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Abstract

benefit from this approach.

Background: MicroRNAs (miRNAs) are small endogenous ssRNAs that regulate target gene expression post-
transcriptionally through the RNAI pathway. A critical pre-processing procedure for detecting differentially
expressed miRNAs is normalization, aiming at removing the between-array systematic bias. Most normalization
methods adopted for miRNA data are the same methods used to normalize mRNA data; but miRNA data are very
different from mRNA data mainly because of possibly larger proportion of differentially expressed miRNA probes,
and much larger percentage of left-censored miRNA probes below detection limit (DL). Taking the unique
characteristics of miRNA data into account, we present a hierarchical Bayesian approach that integrates
normalization, missing data imputation, and feature selection in the same model.

Results: Results from both simulation and real data seem to suggest the superiority of performance of Bayesian
method over other widely used normalization methods in detecting truly differentially expressed miRNAs. In
addition, our findings clearly demonstrate the necessity of miRNA data normalization, and the robustness of our
Bayesian approach against the violation of standard assumptions adopted in mRNA normalization methods.

Conclusion: Our study indicates that normalization procedures can have a profound impact on the detection of
truly differentially expressed miRNAs. Although the proposed Bayesian method was formulated to handle
normalization issues in MiIRNA data, we expect that biomarker discovery with other high-dimensional profiling
techniques where there are a significant proportion of left-censored data points (e.g., proteomics) might also
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Background

MicroRNAs (miRNAs) are small non-coding RNAs that
are critical players in mediating post-transcriptional
genes regulations. They predominantly suppress gene
expression by binding to the their target mRNAs to form
RNA-induced silencing complex (RISC) [1] and are re-
sponsible for regulating >60% of the human coding gen-
ome [2-4].

As miRNAs are increasingly implicated in a number of
important physiological and pathological processes (e.g.,
developmental timing [5], stem cell differentiation [6],
cancer initiation and progression [7],), there has been an
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immensely growing interest within the scientific com-
munity to study the functional roles of miRNAs. To
date, more than 18,226 hairpin precursor miRNAs from
168 species have been registered in the miRBase (http://
www.mirbase.org/), and this number is expected to grow
much further.

Microarray is a widely adopted technology to simul-
taneously quantify the expression of hundreds of
miRNAs in one single experiment. Although this tech-
nology has shown enormous scientific potential in the
comprehension of genomic regulation processes, many
sources of systematic variation may influence its
measured probe expression levels. The purpose of
microarray data normalization is to minimize the array-
level systematic bias, such that meaningful biological
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comparisons can be made and true biological changes
can be found within one and multiple experiments.

A number of normalization methods have been devel-
oped for mRNA arrays in the past. Normalization
methods for mRNAs often rely on one or more of the
following assumptions: only a small fraction of features
are differentially expressed and the proportions of up-
and down-regulated expressions are approximately
equal. In addition, for normalization methods based on
housekeeping genes, the measurements for a set of
housekeeping genes, which are expected to be expressed
at relatively invariant levels across different tissues or
treatment conditions, need to be well defined.

However, in contrast to mRNA arrays, which have an
exceedingly high density of probes that are in situ syn-
thesized on the array; miRNA microarrays are often
lower density spotted arrays [8]. In addition, it was
found in previous studies that (1) differentially expressed
miRNAs are not always symmetric in the directions of
regulation [9] (2) the fraction of differentially expressed
miRNAs among treatment conditions often exceed 15%,
and can be as high as 38% [10-12]. (3) Most commer-
cially available miRNA microarrays do not have controls
for endogenous RNAs or miRNAs that have been proven
to be robustly invariant among different tissues or treat-
ment conditions. Furthermore, different from mRNA ar-
rays, where the abundance level for most of the probes
is above the detection limit (DL) of the instrument; in
miRNA arrays, we often have a large portion of miRNAs
that are expressed below DL [13], resulting in the type
of missing data called “non-ignorable missing”, and the
simple exclusion of such “interval-censored” data can
significantly bias results [14].

Given the differences between miRNA and mRNA
data, it is questionable whether the normalization
methods for mRNA arrays are adequate for miRNA ar-
rays. In light of developing a more robust normalization
method for miRNA arrays, Suo et al. [15] recently pro-
posed a least-variant set (LVS) approach based on a set
of data-driven invariant miRNAs, and demonstrated its
superiority to other normalization methods including
quantile normalization using a set of human tissue
miRNA profiling data. However, LVS implicitly assumes
the existence of a set of invariant miRNAs, which in
reality may not hold. In addition, LVS is not designed to
appropriately handle the missing data problem found in
miRNA datasets as described previously.

The framework of Bayesian Hierarchical Modeling
(BHM) has proved to be successful for analyzing many
types of complex datasets in genetics. Using a BHM
strategy has the following key benefits: (1) BHM allows
the modeling of noise additively, multiplicatively, or in a
nonlinear fashion; (2) Hierarchical modeling enables in-
formation borrowing from the comparable units to
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strengthen statistical inference when the dataset is
sparse due to the usual small sample size of biological
studies, such that genes exhibiting unusual small vari-
ability by chance will not lead to artificially inflated
values of test statistics. (3) Bayesian framework offers a
natural platform for handling data below detection limit.
These benefits motivated us to develop a fully Bayesian
approach to miRNA data normalization so that our new
algorithm could perform missing data imputation, array
normalization, and signal extraction under one unified
framework.

Recently, several studies compared the performance of
mRNA normalization methods on miRNA microarray
data [8,15-17]. Rao et al. [8] and Zhao et al. [16]
demonstrated that quantile normalization [18] (http://
oz.berkeley.edu/~bolstad/stuff/qnorm.pdf) outperformed
the other normalization methods they evaluated. In their
studies, the primary objective was to compare the effect
of normalization methods in reducing the variation
among technical replicates. However, it is natural to ex-
pect that more aggressive normalization methods such
as quantile normalization (e.g. forcing each array to have
the exact same empirical distribution of intensities) will
reduce variations among samples not only within the
treatment group but also between treatment groups,
which could make the discovery of truly differentially
expressed features more difficult. Therefore, reduction
of variation among technical replicates does not neces-
sarily lead to an improved performance of feature selec-
tion, which is one of the most important goals of
miRNA profiling experiments. To date, we are not aware
of any literature that systematically compares the impact
of different normalization methods in feature selection
for the miRNA data. In this paper, we will compare the
performance of Bayesian Normalization versus a few
other widely adopted normalization methods in selecting
differentially expressed (DE) miRNAs, through both a
carefully designed simulation study and the analysis of a
real dataset.

Methods

We start with an ANOVA model for the log transformed
miRNA expression y,., for miRNA g, experimental con-
dition ¢ (c = 1, 2), and condition-specific replicate c,, as

1
ygerN (dg— §5g + /))glr’ 02g>

1 2 )
yg2r~N<ﬂg +§6g +/))g2r70 g)

suggested by Kerr et al [19]. We parameterize the mean
of yg, to include additive effects at both miRNA and
array levels, such that where a, is the miRNA effect or
overall expression level of miRNA g, B, is the array
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effect that depends on g through a,, and o§ is the vari-
ance for miRNA g. We assume that the variance of each
miRNA does not depend on the treatment conditions.
The differential effect for each miRNA g between the
two treatment conditions is denoted as &,

To facilitate information borrowing among miRNAs
with a Bayesian approach, we assume that oﬁ 's are ex-
changeable among miRNAs, and they come from a com-
mon distribution, which is chosen to be lognormal,
following the notation of Hein et al [20].

0°g~logNorm (u,qz) (2)

To capture the possibility that the array-level effect
may impact different miRNAs of the same array differ-
ently, we model f3,, as a linear function of a,, where al,,
and a!,, are regression coefficients.

Ber = ay xag+a'y (3)

the model is made identifiable by normalizing within
each condition by setting B, =0 Vg,c, where the dot
indicates that we are taking an average over the index r.

Handling measurements below level of detection

One unique feature of miRNA data is that the expres-
sion level of miRNAs in different tissues or treatment
conditions are often so low that they are below instru-
ments' DL, resulting in a large portion of left-censored
measurements. To reflect the left-censored nature of the
observed data, we modify our likelihood specification for
Yger such that

1
ygcrNN <“g + Edg + /))gcﬂ U2g>I(LCr7) (4')

where L, is the level of detection for array ¢, under condi-
tion ¢, which are readily available from the array manufac-
turers, and I(,) represents interval censoring, following the
notation in JAGS?’ software language.

Winner's curse correction

It is tempting to rank the features directly using the un-
adjusted posterior estimate of the absolute effect size for
each miRNA (J, ), which is what Hein et al. adopted as
their feature ranking criterion for mRNA microarray
data [20]. However, in high dimensional genetic studies,
estimates of effect sizes reported from the same discov-
ery samples that were initially used to declare statistical
significance are often grossly inflated and can not be
replicated in an independent study. This type of bias is
widely known as the Beavis effect [21] or the winner’s
curse [22]. Prioritizing features with solely uncorrected
dg is likely to generate many false findings.
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The Bayesian paradigm allows us to conveniently cor-
rect for winner's curse by incorporating into our model
the prior belief that the significance of the effect ob-
served for each feature may be due to random chance.
More mathematically, the effect size J, can be modeled
with a mixture prior among a discrete probability with
mass at zero, a continuous density f with support on
the positive line, and a continuous density f with sup-
port on the negative line. This three-component mixture
prior describes the three possible categories that a
miRNA could be classified under: non-differentially
expressed, up-regulated, or down-regulated, respectively.

More formally, we can model

P(5g|51752) = 1640 (5g) + &f " (5g) + (1-&,-&)f (5g)
(5)

We treat £ as a hyperparameter with a Dirichelet dis-

tribution, i.e. z ~Dirichlet(a; oy a3). The parameters
0,003 reflect our degree of prior belief in J, = 0 (false
positive) versus d, # 0 (true positive).

As discussed previously, unlike mRNA datasets, where
it has been well established that only a small fraction of
features can be differentially expressed; for miRNA
datasets, we could not favor, a priori, any region of (0,1)

for E, because the proportions of differentially expressed
features among different miRNA datasets could vary
dramatically. Therefore, we set a;=a,=0a3=1, which es-

sentially makes p(? |a;=1 a5=1 a3=1) a uniform distribu-

tion over the simplex of possible values of ?

We assume the non-null components (e.g. f* and f) of
the mixture prior for §, to follow truncated normal dis-
tributions.

£*(3g)~N (/4+ ; 0"+2) [truncated(0, )]

) (6)
7 (8g)~N (/[, o ) [truncated(—<o,0)]

Additional prior specification

To complete the model, we assigned the following prior
distributions for the remaining parameters. The gene
effect a,~N( G,S?), where G~N(0,1000), S>~Gamma
(0.001,0.001).

The hyperparameters for miRNA level variance that ap-
pear in equation (2) are assumed to follow y~N{(0,100),1 >~
Gamma(0.001,0.001). The slope and intercept parameters
that appear in equation (3) are assumed to follow: a°, ~N
(0,100), a*., ~N(0,100).

And finally, the hyperparameter for the non-null compo-
nents of the effects size that appear in equation (6) are as-
sume to follow: u* ~ N(0,100) [truncated(0, «)], y~ ~ N
(0,100) [truncated(-,0)], ot ~ Gamma(0.001,0.001),
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o~ Gamma(0.001,0.001). Essentially, all of the priors
and hyper-priors in our model were specified in a non-
informative fashion.

MCMC implementation

Each parameter was sampled from their posterior distri-
butions by an MCMC algorithm using the JAGS soft-
ware [23]. Specific parameter values and algorithm
details not provided in this manuscript may be found in
the R package BMIRN (Additional file 1). The instruc-
tion manual on how to use BMIRN can be found in
Additional file 2.

On our Linux cluster (16 GB memory, and a dual-dual
core 3.0 GHz AMD processor), where independent
MCMC chains can be parallelized, it takes about 302
seconds on average to run 20,000 iterations for the size
of data described in our simulation study (we find
20,000 iterations typically more than enough steps to
achieve convergence in both simulation and the real data
analysis in our study).

Simulation studies
Study objective
The main objective of this simulation analysis is to ex-
plore how the unique features of miRNA datasets may
impact the performance of the proposed Bayesian
normalization method and the existing normalization
methods.

Our investigation focuses on the following two aspects
of the miRNA data that are different from the traditional
mRNA data:

1. The proportion of differentially expressed features in
miRNA data may be large.

2. The proportion of missing values caused by
measurements below instrument's detection limit in
miRNA data may be large.

Simulation setup
Following the general simulation setup of Broét et al.
[24], we generate a microarray dataset containing 300
miRNAs and five repeat arrays under two conditions.
The gene effects a,'s range uniformly between 0 and 10,
and the array effects are linear functions of the gene ef-
fects. Following the notations described in equation (3),
we generate a°, from N(0,0.5)and a', from N(0,0.05)
in our analysis. The gene variances are simulated based
on equation (2), with y=-1.8 and # =1, giving a similar
range of variances to those we have observed in real
data.

A sparsity parameter sp is created corresponding to
the percentage of miRNAs in the simulated dataset that
are truly differentially expressed. The differential effect
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04 for miRNA g is then set to be zero for the (1-sp) non-
DE miRNAs, N(log(B),0.12) for the % up-regulated
miRNAs, and N(-log(3),0.1%) for the remaining down-
regulated % miRNAs. In our simulation, sp is allowed to
vary from 0.1 to 0.4, with a step size of 0.1. This range
for sp is selected to match to range of the proportion of
DE features observed in real miRNA datasets [10-12].

To investigate the effect of left-censored measure-
ments on the performance of the normalization
methods, we create a simulation parameter m, which
represents the proportion of measurements that are
below detection limit. To generate datasets containing
m% of missing values, we first obtain the m-th quantile
expression level (D,,) for each array, and then set mea-
surements below D,,, to missing for each array. D,,’s are
recorded individually for the downstream analysis. In
this study, m is set to vary from 0 to 0.4, with a step size
of 0.1, which is again chosen to reflect the range of
missing values we encounter in real datasets. For each
pair of sparsity parameter sp and missing parameter s,
20 replicate datasets are generated.

Normalization methods compared

In this simulation study, we compare the performance of
the proposed Bayesian normalization method to the fol-
lowing widely used normalization methods: quantile
normalization [18], variance stabilization normalization
(VSN) [25], and no normalization.

Missing data imputation

For the Bayesian approach, imputation for the missing
data below detection limit is automatically incorporated
into the model framework, and no additional imputation
work is necessary. For the other normalization methods
investigated, the missing values were substituted with
0.5*DL, which is a common practice to handle data
below DL [26,27].

Performance evaluation

The performance of different normalization methods is
measured in terms of their capability of recovering
truly differentially expressed features. For Bayesian
normalization, features are ranked by the absolute
value of the posterior mean of §,, which is the winner's
curse corrected effect size for each miRNA. For all the
other normalization methods, data normalization is
first performed, a moderated t-test [28] is then applied
to the normalized data, and the features are subse-
quently ranked by the t-test p-values. The AUC (area
under the receiver operating characteristic curve) is
reported for each normalization method evaluated.
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Real data analysis

In addition to the simulation studies, we also compared
the performance of various normalization methods on
two sets of human tissue miRNA profiling data, which
are microarray data and high resolution real-time RT-
PCR (qRT-PCR) data.

Tissue microarray data

The human tissue microarray data were generated as
part of an effort to compare between microarray and
quantitative TagMan qRT-PCR measurements [29]. The
microarray dataset includes 43 samples hybridized on an
Agilent Human miRNA Microarray 1.0 coming from
nine different human tissues (brain, breast, heart, liver,
placenta, testis, ovary, skeletal muscle, and thymus).
There are four to five replicate arrays for each tissue
type, and each array contains 534 miRNAs (excluding
control probes). The microarray data are publicly avail-
able from GEO with series number GSE11879.

Tissue gRT-PCR data

In a study on the processing patterns of miRNA, Lee
et al. profiled the expression of 202 mature miRNAs
using qRT-PCR from 22 different human tissues [30].
All the tissue types measured by Ach et al. are available
in this data set except for breast tissue; and among the
534 miRNAs profiled in the microarray data, 174
miRNAs were also found in the qRT-PCR data (Figure 1).
The availability of the high resolution qRT-PCR data
provides us with high confidence the true fold change
for a large number of miRNAs, which allows us to use
fold changes for each miRNA (computed by the ratio of
the expression between two tissues) from qRT-PCR data
as an independent gold standard.

Normalization methods compared
As in the simulation study, we also compare the perform-
ance of quantile normalization, VSN, no normalization, and

Microarray RT-PCR
Data Data
360 28

Figure 1 Venn diagram showing the relative distribution of
miRNA probes between the human microarray miRNA profiling
dataset (GSE11879) and the qRT-PCR dataset.
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Bayesian normalization on the human tissue miRNA
dataset. In addition, we also include the modified least-
variant set (LVS) [15] in the set of methods being evaluated.
LVS is a recently proposed normalization method that is
specifically designed for miRNA data. Suo et al. have
demonstrated that LVS outperforms no normalization,
75" percentile-shift, quantile, global median, VSN, and
LOWESS normalization methods in the same set of human
tissue miRNA data as we use here [15].

Performance evaluation of normalization methods

We compare the performance of various normalization
methods on the real data in terms of their ability to de-
tect truly differentially expressed features, using the
AUC metric.

In this human tissue dataset, different treatment con-
ditions are essentially various human tissues, and truly
differentially expressed features are those miRNAs that
show distinct expression profiles between any pair of tis-
sues. In order to compare the performance of various
normalization methods in detecting truly differentially
expressed hits, we adopted the same strategy as Suo
et al. [15] in defining the set of true positive miRNAs.
More specifically, differentially expressed miRNAs are
selected as having qRT-PCR-based fold changes > 3
(or < 1/3) and P-values computed on the array data <0.01
(using the moderated t-test).

Since we have both qRT-PCR and microarray data
available for eight tissues, AUCs for each normalization
method on all 28 possible pairs of tissues will be
computed.

Results and discussions
Performance evaluation of BHM normalization by
simulation studies
Our simulation studies are designed to closely examine
the two unique features of miRNA datasets: (1) large
proportion of differentially expressed features (i.e., par-
ameter sp), and (2) large proportion of left-censored
measurements due to detection limit (i.e., parameter m).
For each unique pair of sp and m, the median AUC is
obtained among the 20 replicates. The comparison of
AUCs at all possible combinations of sp and m shows
that the BHM method has the highest median value and
the smallest variance among all of the normalization
methods evaluated in this study (Figure 2). The high me-
dian AUC indicates that Bayesian normalization outper-
forms other normalization methods, and the small
variance suggests that the superiority of the Bayesian ap-
proach to other methods is relatively consistent at a
wide range of sp and m's.

We then summarize the relationship between AUC
and the simulation parameters (sp and m) one at a time
by plotting the median AUC (among replicates) versus
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Figure 2 Boxplot showing the overall AUCs at all conditions for different normalization methods in simulation studies.

the parameter of interest (Figure 3). We observe that the
Bayesian approach yields a better AUC than all the other
normalization methods all at ranges of sp (Figure 3a).
Both VSN and quantile normalization outperform no
normalization. Quantile normalization has a similar per-
formance to that of VSN at small sp’s, but outperforms
VSN when the proportion of differentially expressed fea-
tures becomes larger than 10%. As sp increases, while
there is a clear downward trend for the performance of
VSN and no-normalization, the AUCs for the Bayesian
approach and quantile normalization remain flat. These

results suggest that the Bayesian framework and quantile
normalization are robust against the variation of sp,
while VSN and no-normalization are not.

When we examined the effect of the proportion of
left-censored measurements on the performance of
normalization methods, the Bayesian approach again
consistently provides a better AUC than all the other
normalization methods. When the data contain a small
fraction of missing data, VSN appears to perform slightly
better than quantile normalization; however, as the propor-
tion of missing becomes larger, quantile normalization

(A) AUCs vs. Proprotion of DE Features
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Figure 3 AUC vs. Simulation Parameters of Interest. (A) AUCs as functions of the proportion of differentially expressed (DE) features in
simulation studies; (B). AUCs as functions of the proportion of left-censored data in simulation studies.
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Figure 4 Distribution of (AUC+AUPRC)/2 for all 28 tissue pairs from the analysis of human miRNA profiling dataset (GSE11879) with
different normalization methods using qRT-PCR results as the gold standard.

starts to outperform VSN. At all ranges of missing investi-
gated in this simulation study, no-normalization is the
worst performer among all the methods examined. In
addition, we also observe that VSN is much more sensitive
to the variation of m than the proposed Bayesian method
(Figure 3b).

Performance evaluation of BHM normalization by the
analysis of tissue profiling data

The advantage of Bayesian normalization is further sup-
ported by the analysis of human tissue miRNA profiling
data (GSE11879) using the qRT-PCR results [30] as the
gold standard.

AUC is often used as a standard performance metric
in method evaluation for many data mining applications;
however, it practice, scientists may also be interested
in the proportion of true positive features out of the
declared positive features (i.e. precision). Therefore, in
this part of the analysis, we use the average of AUC
and AUPRC (area under the Precision-Recall curve) to
evaluate the performance of different normalization
methods.

For all 28 pairs of human tissues, we plot the distribu-
tions of (AUC+AUPRC)/2 scores (Figure 4) and tabulate
the number of times each normalization method yields
the highest score among all the normalization methods

(defined as Tmax), as well as the median score for each
method (Table 1). Out of the 28 pairs of tissues ana-
lyzed, Bayesian normalization has the largest Tmax among
all the methods compared. The median (AUC+AUPRC)/2
of LVS and VSN are similar, which are higher than quantile
normalization and no normalization. We also noted that
the variance of the (AUC+AUPRC)/2 distribution is the
smallest for the Bayesian approach (Figure 4), which is
in agreement with what we observed in the simulation
studies, supporting the argument that the Bayesian ap-
proach is more robust than the other normalization
methods examined.

An interesting finding from analyzing the human tissue
miRNA data is that the performance of feature selection
could actually be negatively impacted by inappropriately

Table 1 The number of times that each normalization
method gives the highest (AUC+AUPRC)/2, and the
median (AUC+AUPRC)/2 of each method for all 28 tissue
pairs in the human miRNA profiling dataset (GSE11879)
using qRT-PCR results as the gold standard

Method Bayesian Quantile No- LVS VSN
Normalization

Trnax 13 1 0 3 "

0.5*(AUC+AUPRQ) 0.86 0.72 0.74 081 0.82

median
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chosen normalization procedures. For instance, in the case
of brain vs. liver comparison, we expect to find a large
percentage of differentially expressed miRNAs. The
(AUC+AUPRC)/2 scores are 0.79, 0.65, 0.82, 0.86, and
0.92 for no-normalization, quantile normalization, VSN,
LVS, and Bayesian normalization respectively.

This scenario would violate the assumption that only a
small proportion of features are expected to show differ-
ential expression in a microarray dataset. By comparing
(AUC+AUPRC)/2 score of each method, we discover that
normalization methods designed for mRNA data that tend
to be overly aggressive (e.g., quantile normalization)
provide virtually no additional benefits in recovering
truly differentially expressed features. On the other
hand, the performance of our BHM normalization re-
mains robust.

Conclusion

Profiling miRNA expression in cells with microarrays
is becoming a widely used tool in elucidating miRNA
functions. Normalization, often an overlooked aspect
of data processing, is a critical step in the downstream
detection of differentially expressed miRNAs. In the
present study, we propose an integrative Bayesian
approach to normalize miRNA data, and compare
the performance of Bayesian method to other widely
used miRNA normalization methods when the as-
sumptions for mRNA normalization methods are
violated.

Combining the findings from both simulation studies
and the analysis of human tissue profiling data, it
appears that normalization procedures can have a
profound impact on the detection of truly differentially
expressed miRNAs. Our Bayesian normalization frame-
work appropriately addresses the left-censored nature
of the miRNA microarray data (Figure 3b) and is
robust against the variation of the proportion of differ-
entially expressed features (Figure 3a). On the con-
trary, the other normalization methods evaluated do
not seem to adequately handle these unique character-
istics of miRNA data. In addition, we expect that the
robust performance of our Bayesian approach can also
benefit from the embedded winner's curse correction
in our model and the reduction of the propagations of
uncertainties (introduced from performing normalization,
imputation, and feature extraction sequentially rather than
in one integrative step).

Although our Bayesian method was formulated to
handle normalization issues in miRNA data, we expect
that biomarker discovery with other high-dimensional
profiling techniques where there are a significant pro-
portion of left-censored data points (e.g., proteomics)
might also benefit from this approach.
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Additional file

Additional file 1: R package BMIRN that performs miRNA
normalization described in this paper.

Additional file 2: Instruction manual for the R package BMIRN.

Abbreviations

miRNA: MicroRNA; DL: Detection limit; LVS: Least-variant set; BHM: Bayesian
hierarchical modeling; DE: Differentially expressed; AUC: Area under the
receiver operating characteristic curve; VSN: Variance stabilization
normalization.

Competing interest
The authors declare that they have no competing interests.

Authors’ contributions

JK conceived the study, implemented the Bayesian model, and drafted the
manuscript. EX participated in the design of the study, and provided
biological insights to the problems at hand. All authors have approved the
final manuscript.

Acknowledgements
The authors would like to thank Dr. Chunhua Qin for his valuable insights
and comments and Dr. Vladimir Svetnik for his kind support.

Author details

'Department of Biometrics Research, Merck Research Laboratories, Rahway,
NJ 07065, USA. “Department of Safety Assessment, Merck Research
Laboratories, West Point, PA 19486, USA. *Present Address: Discovery
Informatics, Infinity Pharmaceuticals, 780 Memorial Drive, Cambridge, MA
02139, USA.

Received: 22 August 2012 Accepted: 23 July 2013
Published: 26 July 2013

References

1. Carthew RW, Sontheimer EJ: Origins and mechanisms of miRNAs and
siRNAs. Cell 2009, 136(4):642-655.

2. Lewis BP, Burge CB, Bartel DP: Conserved seed pairing, often flanked by
adenosines, indicates that thousands of human genes are microRNA
targets. Cell 2005, 120(1):15-20.

3. Friedman RC, Farh KKH, Burge CB, Bartel DP: Most mammalian mRNAs are
conserved targets of microRNAs. Genome Res 2009, 19(1):92-105.

4. Sheng Y, Engstrom PG, Lenhard B: Mammalian microRNA prediction
through a support vector machine model of sequence and structure.
PLoS One 2007, 2(9):e946.

5. Nimmo RA, Slack FJ: An elegant miRror: microRNAs in stem cells,
developmental timing and cancer. Chromosoma 2009, 118(4):405-418.

6. RenJ, Jin P, Wang E, Marincola FM, Stroncek DF: MicroRNA and gene
expression patterns in the differentiation of human embryonic stem
cells. J Trans! Med 2009, 7(20):20.

7. Landi MT, Zhao Y, Rotunno M, Koshiol J, Liu H, Bergen AW, Rubagotti M,
Goldstein AM, Linnoila I, Marincola FM, et al: MicroRNA expression
differentiates histology and predicts survival of lung cancer. Clin cancer
res: an official J Am Assoc Cancer Res 2010, 16(2):430-441.

8. RaoY, Lee Y, Jarjoura D, Ruppert AS, Liu CG, Hsu JC, Hagan JP: A
comparison of normalization techniques for microRNA microarray data.
Stat Appl Genet Mol Biol 2008, 7(1):Article22.

9. Oshlack A, Emslie D, Corcoran LM, Smyth GK: Normalization of boutique
two-color microarrays with a high proportion of differentially expressed
probes. Genome Biol 2007, 8(1):R2.

10.  Calin GA, Ferracin M, Cimmino A, Di Leva G, Shimizu M, Wojcik SE, lorio MV,
Visone R, Sever NI, Fabbri M, et al: A MicroRNA signature associated with
prognosis and progression in chronic lymphocytic leukemia. N Engl J
Med 2005, 353(17):1793-1801.

11. Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F, Visone R, lorio
M, Roldo C, Ferracin M, et al: A microRNA expression signature of human
solid tumors defines cancer gene targets. Proc Natl Acad Sci USA 2006,
103(7):2257-2261.


http://www.biomedcentral.com/content/supplementary/1471-2164-14-507-S1.rar
http://www.biomedcentral.com/content/supplementary/1471-2164-14-507-S2.pdf

Kang and Xu BMC Genomics 2013, 14:507
http://www.biomedcentral.com/1471-2164/14/507

12. Yanaihara N, Caplen N, Bowman E, Seike M, Kumamoto K, Yi M, Stephens
RM, Okamoto A, Yokota J, Tanaka T, et al: Unique microRNA molecular
profiles in lung cancer diagnosis and prognosis. Cancer Cell 2006,
9(3):189-198.

13. Schetter A, Leung SY, Sohn JJ, Zanetti KA, Bowman ED, Yanaihara N, Yuen
ST, Chan TL, Kwong DL, Au GK, et al: MicroRNA expression profiles
associated with prognosis and therapeutic outcome in colon
adenocarcinoma. JAMA 2008, 299(4):425-436.

14.  Little RJA, Rubin DB: Statistical Analysis with Missing Data. John Wiley &
Sons; 1987.

15. Suo C, Salim A, Chia KS, Pawitan Y, Calza S: Modified least-variant set
normalization for miRNA microarray. RNA 2010, 16(12):2293-2303.

16. Zhao Y, Wang E, Liu H, Rotunno M, Koshiol J, Marincola F, Landi M,
McShane L: Evaluation of normalization methods for two-channel
microRNA microarrays. J Transl Med 2010, 8(69).

17. Hua YJ, Tu K, Tang ZY, Li YX, Xiao HS: Comparison of normalization
methods with microRNA microarray. Genomics 2008, 92(2):122-128.

18.  Bolstad B: Probe Level Quantile Normalization of High Density Oligonucleotide
Array Data; 2001 (http://bmbolstad.com/stuff/qnorm.pdf).

19. Kerr MK, Martin M, Churchill GA: Analysis of variance for gene expression
microarray data. J comput biol: a J comput mol cell biol 2000, 7(6):819-837.

20. Hein AM, Richardson S, Causton HC, Ambler GK, Green PJ: BGX: a fully
Bayesian integrated approach to the analysis of Affymetrix GeneChip
data. Biostatistics 2005, 6(3):349-373.

21, Xu S: Theoretical basis of the Beavis effect. Genetics 2003, 165(4):2259-2268.

22, Zollner S, Pritchard JK: Overcoming the winner’s curse: estimating
penetrance parameters from case-control data. Am J Hum Genet 2007,
80(4):605-615.

23. Plummer M: JAGS: A Program for Analysis of Bayesian Graphical Models
Using Gibbs Sampling. In Proceedings of the 3rd International Workshop on
Distributed Statistical Computing (DSC 2003. Vienna, Austria: ISSN; 2003.
1609-395X.

24. Broet P, Lewin A, Richardson S, Dalmasso C, Magdelenat H: A mixture
model-based strategy for selecting sets of genes in multiclass response
microarray experiments. Bioinformatics 2004, 20(16):2562-2571.

25.  Huber W, von Heydebreck A, Sultmann H, Poustka A, Vingron M: Variance
stabilization applied to microarray data calibration and to the quantification
of differential expression. Bioinformatics 2002, 18 Suppl 1(suppl 1):.596-5104.

26.  Hornung RW, Reed L: Estimation of average concentration in the presence of
nondetectable values. Appl Occup Environ Hyg 1990, 5(1)46-51.

27. Bleavins M, Carini C, Jurima-Romet M, Rahbari R: Biomarkers in Drug
Development: A Handbook of Practice, Application and Strategy.
Wiley-Blackwell; 2010.

28. Smyth GK: Linear models and empirical bayes methods for assessing
differential expression in microarray experiments. Stat Appl Genet Mol Biol
2004, 3:Article3.

29.  Ach RA, Wang H, Curry B: Measuring microRNAs: comparisons of
microarray and quantitative PCR measurements, and of different total
RNA prep methods. BMC Biotechnol 2008, 8:69.

30. Lee EJ, Baek M, Gusev Y, Brackett DJ, Nuovo GJ, Schmittgen TD: Systematic
evaluation of microRNA processing patterns in tissues, cell lines, and
tumors. RNA 2008, 14(1):35-42.

doi:10.1186/1471-2164-14-507

Cite this article as: Kang and Xu: An integrated hierarchical Bayesian
approach to normalizing left-censored microRNA microarray data. BMC
Genomics 2013 14:507.

Page 9 of 9

Submit your next manuscript to BioMed Central
and take full advantage of:

¢ Convenient online submission

¢ Thorough peer review

* No space constraints or color figure charges

¢ Immediate publication on acceptance

¢ Inclusion in PubMed, CAS, Scopus and Google Scholar

* Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

( BiolVied Central



http://bmbolstad.com/stuff/qnorm.pdf

	Abstract
	Background
	Results
	Conclusion

	Background
	Methods
	Handling measurements below level of detection
	Winner’s curse correction
	Additional prior specification
	MCMC implementation
	Simulation studies
	Study objective
	Simulation setup
	Normalization methods compared
	Missing data imputation
	Performance evaluation

	Real data analysis
	Tissue microarray data
	Tissue qRT-PCR data
	Normalization methods compared
	Performance evaluation of normalization methods


	Results and discussions
	Performance evaluation of BHM normalization by simulation studies
	Performance evaluation of BHM normalization by the analysis of tissue profiling data

	Conclusion
	Additional file
	Abbreviations
	Competing interest
	Authors’ contributions
	Acknowledgements
	Author details
	References

