed a three-stage algorithm to construct gene
clusters resembling Rothman's causal model for a complex disease, starting from finding influential gene pairs
followed by grouping homogeneous pairs.

Results: The algorithm was trained and tested on 2,772 hypertensives and 6,515 normotensives extracted from four
large Caucasian and Taiwanese databases. The constructed clusters, each featured by a major gene interacting with
many other genes and identified a distinct group of patients, reproduced in both ethnic populations and across
three genotyping platforms. We present the 14 largest gene clusters which were capable of identifying 19.3% of
hypertensives in all the datasets and 41.8% if one dataset was excluded for lack of phenotype information.
Although a few normotensives were also identified by the gene clusters, they usually carried less risky combinatory
genotypes (insufficient causes) than the hypertensive counterparts. After establishing a cut-off percentage for risky
combinatory genotypes in each gene cluster, the 14 gene clusters achieved a classification accuracy of 82.8% for all
datasets and 98.9% if the information-short dataset was excluded. Furthermore, not only 10 of the 14 major genes
but also many other contributing genes in the clusters are associated with either hypertension or hypertension-
related diseases or functions.

Conclusions: We have shown with the constructed gene clusters that a multi-causal pie-multi-component approach
can indeed improve the reproducibility of genetic markers for complex disease. In addition, our novel findings
including a major gene in each cluster and sufficient risky genotypes in a cluster for disease onset (which coincides
with Rothman's sufficient cause theory) may not only provide a new research direction for complex diseases but also
help to reveal the disease etiology.
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Background

Effective mapping of complex disease genes is one of the
major goals of genomic research. With advancements in
genomic technology, the genome-wide association study
(GWAS) approach has been adopted to identify novel
genes for common complex diseases owing to its ability to
simultaneously examine a large number of polymorphism-

* Correspondence: pan@ibms.sinica.edu.tw

2Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
3National Health Research Institutes, Mialoli, Taiwan

Full list of author information is available at the end of the article

( ) BiolVled Central

phenotype associations [1-4]. Although GWAS have in-
deed identified certain susceptibility genes for many dis-
eases, the genes thus far discovered mostly have been
associated with small to modest effects [1-5]. For very
complex diseases, such as hypertension, GWAS have re-
vealed very few genes despite a large number of patients
that have been studied. It is generally accepted that com-
mon complex disease etiologies are heterogeneous in na-
ture [5-8]. In “state of art” GWAS approach, however,
inheritance models involving gene-gene interactions and
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gene-environment interactions [9-13] have not been taken
into consideration.

Rothman’s concept of sufficient causes [14,15] de-
scribes scenarios in which multiple causal mechanisms
can all lead to the development of a disease. Each mech-
anism is depicted as a causal pie, composed of several
component causes, and the number of causes varies in
these mechanisms. These component causes—genetic or
environmental—can be shared or completely different
across causal mechanisms. Thus, the probability of de-
veloping a disease is increased as a person carries more
and more component causes. Under such a conceptual
framework, if a gene is only involved in few of the causal
pies which explain only a fraction of disease population,
its effect toward a disease could be insignificant when all
patients are considered. This model provides an explan-
ation for low reproducibility across studies. Although
Rothman’s causal pie model is well known in epidemi-
ology, few attempts have been made to construct such
pies, not to mention its recognition and application in
the genetic field.

In the present study, we focused on constructing gene
clusters resembling genetic causal pies using genome-wide
single-nucleotide polymorphism (SNP) data for young-
onset hypertension (YOH), which has a stronger genetic
attribute than its late-onset counterpart [16,17]. We made
use of two large Caucasian databases, the Framingham
Heart Study (FHS, http://www.framinghamheartstudy.org
[18] and Wellcome Trust Case Control Consortium
(WTCCC, http://www.wtccc.org.uk [19]), and two large
Taiwanese databases, the Taiwan Young-Onset Hyperten-
sion Study (Taiwan YOH [17]) and Taiwan Han Chinese
Cell and Genome Bank (THCCG, http://ncc.sinica.edu.
tw/han-chinese_genomebank [20]). We aimed to find ei-
ther single SNPs or multiple SNP sets each of which re-
sembles a genetic causal pie and could distinguish a
certain proportion of hypertensives (HTs) from normoten-
sive controls (NCs). Owing to limited databases and many
gene clusters found in the databases, we intended to dem-
onstrate the existence of such causal pie-like gene clusters
rather than to construct all the genetic causal pies. We
thus developed an algorithm to construct influential (as
many as patients being identified) and effective (cluster
components identifying the same group of patients) gene
clusters. We first searched for pair-wise gene-gene interac-
tions primarily observable in FHS and Taiwan YOH pa-
tients via an exhaustive search. Gene (SNP) pairs that
identified similar patients were further merged into clus-
ters following the logic of the multiple genetic causal pies
framework. The resulting gene clusters were then tested
for reproducibility on various platforms (including gene
expression data) and examined for robustness in varied al-
gorithm parameters. Crucial gene pairs that represented
minimum and sufficient component causes in each of the
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genetic causal pies were searched, and their effects to
hypertension onset were discussed. Moreover, influential
functions, process and pathways of these genes were col-
lated to shed light on hypertension etiology.

Methods

This study was approved by the Internal Review Board
of Academia Sinica. All four databases used in this paper
were approved by local institutional review boards or
equivalent committees and all participants in the data-
bases signed a written informed consent at all institutions/
hospitals where they were recruited and human experi-
mentation was conducted.

Characteristics of the four employed databases n

The FHS database contains 7,126 subjects (Framingham,
Massachusetts, U.S.A., predominantly Caucasian) among
whom 6,748 were assayed by the Affymetrix500k platform
with detailed information on blood pressure measurements
and medications. The WTCCC database currently consists
of datasets from three studies (WTCCC1~WTCCC3).
However, only the dataset from WTCCC1 was available at
the time our experiment was conducted. The dataset in-
cludes 2,001 hypertensive cases and 3,004 NCs (1504 from
the 1958 British Birth Cohort and 1500 from the UK Blood
Service Control Group), all from the British population and
assayed by the Affymetrix500k platform. The Taiwan YOH
database contains 1,023 well-characterized YOH subjects,
among which 175 were assayed by the Affymetrix100k
platform, 200 were assayed by the Affymetrix500k plat-
form, and 400 were assayed by the Illumina550k plat-
form. The THCCG database involved 3,435 sampled
residents with detailed clinical information. Among
them, 175 were assayed by the Affymetrix100k platform,
468 were assayed by the Affymetrix500k platform, and
1,000 were assayed by the Illumina550k platform.

Training and test datasets

We extracted suitable samples from the four databases
to construct our training and test datasets. To prevent
ambiguous data from disrupting our data mining—based
approach, NC subjects in FHS and THCCG subjects with
multiple high blood pressure readings (>120/80 mmHg)
were removed from the datasets. To ensure a strong
genetic effect on the onset of hypertension, late-onset (on-
set >50 years) and secondary HT patients were also ex-
cluded. Detailed inclusion criteria for HT patients and for
NC subjects are listed in Additional file 1: Method S1. In
addition, we adopted the “SNP Finder” in SNPper (http://
snpper.chip.org/bio/snpper-enter [21]) to search for intra-
genic SNPs and their corresponding gene symbols in each
genotyping platform. The resultant training and test
datasets are summarized below and detailed subject IDs
are provided in Additional file 2.
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Training datasets:

(1) Caucasian subset (FHS_Affy500k): Affymetrix500k
genotype data extracted from FHS, including
214,383 intragenic SNPs for 3,186 Framingham
residents, among whom 305 developed
hypertension and 2881 remained normotensive
during follow-up

(2) Taiwanese subset (Taiwan_Affy500k):
Affymetrix500k genotype data, including 213,353
intragenic SNPs for 200 HT cases from the Taiwan
YOH study and 184 NC subjects from THCCG

Test datasets:

(1) Caucasian subset (WTCCC_Affy500k):
Affymetrix500k genotype data extracted from
WTCCC, including 214,383 intragenic SNPs for
2,001 HT cases and 3,004 NC subjects

(2) Taiwanese subsets:

(a) Taiwan_Illu550k: Illumina550k genotype data,
including 221,828 intragenic SNPs for 200 HT
cases from the Taiwan YOH study and 400 NC
subjects from THCCG

(b) Taiwan_Affy100k: Affymetrix100k genotype data,
including 47,038 intragenic SNPs for 129 HT
cases from the Taiwan YOH study and 129 NC
subjects from THCCG

Some of the subjects overlapped in the Taiwan_Illu550k
and Tai-wan_Affy100k, leaving a total of 266 unique HT
cases and 446 unique NC subjects in the Taiwan test
dataset (see Additional file 1: Figure S1 for detailed calcu-
lations). To demonstrate reproducibility among geno-
typing platforms, these overlapped subjects were not
removed from the two test datasets because the adopted
SNPs differed be-tween the two platforms, and some pa-
tients may have been identified by one of them. However,
the overlapped subjects were counted only once for the
evaluation of classification performance.

More importantly, because we do not have phenotype in-
formation for WTCCC, late-onset (WTCCC recruited HT
patients < 60 yr of age but we required < 50 yr of age) may
have been included in the HT subset, whereas high body
mass index, high blood sugar, or border-line blood pressure
(120/80~140/90 mmHg) subjects may have been included
in the NC subset. For comparison, in FHS_Affy500k, only
305 of 557 (54.8%) HT patients and 2,881 of the remaining
6191 (46.5%) subjects who had genotype data and satisfied
our inclusion criteria were selected from the FHS database.
Therefore, although the WTCCC_Affy500k was used as
one of the test datasets, focus should be placed on the
reproducibility of the constructed gene sets in its HT
population instead of on its classification accuracy.
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Detection of gene-gene interaction

Several definitions of gene-gene interaction (or epistasis)
have been proposed in the literature [11-13,22]. Based
on these definitions, many methods have also been de-
veloped to detect gene-gene interactions. These methods
can be roughly categorized into three classes: exhaustive
search, regression-based approach, and data-mining ap-
proach. Exhaustive search, which performs a certain test
for all possible pairs in the dataset, is the simplest way
to detect interactions [23]. However, such a method is
not suitable for higher-order interactions since the num-
ber of tests grows exponentially and soon becomes
computationally infeasible. Popular in statistical analysis
packages, regression-based approaches attempt to fit a re-
gression model (linear, logistic, or logic) between subjects’
multilocus genotypes and their outcomes and to test
whether the effect of multiplicative terms is negligible
[24-26]. In contrast to the previous two approaches, data-
mining approaches are preferred for detecting high di-
mensional interactions. They focus on selecting a minimal
subset of loci so that, in the subspace spanned by the loci,
a hyperplane or a hypersurface can be constructed to
distinguish different outcome groups. Examples of this
category are multifactor-dimensionality reduction (MDR)
[27], combinatorial partitioning method (CPM) [28], gen-
etic programming [29], neural networks [30] and ort vec-
tor machines [31]. Other methods, including Bayesian
model-based approach [32] and entropy-based approach
[33], have also been developed.

In our preliminary studies, we observed that many
interacting genes have shared genes. Also, gene pairs
with a shared gene often identified a similar group of in-
dividuals and thus can be organized together to form a
gene cluster anchored by a major gene. To detect all
such clusters and their component genes in a genome-
wide data, a method that can quickly detect all the
possible interacting gene pairs is needed. To this end,
we adopted an exhaustive search with simple testing
criteria to detect single genes and interacting gene pairs
that are associated with increased risk. We first define
the following terms that were used in our detection
method:

Risky genotype set: certain genotypes (as illustrated
in Figure 1, each as a risky genotype) that are observable
in at least C;7% (Cy7 > 0) of a diseased population and
at most Cyc% (Cyr > Cync = 0) of a non-diseased
population

Single disease gene: a single gene that exhibits a risky
genotype set

Risky combinatory genotype set: certain combinatory
genotypes (as illustrated in Figure 2, each as a risky
combinatory genotype) that are observable in at least
Cur% (Cyr > 0) of a diseased population and at most
Cnc% (Cry7 > Cnce = 0) of a non-diseased population



Lynn et al. BMIC Genomics 2013, 14:497
http://www.biomedcentral.com/1471-2164/14/497

Page 4 of 14

SNP: dominant

SNP: recessive

genotype AA AG GG

genotype AA AG GG

HT/NC | HTas/NCaa| HTag/NCag| HTge/NCag|

HT/NC | HTaa/NCaa| HTac/NCac]HTee/NCag

Risky genotype set = {AG, GG}, if
(HTag+HTge) 2 Chr% in HT cases and
(NCag*+NCgg) < Cnc% in NC controls

Risky genotype set = {GG} if HTg = Cur% in
HT cases and NCgg £ Cne% in NC controls

allele G.

Figure 1 Criteria for a risky genotype set of a single disease gen (SNP). In the above example, the SNP is AG polymorphism with disease

Gene-gene interaction: a pair of genes that exhibit a
risky combinatory genotype set without either of them
being a disease gene

Disease gene pair: a pair of genes that exhibit a gene-
gene interaction

To identify disease genes and disease gene pairs, we
exhaustively searched for all the risky genotype sets for
all SNPs and then search for all the risky combinatory
genotype sets for all SNP pairs. We noted that, the value
of Cyc was set to a small value instead of zero in real
applications to tolerate possible genotyping and sam-
pling errors in the dataset. In addition, we adopted the
ceiling function, 'x1=min{m € Z| 2 x}, in our algorithm
to deal with the fraction resulting from the product of
the criterion and sample size. Such a design allowed
more qualified gene and gene pairs for datasets with a
small NC population where genotyping and sampling
qualities usually exhibit large variations. Also, although
we used SNP data to construct genetic clusters, we will
merge them by the associated genes for the subsequent
cross-platform comparisons and function analysis.

The gene cluster construction algorithm

Two problems were encountered as we attempted to
organize the detected gene pairs into gene clusters: (i)
value assignment for Cyz and Cyc, and (ii) removal of
false positive gene pairs. For stringent detection criteria,
i.e. a very large Cy7 with a very small Cyc, the detected
disease genes and gene pairs can be too conservative to
provide clear information about the underlying disease
mechanism. However, as the criteria were relaxed, the
detected disease genes and gene pairs increased quickly
and soon became unmanageable. To solve this dilemma,
we proposed first using stringent criteria to generate a
manageable amount of candidates, and then relaxing the
criteria to search for additional gene pairs for each gene
cluster. On the other hand, false positive gene pairs in a
gene cluster degenerate its classification performance
and provide false information to the underlying disease
mechanism. Although two gene pairs with a shared gene
may not identified identical individuals, those identified
by a gene cluster usually carry more risky combinatory
genotypes in the gene cluster than the others (see

SNP1: dominant

HT/NC

AA AG GG

SNP1: dominant
AG

HT/NC

AA GG

CC| HTace/NCace | HTaaceNCacce

HTeacoMNCacoe

CC|HTacoMNCaaioc] HT ascoMNCasoe| HTeacoMCasoo

CT| HTaserMCaser |HT aerMNCaer

SNP2:

HTaaerMNCaaer

CT | HT saerM™Caacr| HT aaerNCaner| HTacerMNCoer

SNP2:

dominant

TT | HTaurtNCarr | HTaariMNCaarr | HTeerNCeerr

recessive

TT HTmnMCMW HT;GW/NCAG]T HTGGTT/NCGGIT

Risky combinatory genotype set = {AGCT,
GGCT, AGTT, GGTT}, if (HTager+HTgoer+
HTagtr+ HTgeTT) 2 CH7% IN HT cases and
(NCagct+NCgacr+NCagrm NCgarr) < Crc% in
NC controls

Risky combinatory genotype set = {AGTT,
GGTT}, if (HTAGTT+ HTGGTT) = CH‘(ou in HT cases
and (NCagtm+ NCaaTT) < Cnc% in NC controls

HTING SNP1: recessive

AA AG GG

SNP1: recessive

HT/NC
AG

AA GG

CC| HTancNCasoe | HT asceNCroc

HTaeee/NCoaoc

CC| HTace/NCaace| HT soe/NCaee| HTaacoMNCascd)

CT Hrm/NCm HTMIT’NC.PGIT

SNP2:

HTaacrNCagcr,

CT| HT ancrMNCaacr | HT aaetMNCacer| HTaaerMCoger|

SNP2:

dominant

TT| HT arNCaarr | HTaereNCagrr | HTeerNCaarr

recessive

TT | HTaarrNCaarr | HTagreMCagrr | HT carNCogrr

Risky combinatory genotype set = {GGCT,

and (NCgeer+NCaatr) = Crnc% in NC controls

Risky combinatory genotype set = {GGTT}, if

GGTTY}, if (HTeecr + HTearr) 2 Cur% in HT cases|

HTgert 2 Cqr% in HT cases and NCgg1r < Crac%
in NC controls

Figure 2 Criteria for a risky combinatory genotype set of a disease gene (SNP) pair. In the above example, SNP1 is the AG polymorphism
with disease allele G whereas SNP2 is the CT polymorphism with disease allele T.
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Additional file 1: Figure S2 for a demonstration). There-
fore we proposed accumulating multiple gene pairs that
have a shared gene so as to locate the frequently identi-
fied subjects (FIS) and then to remove false positive gene
pairs that identified subjects other than these FIS. The
gene clusters formed by our algorithm is rather intrinsic
in the datasets and may resemble Rothman’s genetic
causal pies. Furthermore, we have proven in Additional
file 1: Method S2 that the probability of a false positive
gene cluster containing k non-linkage disequilibrium
(non-LD) SNP pairs and identifying m subjects in a
population of # subjects is bounded above by (m1/n)".
Our algorithm consists of three stages: cluster selec-
tion, component growth and component pruning. Dur-
ing the first stage, we set up a set of stringent criteria to
identify influential disease gene pairs and grouped them
with shared genes. Then at the second stage, we itera-
tively relaxed the criteria to encourage effective gene
clusters to include additional gene pairs until new gene
pairs started to identify different groups of HT patients.
Finally, at the third stage, all disease gene pairs that
identified different groups of patients were removed
from the cluster. In this work, we used Cyr = 2.0 and
Cnc = 0.1 to produce manageable cluster size in the first
stage. Let the sample size of the HT and NC populations
be Syrand Syc, respectively. The proposed gene cluster
construction algorithm comprises the following steps.

Step 1 Cluster selection. Select a conservative set of
gene clusters using stringent criteria:

Step 1.1 Set tyr = tyro = [Spr > Cyr%1 and tyc =
tnco = TSne % Cac%1 and use them to replace
Cyrand Cyc in Figures 1 and 2.

Step 1.2 Search for all single genes with risky
genotype sets (as illustrated in Figure 1) from the
training datasets.

Step 1.3 Search for all gene pairs with risky
combinatory genotype sets (as illustrated in
Figure 2) from the training datasets.

Step 1.4 Find shared genes among the qualified gene
pairs and use them to group the gene pairs.

Step 2 Component growth: For each constructed gene
cluster, repeat the following steps until the HT
patients identified by the new disease gene pairs
differ from those by the existing ones:

Step 2.1 Set tyr = tyr- 1 and fnc = tnc + 1.

Step 2.2 Search for additional gene pairs with risky
combinatory genotype sets from the training
datasets.

Step 2.3 For each constructed gene cluster, record
subject IDs that are frequently identified by its
gene pair components:

Step 2.3.1 Locate the most frequently identified
subjects (MFIS).
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Step 2.3.2 Select subjects that were identified at
least 1/4 the time compared with the MFIS,
and categorize them as frequently identified
subjects (FIS).

Step 2.3.3 Select the ¢y most frequently
identified subjects if the number of FIS is less
than 7

Step 3 Component pruning:
Step 3.1 Select gene clusters with sufficient number

(= tyro) of FIS.

Step 3.2 For each gene cluster, remove the gene
pairs which identify subjects not in FIS.

Identification of influential genes using gene expression
data

The gene clusters constructed from the SNP data usually
consist of many genes which is disadvantageous for
etiology analysis. We attempted to identify the influen-
tial genes using expression data. We selected 253 (135 in
Taiwan_Affy500k and 118 in Taiwan_Illu550k) HT
patients and 232 (36 in Taiwan_Affy500k and 196 in
Tai-wan_Illu550k) NC subjects who had gene expression
data for the demonstration. For each subject, three repli-
cates of genome-wide expression data were generated by
the following three steps: (i) lymphocytes were isolated
from the fasting blood immediately after it was drawn;
(i) the lymphoblastoid cell line was established via
Epstein-Barr virus transformation; (iii) total RNA was
extracted and hybridized onto three Phalanx Human
OneArrays (HOA v5.1, Phalanx Biotech Group, Taiwan),
each of which contains 39,200 polynucleotide probes
with 25,215 of them mapped to the latest draft of the
human genome.

Before merging the three replicates for each subject,
we checked the consistency among them. We first com-
puted the Pearson correlation coefficient for every two
replicates and removed those with at least one correl-
ation less than 0.9. We then checked the consistency for
each gene if more than one of the replicates were available.
The values of a gene were set to 0 (missing) if its mini-
mum was less than 60% of its maximum. After such an
adjustment, replicates were merged using median values.
A base-2 logarithm and Z-score global normalization were
applied to the merged data. In the resultant data, we fur-
ther set those values higher than 6 to 0 (missing) since
they were outliers or represented false signals.

We developed an algorithm to identify influential genes
in each gene cluster using the above gene expression data.
Starting with the shared gene in a gene cluster, the algo-
rithm iteratively added a gene in the gene cluster such that
the HT patients carrying risky combinatory genotypes can
be maximally discriminated (in terms of adjusted p values)
from HT patients without carrying risky combinatory
genotype, from NC subjects carrying risky combinatory
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genotype and from NC subjects without carrying risky
combinatory genotype. This process is stopped if no better
discrimination can be achieved by adding any other gene
in the gene clusters. Pseudo code of this algorithm is pro-
vided in Additional file 1: Method S3. Although such a se-
quential search may not obtain the best discrimination
among the above subject groups, it was adopted for its
capability of selecting a small set of influential genes so
that the underlying disease mechanisms in a gene cluster
can be easily revealed.

Results

The constructed gene clusters

No single gene was found to fulfill the stringent criteria,
i.e., carrying risky genotype sets in at least 2.0% of HT pa-
tients and at most 0.1% of NC subjects in the training
datasets. However, allele “CC” of rs16854417, an intronic
SNP in SLC9AY, identified 3/305 (0.98%) and 4/200 (2%)
of HT patients in FHS_Affy500k and in Taiwan_Affy550k,
respectively (see Additional file 1: Table S1 for its allele
frequencies in various datasets). In contrast, no NC sub-
ject in FHS and only one NC subject in Taiwan_Affy550k
carried the CC allele for this SNP. Although this subject
was a 53-year-old female with three normal blood pres-
sure readings (120/78, 118/76 and 118/78 mmHg), she
had a family history of hypertension.

In search for disease gene pairs, at the cluster-selection
stage, we applied the stringent criteria and obtained 264
gene pairs in 360 genes, of which 24 were shared by mul-
tiple gene pairs. The 264 gene pairs were then grouped
into 103 gene clusters, of which 24 consisted of multiple
gene pairs and the remaining 79 contained only one gene
pair. At the component growth stage, the criteria were
relaxed accordingly for each of the 103 gene clusters to
search for additional gene pairs. For the 79 two-gene
clusters, the expansion was carried out twice, each as-
suming that one of the two genes was a shared gene. As
a result, the original 103 gene clusters were expanded to
182 gene clusters. Because small gene clusters were
more likely to be false positives (see Additional file 1:
Method S2 for the proof), we selected the 14 largest
gene clusters which contained 17,170 gene pairs in
8,559 genes for the subsequent analysis. The 14 gene
clusters were finally reduced to 17,115 gene pairs in
8,524 genes at the component pruning stage. We list in
Additional file 1: Table S2 the numbers of overlapping
genes between gene clusters as a distance measure. The
average percentage of overlapping genes in the 14 gene
clusters is 4.9%. Such a low overlapping ratio is expected
because the patients identified by the gene clusters
exhibited few overlaps. We also provide in Additional
files 2 and 3 the gene symbols and SNP rs numbers in
the gene clusters obtained at the cluster select stage and
at the component pruning stage, respectively.
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In Figures 3 and 4, we demonstrate how the constructed
gene clusters (denoted by their shared genes) identified
different groups of subjects in training datasets and in test
datasets, respectively, using a cluster visualization pro-
cedure (Additional file 1: Method S4). In both figures,
the horizontal axis denotes the number of subjects, and
the vertical axis denotes the number of gene pairs. A
black pixel in the figures represents a subject who car-
ried a risky combinatory genotype in the corresponding
gene pair. Moreover, the gray areas in the figures indi-
cate the portion of subjects carrying risky combinatory
genotypes in the 14 gene clusters, whereas the light-
blue horizontal lines denote that no corresponding gene
pairs could be found in the dataset (due to differences
among platforms).

Summarizing from Figures 3 and 4, the percentages of
the HT population carrying risky combinatory genotypes
in the 14 gene clusters were 36.4% (184/505 of which 87/
305 in Caucasian and 97/200 in Taiwanese) in training
datasets and 15.5% (352/2,267 of which 214/2,001 in
Caucasian and 138/266 in Taiwanese) in test datasets. The
lower percentage in the test Caucasian may be due to the
inclusion of late-onset patients in the WTCCC_Affy500k
dataset. On the other hand, the percentages of NC popu-
lation carrying the risky combinatory genotypes were
10.1% (309/3,065 of which 239/2,881 in Caucasian and
70/184 in Taiwanese) in the training datasets and 12.3%
(425/3,450 of which 336/3,004 in Caucasian and 89/446 in
Taiwanese) in test datasets. Detailed percentages for each
of the 14 gene clusters in the five datasets are presented in
Additional file 1: Table S3.

We used PLINK [34] to compute the p-values of the 14
major genes in order to further demonstrate that the iden-
tification capability is from gene-gene interactions rather
than from the major genes. Some SNPs flanking these
major genes did have very small p-values (even after the
conservative Bonferroni adjustment), implying that certain
genotypes in these SNPs may have important roles in the
disease mechanism and thus they are highly associated
with hypertension. However, none of the genotypes is cap-
able of identifying HT patients (refer to Additional file 1:
Table S4), suggesting that they still need to work with
other genes to facilitate the mechanism. For example, the
smallest p-value 4.97x10** (unadjusted) was obtained
from the SNP rs2607943 of NINJ2, the major gene of the
3rd cluster. However, its genotype distribution among
the 505 patients (346 AAs, 123 AGs, 26 GGs, and 10
missing) and that among the 3065 controls (2596 AAs,
412 AGs, 28 GGs, and 29 missing) showed that none of
the genotypes can be used to identify HT patients. Simi-
larly, although some of the remaining 13 major genes
had small p-values (ranging 102~10""7), none of their
genotypes was capable of distinguish HT patients from
NC subjects.
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Training Datasets
Taiwan Affy500k 97/200 Patients

Gene pairs

A Framingham Affy500k 87/305 Patients

100
Subjects

B Framingham Affy500k 239/2881 Controls

Subjects

Taiwan Affy500k 70/184 Controls

2000
4000
6000F

8000}

Gene pairs

Subjects

identified subjects.

500 1000 1500 2000 2500

Figure 3 The 14 gene-subject clusters (denoted by their shared genes) for (A) HT patients and for (B) NC subjects in the two training
datasets, FHS_Affy500k (left) and Taiwan_Affy500k (right). The numerator in the title indicates the number of subjects identified by all gene
clusters, whereas the denominator denotes the total num-ber of subjects in the dataset. The gray areas indicate the total portion of
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Gene clusters resembling genetic causal pies

We have shown in Figures 3 and 4 that the 14 constructed
gene clusters were capable of identifying higher percent-
age of HT population than that of NC population and
each gene cluster seemed to identify a distinct group of
subjects. Further computing the number of risky combin-
atory genotypes carried in each subject, we found that HT
patients usually carried more risky combinatory genotypes
than NC subjects. This can be seen in Figures 3 and 4 that
the gene-subject clusters for HT patients (part (A)) usually
exhibit darker blocks than those for NC subjects (part
(B)). In Figure 5, we used box plots to show the distribu-
tions of carried risky combinatory genotypes for HT

patients (red) and for NC subjects (blue) that are identi-
fied by the same gene cluster in a dataset. Due to gene
diversity among platforms, we used percentage (with re-
spect to the size of the corresponding gene cluster), rather
than number, of carried risky combinatory genotypes to
demonstrate the difference between HT patients and HC
subjects in the figure. Moreover, for each gene cluster in a
dataset, we selected a percentage from the HT patients
which resulted in minimum classification error as a
threshold for disease onset. In Figure 5, the threshold is
represented by a dashed line between HT patients and
NC subjects in a box plot, whereas the classification error
is denoted by ER.
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Figure 4 The 14 gene-subject clusters (denoted by their shared genes) for (A) HT patients and for (B) NC subjects in the three test
datasets, WTCCC_Affy500k (left), Taiwan_Affy100k (middle) and Tai-wan_IlIlu550k (right). The numerator in the title indicates the number
of subjects identified by all gene clusters, whereas the denominator denotes the total number of subjects in the dataset. The gray areas indicate
the total portion of identified subjects, whereas the light-blue horizontal lines denote that no corresponding gene pairs could be found in
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In addition to platform differences, our datasets also
exhibited ethnic differences, i.e. Caucasian and Taiwanese.
Although FHS_Affy500k, Taiwan_Affy500k, and WTC
CC_Afty500k were all assayed on the Affymetrix500k plat-
form, they represented different ethnic groups and there-
fore may have different thresholds for disease onset. We
adopted two scenarios, S1 and S2, to compute the thresh-
olds in the three datasets: the former assuming different
thresholds for different ethnic groups, whereas the latter
anticipating one threshold for a platform. With S1, we
separated HT patients from NC subjects with 82.8% clas-
sification accuracy (sensitivity = 0.68, specificity = 0.93) or
with 98.9% accuracy (sensitivity = 0.98, specificity = 1.0) if

WTCCC_Affy500k was excluded. In accuracy calcula-
tions, a true positive was a HT patient with sufficient risky
combinatory genotypes in at least one gene cluster,
whereas a true negative indicated a NC subject with insuf-
ficient risky combinatory genotypes in all gene clusters.
Detailed classification results are provided in Table 1.
From the above results, we found that the sufficient
risky combinatory genotype was similar to the sufficient
cause in Rothman’s causal pie model in that a subject
must carry sufficient risky combinatory genotypes (com-
ponent causes) in a gene cluster (a causal pie) for the
onset of HT. In addition, most of the gene clusters were
not only consistently observed in all the datasets but
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Figure 5 Box plots of percentage of risky combinatory genotypes carried in the subjects who were identified by one of the fourteen
gene clusters in the five datasets. Fach box in the left-hand side shows the shared gene and the number of involved genes in a gene clusters.
Red box plots represent HT patients, whereas blue box plots are for NC subjects. The horizontal dashed line represents the cut-off percentage of
p p J p p 9
risky combinatory genotypes for defining HT computed for each data set. ER denotes classification error.

Table 1 Classification accuracy after establishing a cut-off percentage of risky combinatory genotypes in each gene

cluster
Datasets Population Classification Sensitivity Specificity Subjects with risky genotypes
accuracy S1(S2) S1(S2) S1(S2) HT NC
FHS_Affy500k (training) Caucasian 99.7%"(99.1%) 0.99(0.98) 1.0(0.996) 87 239
Taiwan_Affy500k (training) Taiwanese 98.2%7(93.4%) 0.97(0.97) 1.0(0.89) 97 70
WTCCC_Affy500k (test) Caucasian 61.6%(62.9%) 0.25(0.26) 0.85(0.87) 214 336
Taiwan_Affy100k & Taiwanese 98.29%(98.2%) 0.97(0.94) 1.0(1.0) 138" 89*
Taiwan_lllu550k (test)
Overall Both 82.8%(82.5%) 0.68(0.69) 0.93(0.93) 536 734
Overall except WTCCC_Affy500k Both 98.9%(97.5%) 0.98(0.97) 1.0(0.98) 322 398

S1: threshold is computed for each dataset; S2: threshold is computed for each platform; *Classification accuracy of the dataset evaluated using a five-fold

validation procedure exhibit similar result and is presented in Additional file 1: Table S5; *see Additional file 1: Figure S1 for detailed calculations.
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also clustered HT patients into distinct groups, suggesting
multiple causal mechanisms for HT.

Advantages in comparison with existed gene-gene
interaction algorithms

Most of the algorithms for detecting gene-gene inter-
action dealt with complex model fitting and therefore
their application to GWAS data can be very time con-
suming or simply infeasible. Also, methods that detect
gene-gene interactions among multiple loci cannot guar-
antee global optimal solutions since only limited combi-
nations are explored. In comparison with conventional
methods, our algorithm has the following advantages:

Our detection algorithm is fast

We used simple testing criteria to detect gene-gene in-
teractions which allowed us to quickly perform exhaust-
ive search for all gene pairs. Using 19779 SNPs in 505
cases and 3065 controls (clusterl in our training dataset)
as an example, our algorithm took 5 hours and 51 mi-
nutes to finish all pairwise tests whereas the PLINK with
the “fast-epistasis function” spent 8 hours and 43 mi-
nutes (more than 10 days for the “epistasis” function).

Our gene clustering algorithm is robust

We tested the robustness of our algorithm to criteria,
sample size, and prevalence changes, respectively. De-
tailed testing procedures were described in Additional
file 1: Method S5. We showed in Additional file 1: Figure
S3 that our algorithm was capable of detecting the same
gene clusters either the criterion Cyr was increased from
2.0 to 2.5 (25% increased) or was decreased from 2.0 to
1.8 (10% decreased) or even to 1.5 (25% decreased). How-
ever when the criterion was increased to 2.5, it became
too stringent and many gene clusters were no longer re-
coverable from the component growth stage. Thus, our
gene cluster construction algorithm was very robust to
criteria changes. We also showed in Additional file 1:
Figure S4 that the top 15 gene clusters remained >85% un-
changed if 70% of the sample size was used (ie., 30% of
the data was randomly removed). The similarity remained
around 76% when 50% of the samples were used and was
reduced to about 60% as only 20% samples were used.
These results showed that our gene cluster construction
algorithm was robust to changes in sample size in com-
parison with many single-SNP analyses [35]. Similar ap-
proach was used to test the robustness of our method to
changes in disease prevalence. We created a database with
varied hypertension prevalence by reducing the HT sam-
ples while keeping the NC samples unchanged as in the
previous test. In Additional file 1: Figure S5, the top 15
gene clusters remained 81% unchanged if the disease
prevalence was decreased to 70% and the cluster similarity
was reduced to about 57% as the prevalence was dropped
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to 20%. Such a result demonstrated that our algorithm
was also robust enough to sustain changes in disease
prevalence. The robustness of our algorithm is resulted
from the design of detecting influential gene clusters
(those identify more HTs) at the first stage and is further
improved via encouraging consistent gene clusters (those
with gene pairs identifying similar HTs) to grow in the lat-
ter two stages.

Our detection algorithm can deal with risky factor or
protective factor or both

Unlike regression models that detect interactions that are
associated with both risk factor and protective factor, our
method can be assigned to detect interactions that are as-
sociated with either risky factor (as demonstrated in this
manuscript) or protective factor (i.e., by setting Cync >
Cuyr=0).

Our gene clustering algorithm constructs reproducible
clusters

Our test results also showed that the constructed gene
clusters were reproduced in both ethnic populations and
across three genotyping platforms. We have proven that
the probability of a false positive gene cluster detected
by our algorithm is very low. For a gene cluster containing
k non-LD SNP pairs and identifying m subjects in a popu-
lation of n subjects, such a probability is bounded above
by (m/n)~.

Our gene clustering algorithm can detect patient subgroups
Our observations showed that many interacting pairs
identified similar group of patients. Accumulation of
these gene pairs allowed us to identify patient sub-
groups whereas the identified patients help us to elimin-
ate false positive gene pairs. Most of all, we found the
gene clusters resemble different genetic causal pies in
that subjects carrying sufficient number of risky com-
binatory genotype sets in the pie have very high possi-
bility of disease onset.

Minimum and sufficient component causes

From Figure 5, the number of risky combinatory geno-
types involved in a genetic causal pie which ranged from
hundreds to thousands in the 14 gene clusters is rather
high. By analyzing the functions of genes involved in a
gene cluster, we found that many of them perform similar
functions, and thus some of the genes may be redundant
to the causal pie. An intuitive guess for such a redundancy
is LD among SNPs (in different genes). We thus checked
the LD between all SNPs in each of the 14 clusters using
PLINK and retained only one of the gene pairs if their as-
sociated SNPs were found to have LD (D’ > 0.9). After the
LD reduction, the sizes of the 14 gene clusters were
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reduced in an average percentage of 96.82% without chan-
ging their classification accuracies.

To further remove the redundancy, we computed the
minimum number of genes in each of the 14 clusters
(via the genetic algorithm) without disrupting the classi-
fication accuracy of the LD-reduced gene set. We found
substantial reduction in number of genes (23-42%, as
detailed in Additional file 1: Table S6) for the 14 clusters,
leaving the resultant number of genes in each cluster
ranged from a few dozen to a few thousand. Furthermore,
after the reduction, the cut-off percentage remained simi-
lar to that of the original gene set. However, some genes
that seemed irrelevant or redundant in one dataset may
have been crucial for HT identification in the other
datasets. Therefore, whether such reductions sustain in
larger datasets warrants further investigation.

We also used the gene expression data to compute the
minimum genes in each cluster via the algorithm pro-
posed in section 2.5 and Additional file 1: Method S3.
We found the number of genes in each gene cluster can
be tremendously reduced to around a couple of dozen
while HT patients carrying risky combinatory genotypes
can still be significantly discriminated (adjusted p < 10)
from HT patients without carrying risky combinatory
genotype, from NC subjects carrying risky combinatory
genotypes and from NC subjects without carrying risky
combinatory genotype (Additional file 1: Figure S6). Using
the selected subsets of genes to repeat the previous gen-
etic classification, we found the accuracies only decrease
slightly (82.8%—78.9% for all datasets and 98.9—93.0%
for all datasets but WTCCC_Afty500k, refer to Table 1),
which implies that these gene may actually be important
in each gene cluster. The selected gene symbols in the 14
gene clusters are provided in Additional file 4.

Functional analysis of the gene clusters

Identifying key functions in the 14 gene clusters can
help biologists to better understand the etiology of
hypertension. The most intuitive approach is to look for
the gene ontology (GO [36]) of the shared (major) genes
(Additional file 1: Table S7). Of the 14 major genes,
only PMS1, which is responsible for ATP and DNA
bindings and is involved in repair of DNA mismatches,
has been reported to associate with hypertension in Af-
rican Americans [37]. Four major genes are associated
with diseases frequently associated with hypertension,
of which TMEM16A (also known as ANO1) is with pul-
monary hypertension in rat [38], NINJ2 is with stroke
[39], AKAP12 is with chronic kidney disease in Japanese
individuals [40], and LTBP1 is with abdominal aortic
aneurysm [41] and coronary atherosclerotic plaques [42].
Five major genes are linked to hypertension-related func-
tions, of which CGREF1 and JPH1 are involved in calcium
ion binding/transport, LPHN3 is in G-protein-coupled
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receptor signaling pathways, TNIK is in Wnt receptor
signaling pathway, nervous system development and
response to stress, and GRID2 is in glutamate signaling
pathway, neuroactive ligand-receptor interaction and
long-term depression. The remaining five major genes
seem less hypertension-related. DNAH9 is responsible for
ATP and nucleotide bindings and microtubule motor
activity. Ectopic expression of C8orf72 (also known as
FAM110B) proteins impaired cell cycle progression in G1
phase [43]. PKIB en-codes a protein which is a member of
the cAMP-dependent protein kinase inhibitor family.
NRXNI functions in the vertebrate nervous system as cell
adhesion molecules and receptors.

We also analyzed the functions, processes, and path-
ways of the other genes involved in the 14 gene clusters.
We compared the GO information of the 14 gene clusters
with that of 14 randomly generated, equal-sized, ones.
Additional file 1: Table S8 lists the mechanisms in the 14
clusters that were significantly more abundant (p < 0.05)
than those in the random sets. The majority of the listed
mechanisms are known to highly related to hypertension,
such as magnesium ion binding, calcium ion transport,
central nervous system development, metabolic process
and sodium ion transport. In addition, we utilized the
genes selected from the gene expression data to find influ-
ential mechanisms in each individual gene cluster. We list
in Additional file 1: Table S9 the influential pathways in
which multiple genes in a cluster were involved whereas
in Additional file 1: Table S10 we present the abundant
functions, processes, and pathways in the individual gene
clusters. From these tables, we found that gene clusters
anchored by the major genes CGREF1, PMS1 and TNIK
all had multiple genes in several cardiomyopathy-related
pathways. Among the involved genes, a hypertension-
candidate gene, CACNA1C, interacted with all three major
genes suggesting its important role in cardiomyopathy-
related hypertension. Moreover, multiple genes in gene
clusters anchored by C8orf72, PMS1 and NRXN1 were
found to involve in the metabolic pathways implying its in-
fluential role in these clusters. In addition, gene clusters
anchored by TMEMI16A, LPHN3 and GRID2 involved
multiple neurotransmitter receptor genes contributing to
the neuroactive ligand-receptor interaction pathway sug-
gesting its possible link with hypertension. Finally, path-
ways such as axon guidance and Alzheimer’s disease also
frequently involved in several gene clusters and their rela-
tionships with hypertension warrant further investigations.

Another attempt to identify influential disease mecha-
nisms was to compare biomedical profiles among patient
groups identified by the 14 gene clusters in Taiwan_
Afft500k. We found that patients identified by the PKIB
gene cluster had lower blood sodium levels (p = 0.038)
than other patients, which coincided with situations in
which the cluster consisted of more sodium channel
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activity genes than the others. In addition, the patients
identified by the JPH1 gene cluster had lower blood potas-
sium levels (p = 0.026) than other patients in the dataset,
and this cluster happened to include more outward recti-
fier potassium channel activity genes than the others.
Moreover, the LPHN3 gene cluster that identified six
patients whose urine potassium levels were higher than
other patients in the dataset (p = 0.026) contained abun-
dant genes with clustering of voltage-gated potassium
channels, potassium channel regulator activity, and
calcium-activated potassium channel activity.

Existence of alternative component causes in a genetic
causal pie

We demonstrated that the 14 gene clusters resulting
from the training datasets were reproducible in test
datasets of different platforms through gene match (see
Figures 3 and 4). Although the different sets of 14 clus-
ters obtained from different platforms involved the same
genes and mostly formed distinct gene-subject clusters,
there was no direct proof that these gene clusters were
the same across platforms. For example, in the DNAH9
gene cluster, we did not know whether the SNP pairs
obtained from different platforms could identify the
same group of HT patients.

To address this issue, we tested the 14 gene clusters on
46 HT patients for whom there existed both Affy-
metrix500k and Affymet-rix100k data and on 200 HT pa-
tients who had both Affymetrix500k and Illumina550k
data (not used in the test datasets). As shown in the upper
panel of Additional file 1: Figure S7, the HT patients iden-
tified in the Affymetrix500k data differed from those iden-
tified in the Affymetrix100k data. Similarly, in the lower
panel, the HT patients identified in the Affymetrix500k
data differed from those identified in the Illumina550k
data. Both results indicated that, even with the same gene
pairs, a gene cluster that consisted of different SNP pairs
(used by different platforms) identified different groups of
patients. The above results seemed to suggest that a gen-
etic causal pie that involves multiple genes can involve
different genetic variants (i.e., SNPs). If all the influen-
tial SNPs were genotyped, however, then the percentage
of HT patients identified by the gene clusters could be
increased.

Discussion

We have developed a gene cluster construction algo-
rithm for complex diseases, starting from finding influ-
ential gene pairs followed by grouping them into gene
clusters. Each of the constructed gene clusters consisted
of multiple gene pairs that were featured by a major
gene interacting with multiple contributing genes and
identified a similar group of patients. On an application
to young-onset hypertension, our algorithm successfully
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constructed multiple reproducible gene clusters; each
identified a distinct group of subjects. Our result dem-
onstrated that the identification capability of such a gene
cluster was resulted from a combinational effect of the
gene pairs rather than the major gene. Also, only small
percentage (3.18%) of contributing genes in a gene clus-
ter exhibited LD. As a result, these gene clusters were
highly susceptible to link with certain disease mechanisms
of hypertension. Furthermore, the algorithm exhibited ro-
bustness (> 85% of the top 15 gene clusters remained un-
changed) to criterion change, sample size change, and
disease prevalence change.

The constructed gene clusters resemble Rothman’s
causal pie model in that each gene cluster can be regarded
as a causal pie with each risky combinatory genotype set
of a gene pair in the cluster representing a component
cause in the pie (a slice of the pie). And for each subject,
the probability of ascertaining a disease increase dramatic-
ally as sufficient number of risky combinatory genotypes
is carried. Multiple gene clusters, each of which identified
a distinct group of subjects, imply multiple causal pies
(disease mechanisms) for young-onset hypertension and
may help to identify disease sub-types. Such a multi-
causal pie-multi-component model provides an explan-
ation of why conventional GWAS approaches in which all
hypertensives were considered as a single group in com-
parison with the normotensives usually resulted in few sig-
nificant genetic markers with poor reproducibility.

In this work, we presented the 14 large gene clusters
constructed by our algorithm. These gene clusters were
reproducible not only in Taiwanese and Caucasian popu-
lations but also across multiple genotyping platforms. In
addition, they identified 19.3% of HT patients in all the
datasets and 41.8% if the WTCCC_Affy500k was ex-
cluded for lack of biomedical profiles. Although 11.3%
(with or without WTCCC_Affy500k) of NC subjects also
carried risky combinatory genotypes in the gene clusters,
they carried less risky combinatory genotypes than HT
patients. After applying a suitable threshold to the num-
ber of risky combinatory genotypes in each gene cluster,
we can further discriminate the HT patients from the
NC subjects with an accuracy of 82.8% (sensitivity = 0.68
and specificity = 0.93) for all datasets and with an accur-
acy of 98.9% (sensitivity = 0.98 and specificity = 1.0) if the
WTCCC_Affy500k was excluded.

The number of genes involved in the 14 gene clusters
ranged from a few hundred to a few thousand. The
meaning of such large number of genes is not clear.
However, since multiple genes with similar functions are
often involved in a given cluster and the influence of SNP
variation is usually small, it is likely that it takes accumula-
tive effects of multiple genes of the same functions and
those of multiple pathways to lead to development of
hypertension. Canalization [44], which measures the ability
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of a population to produce the same phenotype regardless
of variability in its environment or genotype, may provide
an explanation for the large number of genetic causal pies
as well as the large number of component causes in a pie.
Indeed, canalization values are high in most biological
systems, implying that evolutionary forces select for traits
that promote canalization which would ensure a normal
blood pressure. Therefore, minor/moderate genetic or en-
vironment perturbations may not substantively impact bio-
logical systems. They need to be accumulated in some
particular fashion and amount so as to cause malfunction
in a biological system.

We have also listed in Additional file 1: Table S7-S10
some important functions, processes and pathways that
are related to the 14 gene clusters. According to our
gene-gene interaction model, the mechanisms that are
related to a shared gene (Additional file 1: Table S7)
should have strong associations with those that abun-
dantly appeared in the gene cluster (Additional file 1:
Table S9). To name a few, in the LTBP1 gene cluster,
calcium ion binding/transport regulated by LTBP1 may
be related to metabolism of lipids and lipoproteins that
is attributed by two other genes in the cluster; in the
TMEMI16A gene cluster, calcium and chloride ion bind-
ing regulated by TMEM16A may be associated with pur-
ine metabolism, neuroactive ligand-receptor interaction
and signaling by GPCR; in the LPHN3 gene cluster, G-
protein-coupled receptor activity regulated by LPHN3
may interact with axon guidance, diabetes pathways and
neuroactive ligand-receptor interaction; in the TNIK
gene cluster, the stress response regulated by TNIK may
be linked to arrhythmogenic right ventricular cardiomyop-
athy, dilated cardiomyopathy, hypertrophic cardiomyop-
athy and vascular smooth muscle contraction. However,
further gene mapping endeavors are needed to depict de-
tailed mechanisms in these gene clusters.

Owing to the difficulty of incorporating environment-
gene with gene-gene interactions, in the present study,
we only focused on constructing genetic causal pies for
young-onset hypertension. With the genetic causal pies
identified, we can then combine environmental factors,
for example using the algorithm proposed by Hoffmann
[45] or by Liao [46], to further explore the interactions
between genetic and environmental factors and thus to
better depict the hypertension etiology.

Conclusions

In the present work, we developed a three-stage algo-
rithm to construct gene clusters resembling Rothman’s
causal pies, starting from finding influential gene pairs
followed by grouping them and trained/tested on four
large/diverse international databases. The constructed
clusters, featured by a major gene interacting with many
other genes, reproduced in Taiwanese and Caucasian
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populations and across multiple genotyping platforms. A
total of 19.3-41.8% hypertensives were identified by 14
largest clusters and 68.8-95.7% of them carried suffi-
cient amount of risky genotypes in at least one cluster.
Furthermore, not only 10 of the 14 major genes but also
many other genes in the clusters perform hypertension-
related functions. Our results provide insights into poly-
genic aspect of hypertension etiology.

Availability of supporting data

Additional files 1, 2, 3, 5, 4 and MATLAB files that gen-
erate Figures 3, 4, 5 in this manuscript are available at
http://ms.iis.sinica.edu.tw/genetic_causal_pies/index.htm.
The C++ codes that can be run on Linux clusters for
computing all possible disease SNP pairs between two
datasets and some other related MATLAB codes are also
provided in the URL.

Additional files

Additional file 1: Methods S1-S5. Figures S1-S7. Tables S1-S10.
Additional file 2: Sample IDs used in the 5 datasets.

Additional file 3: Detailed SNP rs numbers and the associated gene
symbols in the gene clusters (at the cluster selection stage).

Additional file 4: The selected gene symbols in the 14 gene
clusters.

Additional file 5: Detailed SNP rs numbers and the associated gene
symbols in each of the gene clusters (at the component pruning
stage).
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