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Abstract

Background: Epithelial ovarian cancer (EOC) is one of the most lethal gynecological cancers; the majority of EOC is
the serous histotype and diagnosed at advanced stage. IL6 is the cytokine that has been found most frequently
associated with carcinogenesis and progression of serous EOCs. IL6 is a growth-promoting and anti-apoptotic
factor, and high plasma levels of IL6 in advanced stage EOCs correlate with poor prognosis. The objective of the
present study was to identify IL6 co-regulated genes and gene network/s in EOCs.

Results: We applied bioinformatics tools on 7 publicly available data sets containing the gene expression profiles of
1262 EOC samples. By Pearson's correlation analysis we identified, in EOCs, an IL6-correlated gene signature
containing 40 genes mainly associated with proliferation. 33 of 40 genes were also significantly correlated in low
malignant potential (LMP) EOCs, while 7 genes, named C5ART, FPR1, GOS2, IL8, KLF2, MMP19, and THBD were
IL6-correlated only in advanced stage EOCs. Among the 40-gene signature EGFR ligand HBEGF, genes of the EGR
family members and genes encoding for negative feedback regulators of growth factor signaling were included.
The results obtained by Gene Set Enrichment and Ingenuity Pathway Analyses enabled the identification,
respectively, of gene sets associated with ‘early growth factor response’ for the 40-gene signature, and a biological
network related to ‘thrombosis and cardiovascular disease’ for the 7-gene signature. In agreement with these
results, selected genes from the identified signatures were validated in vitro by real time RT-PCR in serous EOC cell
lines upon stimulation with EGF.

Conclusions: Serous EOCs, independently of their aggressiveness, co-regulate IL6 expression together with that of
genes associated to growth factor signaling, arguing for the hypothesis that common mechanism/s driven by EGFR
ligands characterize both advanced-stage and LMP EOCs. Only advanced-stage EOCs appeared to be characterized
by a scenario that involves genes which are so far associated with thrombosis and cardiovascular disease, thus
suggesting that this pathway is implicated in the growth and/or spread of more aggressive tumors. We have
discovered novel activated signaling pathways that drive the expression of IL6 and of co-regulated genes and are
possibly involved in the pathobiology of EOCs.

Keywords: Epithelial ovarian cancer, IL6, Microarrays, Bioinformatics, Growth factor

* Correspondence: silvana.canevari@istitutotumori.mi.it; antonella.tomassetti@
istitutotumori.mi.it

'Unit of Molecular Therapies, Department of Experimental Oncology and
Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan,
Italy

Full list of author information is available at the end of the article

- © 2013 Pinciroli et al,; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
( B.oMed Central Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.


mailto:silvana.canevari@istitutotumori.mi.it
mailto:antonella.tomassetti@istitutotumori.mi.it
mailto:antonella.tomassetti@istitutotumori.mi.it
http://creativecommons.org/licenses/by/2.0

Pinciroli et al. BMC Genomics 2013, 14:508
http://www.biomedcentral.com/1471-2164/14/508

Background

Epithelial ovarian cancer (EOC) is the second most com-
mon and the most deadly malignancy of the female re-
productive tract. Serous, endometrioid, clear-cell, and
mucinous ovarian cancers are the four most common
histotypes [1]. The majority of EOCs are diagnosed at
stage III and IV when the tumor cells are spread in the
peritoneum along with the presence of malignant ascites.
The serous histotype accounts for about 80% of EOCs,
and the majority show an inactivating mutation of the
tumor suppressor gene TP53. Low malignant potential
(LMP) serous EOCs are thought to arise by the trans-
formation of tumors of borderline malignancy, and acti-
vating mutations in members of the RAS pathway
(KRAS, BRAF, and ErbB2) are found in the majority of
these tumors [2]. LMP EOCs show a relatively high
growth capacity, are usually not invasive but resistant to
conventional chemotherapy [1].

A number of studies suggest that factors related to the
inflammation of the ovarian surface epithelium (OSE)
such as ovulation, endometriosis, and pelvic inflamma-
tory diseases are associated with an increased risk for
EOC [3]. The most important hypothesis regarding EOC
carcinogenesis is the ovulation theory, which relates
the risk of ovarian cancer to incessant ovulation. Re-
cently, it has been hypothesized that high grade ser-
ous, endometrioid and clear cell ovarian cancers arise
from the fallopian tube epithelium and share a common
pathogenic mechanism, i.e., iron-induced oxidative stress
derived from retrograde menstruation [4]. Both the inces-
sant ovulation and oxido-reductive fallopian tube epithe-
lial damage hypotheses have provided evidence that
inflammatory responses induced under physiological con-
ditions may foster the development of EOC. In accord-
ance with these hypotheses of ovarian tumorigenesis, a
number of cyto/chemokines has been found at detectable
levels in ascites from EOC patients [5]. Among those mol-
ecules, IL6 is the cytokine that has been most frequently
associated with EOC carcinogenesis and progression [6].
Preclinical evidence has shown that IL6 enhances tumor
cell survival and increases resistance to chemotherapy via
JAK/STAT signaling in tumor cells [7] and IL6 receptor
alpha trans-signaling on tumor endothelial cells [8,9]. In
addition, IL6 has pro-angiogenic properties [7], regulating
immune cell infiltration, a stromal reaction, and the
tumor-promoting actions of Th17 lymphocytes [10]. In
patients with advanced disease, high plasma levels of IL6
correlate with poor prognosis [11] and elevated levels
are also present in malignant ascites [12]. Treatment
of EOC cells with the anti-IL6 antibody (Ab) siltuximab
has been shown to reduce constitutive cyto/chemokine
production and inhibit IL6 signaling, tumor growth,
the tumor-associated macrophage infiltrate, and angio-
genesis in IL6—producing intraperitoneal ovarian cancer
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xenografts [13]. IL6 stimulates inflammatory cytokine pro-
duction, tumor angiogenesis and the tumor macrophage
infiltrate in ovarian cancer and these actions can also be
inhibited by a neutralizing anti-IL6 Ab in clinical studies
[14]. However, further knowledge on IL6-expressing EOCs
is needed to select patients who are possibly responsive to
[L6-dependent therapies.

We have recently found that IL6 can be co-expressed
together with plasminogen activator inhibitor (PAI)-1,
encoded by SERPINEL, in a subset of advanced stage
serous EOCs due to the activation of the ligand-
dependent EGFR/NFKB signaling cascade [15]. Ex vivo,
using 23 EOCs from advanced-stage patients with malig-
nant ascites at surgery, we observed co-expression of
EGEFR, IL6, and PAI-1 in 57% of primary tumors and
concomitant expression of both IL6 and PAI-1 in the
corresponding ascites. Computational analysis on four
publicly available data sets of EOC gene expression
showed a correlation between the expression of the IL6
and SERPINE1 genes in advanced stage EOC patients,
which in one case was associated with shorter progression-
free survival [15]. These results further highlight the in-
volvement of IL6 in the progression of EOC.

Herein, to give further insight in the biology of IL6-
expressing serous EOC we utilized a bioinformatics ap-
proach, described in the flowchart of Figure 1, to identify
IL6 co-regulated genes and signaling pathway/s in which
they are involved. First, we identified a list of genes
representing a molecular signature for both advanced-
stage and LMP serous EOC which recapitulate the so-
called ‘early growth factor response’. We also identified
an IL6-correlated signature of seven genes involved in
vascular thrombosis specific for advanced-stage serous
EOCs.

Results

IL6 expression significantly correlates with a defined gene
set in advanced stage serous EOCs

Pearson’s correlation analysis of seven data sets
containing the expression profiles of 1262 samples from
serous EOCs (Table 1) was performed to identify genes
whose expression was significantly correlated with IL6
expression in each data set. Correlation scores of each
gene pair were computed using the R program essen-
tially as described [16-18]. For genes represented by
multiple probes in the same array format, the probe with
the highest correlation to IL6 in the data set with the
highest number of patients was chosen and considered
for the other data sets when present (Additional file 1a).
This analysis allowed the identification of genes whose
expression positively correlated with IL6 along the seven
data sets with a p-value <0.05 and a Pearson’s correl-
ation coefficient (r) exceeding 0.4 (Additional file 1b). A
further analysis across the seven data sets yielded 40
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Figure 1 Flowchart describing the analysis workflow.

concordant correlated genes in at least four data sets
(Additional file 1b and Figure 2). Of note, 38 of 40 genes
were correlated in data set I (204 samples) obtained with
an Affymetrix platform, and in data set VII (110 samples)
obtained with an Agilent platform. Among the identified
IL6-correlated genes CXCL2, HBEGF, SERPINE1, DUSP1,
ZFP36, and IER3 were common to all data sets. The cor-
relation between IL6 and HBEGEF, an EGEFR ligand, and
SERPINEL, encoding PAI-1, is in agreement with our
previously published results on co-expression of IL6
and PAI-1 in high grade EOCs due to EGFR activation
[15]. The majority of genes are associated to the biological
process ‘proliferation’ (50%) (Table 2). Among the genes
associated with proliferation, there were a number of
growth factor early response genes (EGR1, EGR3, NR4A1,

FOSB, IER3). The IL6-correlated signature also included
genes associated with ‘inflammation’ (20%), and the
remaining genes were associated with ‘cell cycle and apop-
tosis, ‘metabolism’” and ‘migration and invasion’.

Thus, we identified a gene signature of IL6 correlated
genes in serous EOC containing mainly proliferation-
associated genes.

Advanced stage EOC-specific IL6-correlated gene
signature functionally associated with control of cell
morphology and cardiovascular disease

Next, to determine whether the identified gene signature
was specific for advanced stage EOC or could also be as-
sociated with LMP EOC, Pearson’s correlation analysis to
IL6 was applied to gene expression data of LMP EOCs

Table 1 List of EOC data sets of gene expression analyzed in the present study

Data Platform Array No. of N. of serous EOC patients

set () probes Advanced stage LMP
1119 Affymetrix HG-U133 Plus 2 54675 204 18
1 [20] Affymetrix HG-U133 Plus 2 54675 60 30
211 Affymetrix HG-U133A 22283 132 0
IV [22] Affymetrix HG-U133A 22283 40 19
V [23] Affymetrix HG-U133A 22283 118 0
VI [24] Affymetrix HT_HG-U133A 22277 598 0
VIl [25] Agilent G4112A 41000 110 0
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Figure 2 Heatmap of IL6-correlated genes. The heatmap of Pearson’s correlation coefficient (r) of the genes with IL6 was drawn by using
R programming language. The r scores are represented in grayscale as reported in the color key. IL6 self-correlation was artificially set to the
maximum score. Correlation score below 0.4 were considered not significant (NS). Genes not spotted on the array were defined NA

(not available). The number of data sets in which the gene resulted significantly correlated with IL6 is reported on the right.

reported in data sets I, II, and IV (see Table 1). The density
plot of IL6 intensities showed a similar trend of expression
in advanced stage and LMP EOCs (Additional file 2). The
data obtained comparing advanced stage EOCs and LMP
EOCs were similar in the three data sets, and were more
reliable (number of cases, genes identified, significance
level) in data set I. Among the above identified advanced-
stage EOCs IL6-correlated genes, 33 were also signifi-
cantly correlated in LMP EOCs, while 7 genes (C5ARI,
FPR1, GOS2, IL8, KLF2, MMP19, and THBD) were spe-
cific for advanced-stages only (Additional file 3). Among
these genes, IL8 has already been associated with aggres-
siveness and progression of malignant EOC [27], while the
others have not previously been associated with EOC biol-
ogy and clinical outcome.

To provide insight into the possible biological signifi-
cance of the 40-gene signature, functional analysis of
positively correlated genes (41, including IL6) was car-
ried out by Ingenuity Pathway Analysis software (IPA)
[28]. The top two functions (N1 and N2), associated

with the highest score network, were ‘Cell death, cellular
function and maintenance, hematological system devel-
opment and function’ and ‘Cell death, cellular develop-
ment, cellular growth and proliferation’ (Figure 3 and
Additional file 4). When IPA analysis was performed on
the seven-gene signature specific for advanced stage
EOCs, the top function, associated with the highest score
network, was ‘Cell morphology, cell function, cardiovascu-
lar disease’. As shown in Figure 3 and listed in Additional
file 4, all seven genes are included in this network (N3) to-
gether with genes already known to have a role in the pro-
gression of EOCs such as VEGE, the receptor tyrosine
kinases EGFR and HER2, and the PI3K complex [1]. In
addition to the input genes, it is noteworthy that IL6 is
not present in the identified networks (Additional file 4),
but when added manually to each network establishes a
connection with some of the correlated genes (Figure 3).

The NFkB complex was included in networks N1 and
N3 (Figure 3), highlighting its possible pivotal role in
EOC progression.
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Gene symbol Name Biological function®
IL6 interleukin-6 Inflammation

CXCL2 chemokine (C-X-C moitif) ligand 2 Inflammation

HBEGF heparin-binding epidermal growth factor Proliferation
SERPINET plasminogen activator inhibitor 1 Motility/Adhesion
DUSP1 dual specificity protein phosphatase 1 Proliferation

ZFP36 tristetraprolin, zinc finger protein ZFP-36 Proliferation

IER3 immediate early response 3 Proliferation

FOSB AP-1, fosB Proliferation

NR4A1 TR3 orphan receptor, growth factor-inducible nuclear protein N10 Proliferation

SOCS3 suppressor of cytokine signaling 3, cytokine-inducible SH2 protein 3 Inflammation

EGR2 early growth response protein 2 Proliferation

EGR3 early growth response protein 3 Proliferation

SLC2A3 solute carrier family 2 (facilitated glucose transporter), member 3 Metabolism

MMP19 matrix metalloproteinase-19 Motility/Adhesion
KLF4 Krueppel-like factor 4 Proliferation

ATF3 cyclic AMP-dependent transcription factor ATF-3 Proliferation

RGS2 cell growth-inhibiting protein 31, regulator of G-protein signaling 2 Proliferation

EGR1 early growth response protein 1 Proliferation

SOD2 manganese-containing superoxide dismutase, mitocondrial Metabolism

CYR61 cysteine-rich, angiogenic inducer, 61 , IGF-binding protein 10 Metabolism

IL8 interleukin 8 Inflammation

DUSP5 dual specificity protein phosphatase 5 Proliferation
GADD458B growth arrest and DNA damage-inducible protein GADD45 beta Cell cycle control/Apoptosis
TNFAIP3 tumor necrosis factor, alpha-induced protein 3 Inflammation

FPR1 formyl peptide receptor 1, N-formylpeptide chemoattractant receptor Inflammation

CCL3 chemokine (C-C motif) ligand 3 Inflammation

GFPT2 hexosephosphate aminotransferase 2 Metabolism

NAMPT nicotinamide phosphoribosyltransferase, pre-B-cell colony-enhancing factor 1 Metabolism

NR4A3 Mitogen-induced nuclear orphan receptor, Nuclear hormone receptor NOR-1 Proliferation

GEM RAS-like protein KIR, GTP-binding mitogen-induced T-cell protein Proliferation

FOS AP-1, c-fos Proliferation
PPP1R15A growth arrest and DNA-damage-inducible 34 Cell cycle control/Apoptosis
CEBPD CCAAT/enhancer-binding protein delta, Nuclear factor NF-IL6-beta Inflammation

THBD thrombomodulin Motility/Adhesion
KLF6 Krueppel-like factor 6 Proliferation

RHOB rho-related GTP-binding protein RhoB Proliferation

KLF2 Krueppel-like factor 2 Proliferation

IL1B interleukin 1, beta Inflammation

GO0S2 GO/G1 switch regulatory protein 2 Cell cycle control/Apoptosis
C5AR1 complement component 5 receptor 1 Motility/Adhesion
MCL1 bcl-2-like protein 3 Cell cycle control/Apoptosis

@ Biological functions were defined using GeneALaCart tool [26].
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Figure 3 Graphical representation of the top score networks identified by IPA. Molecular interactions between IL6-correlated genes in at
least four data sets are reported. The top two networks (N1 and N2) were identified by loading all IL6-correlated genes in Fig. 1. Network 3 (N3)
was identified by loading the 7 IL6-correlated genes specific for advanced stage EOCs. IL6 (highlighted in blue) was manually added to each
network. IL6-correlated genes are highlighted in red and the intensity indicates the number of data sets where the gene is correlated. The name
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It thus appears that two signatures are related to IL6
in EOCs: a 33-gene signature common to advanced
stage and LMP EOCs and associated to control of cell
growth and death, while the 7-gene signature, associated
only to advanced-stage EOCs likely presenting NFkB
transcriptional activation, might be a determinant of
tumor aggressiveness, and may be associated with a
pathway regulating vascular thrombosis.

An IL6-correlated gene set recapitulates the early growth
factor response

To give further insight in the biology of EOCs express-
ing IL6, a GSEA [29] analysis was performed for each
data set listed in Table 1. By the “use a gene (IL6) as

phenotype” analysis, GSEA first ranks the genes
according to their correlation to IL6. It then determines
whether a priori defined set of genes, in this instance
those belonging to the C2 curated catalogue of func-
tional gene sets, are randomly distributed throughout
the gene list or primarily found at the top or bottom.
Common significant gene sets obtained from GSEA ana-
lysis of the two largest data sets (I and VI) were selected
and analyzed in the other datasets. This yielded 20 sig-
nificantly enriched gene sets for all datasets. Normalized
enrichment scores and FDR values in the different
datasets are listed in Table 3. A literature search was
conducted to identify signaling pathways previously im-
plicated in the progression of EOCs and/or in epithelial—
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Table 3 Significant IL6 correlated gene sets identified by GSEA analysis.

| Il 1] v Vv Vi Vil
GENESETS NES FDR NES FDR NES FDR NES FDR NES FDR NES FDR NES FDR

g-val g-val g-val g-val g-val g-val g-val
AMIT_EGF_RESPONSE_120_HELA 2,31 0,00 1,99 0,02 206 000 192 004 206 000 226 000 1,78 0,04
AMIT_EGF_RESPONSE_60_HELA 2,35 0,00 1,96 0,02 208 000 215 0,01 221 000 231 000 1,89 0,03
BILD_HRAS_ONCOGENIC_SIGNATURE 2,53 0,00 204 001 225 000 192 004 236 000 251 000 217 0,02
DAUER_STAT3_TARGETS_UP 228 000 206 001 218 000 210 002 218 000 236 000 202 001
DAZARD_RESPONSE_TO_UV_NHEK_UP 234 000 206 001 222 000 195 003 250 000 240 000 192 002
DIRMEIER_LMP1_RESPONSE_EARLY 239 000 229 000 236 000 197 003 224 000 230 000 212 002
GERY_CEBP_TARGETS 238 000 192 003 235 000 188 004 241 000 25 000 208 001
GRAHAM_CML_QUIESCENT_VS_NORMAL_DIVIDING_UP 243 0,00 205 001 221 000 198 003 224 000 247 000 203 001
HALMOS_CEBPA_TARGETS_UP 235 000 191 003 214 000 189 004 205 000 234 000 192 002
KIM_WTI1_TARGETS_8HR_UP 228 000 188 004 223 000 200 003 226 000 225 000 19 002
KIM_WT1_TARGETS_UP 2,38 0,00 1,93 003 226 000 193 004 240 000 251 0,00 2,04 0,01
MARZEC_IL2_SIGNALING_UP 234 000 216 001 203 001 160 015 188 002 228 000 203 001
NAGASHIMA_NRG1_SIGNALING_UP 2,47 0,00 2,04 0,01 254 0,00 221 001 254 000 254 000 215 0,02
OSWALD_HEMATOPOIETIC_STEM_CELL_IN_COLLAGEN_ 265 000 220 000 255 000 210 002 252 000 277 000 232 000
OSWALD_HEMATOPOIETIC_STEM_CELL_IN_COLLAGEN_ 265 000 220 000 255 000 210 002 252 000 277 000 232 001
PICCALUGA_ANGIOIMMUNOBLASTIC_LYMPHOMA_DN 247 000 1,94 003 212 000 195 003 228 000 225 000 200 0,02
SENESE_HDACT_AND_HDAC2_TARGETS_UP 241 000 188 004 204 001 200 003 207 000 262 000 216 002
SMIRNOV_CIRCULATING_ENDOTHELIOCYTES_IN_CANCE 230 0,00 203 001 245 000 213 002 226 000 243 000 19 002
THEILGAARD_NEUTROPHIL_AT_SKIN_WOUND_UP 245 000 202 001 224 000 196 003 216 000 226 000 191 002
VART_KSHV_INFECTION_ANGIOGENIC_MARKERS_UP 236 000 193 003 220 000 178 007 219 000 263 000 199 002
ZHANG_RESPONSE_TO_IKK_INHIBITOR_AND_TNF_UP 227 000 2,13 001 222 000 187 004 221 000 237 000 19 002

NES normalized enrichment score, FDR false discovery rate.

derived malignancies. Among the most significant gene
sets, the BILD_KRAS_ONCOGENIC_SIGNATURE [21]
which includes genes whose expression is induced by
the activation of H-RAS oncogene, was originally
derived from the herein named data set III and can
be considered a positive control. Three additional
gene sets, AMIT_EGF_RESPONSE_60_HELA, AMIT_
EGF_RESPONSE_120_HELA [30] and NAGASHIMA_
NRGI1_SIGNALING_UP [31], were considered possible
candidates of signaling pathways associated with EOC,
and are associated with ‘growth factor response’. These
gene sets comprise early response genes, i.e. the EGR
family members, and the negative feedback regulators
of the growth factor signaling, ie. ZFP36 and
KLF2. The fifth selected gene set, named KIM_
WT1_TARGET_UP in some ways also recapitulates
the growth factor response, since among WT1 target
genes the EGF family ligands EREG, AREG and HBEGF
are included [32].

Furthermore, among the WT1 target genes SERPINE1
was also identified in the same study. Enrichment plots
related to the above described gene-sets in data set I are
shown in Figure 4. It is of note that IL6 is not included

in the selected gene sets (Additional file 5) as well as other
genes that are included in network 3 identified by analysis
using IPA. Based on the results obtained by the above-
described computational analysis and on our recent dem-
onstration that IL6 is up-modulated in EOC cells upon
EGF stimulation in time-dependent manner [15], in vitro
validation of 12 genes selected from the IL6-correlated
gene sets was performed with real time RT-PCR using total
RNA from EGF-stimulated serous EOC cell lines (Figure 5).
The IL6 was up-modulated in all EOC cells analyzed upon
EGF stimulation. Concordantly, 75%, 58%, and 75% of the
gene transcripts were up-modulated in IGROV1, OAW42,
and SKOV3 cells, respectively (Figure 5). Among the
correlated genes common to 7 data sets (see Figure 2),
CXCL2, HBEGE, SERPINE1 and DUSP1 were increased in
all three EOC cell lines analyzed. Additionally, NR4A1, a
correlated gene in 6 data sets, was up-modulated upon
EGF stimulation in all EOC cells. THBD and KLF2 tran-
scripts, associated with ’Cardiovascular disease’ by IPA
analysis, were up-modulated in 2 of 3 EGEF-stimulated
EOC cells. In contrast, the MMP19 transcript, whose rele-
vant protein is associated with invasion and tumor pro-
gression [33], was not up-modulated in EGF-stimulated
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Figure 4 GSEA enrichment plots for the five gene sets enriched in EOCs. On the top of each plot, the name of the gene set is reported. For

each gene set, the enrichment plot was extracted from the GSEA output results and each gene set showed significant enrichment in IL6 expressing
advanced stage EOC (FDR Q value = 0.0; Fig. 3). Genes with higher expression in IL6-positive tumors have higher enrichment scores, and are therefore
plotted on the left side of the graph, whereas those with lower expression in IL6-positive tumors have lower enrichment scores and are plotted on the
right side of the graph. The bottom portion of the plot shows the value of the ranking metric moving down the list of ranked genes. A positive ranking

metric indicates that a gene is correlated with the IL6 positive phenotype. The results from dataset 1 are reported.

EOC cells. Interestingly, in non-transformed ovary cells,
named IOSE- HTERT64 [34], although IL6 was slightly
up-modulated by EGF stimulation, only 25% of the tran-
scripts analyzed were up-modulated.

These data indicate that ligand-dependent EGFR acti-
vation in serous EOC cells induces the transcription of
genes correlated with IL6 expression.

Discussion

Microarray technology has developed very rapidly, and it
has become relatively easy to analyze the expression
levels of thousands of genes within cancer cells. How-
ever, genes do not act in isolation, but each acts in com-
plexes and builds networks and activated pathways that
ultimately give rise to a specific cell phenotype. Thus,

IOSE HTERT64

1003

IGROV1

SKOV3
*

Relative mRNA expression (Log scale)
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Figure 5 In vitro validation of selected IL6 correlated genes. Real time RT-PCR on selected IL6-correlated genes was performed using total
RNA of starved EOC cell lines untreated (white bars) or treated (grey bars) for 4 hr (IGROV1, OAWA42 and IOSE 64 hTERT) or 8 hr (SKOV3) with EGF
(20 ng/ml). The number of data sets in which the gene resulted significantly correlated with IL6 is reported on the bottom. Data are mean values
(+ SD) presented as relative expression normalized for GAPDH mRNA levels. Asterisks indicate significant positive variations (Student's t test).
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the search of co-regulated genes applying bioinformatics
approaches may spread light on the biology of a tumor
and its development. Previously, by applying this kind of
‘in silico’ approach on gene expression profiles of ovarian
and thyroid carcinomas [16,17] and melanomas [18], we
have been able to identify novel signaling pathways acti-
vated in those tumors. The present study, by applying
similar bioinformatics tools, highlights possible novel
signaling pathways activated in IL6-expressing EOCs.
Among those, growth factor-dependent signaling was
also experimentally validated in vitro in selected cellular
EOC models.

First of all, Pearson’s correlation analysis allowed the
identification of genes co-regulated with IL6 in aggres-
sive. EOC providing evidence that co-regulated genes
can encode proteins involved in common signaling path-
ways. To identify IL6-coregulated genes we adopted
thresholds which allowed to obtain a good balance
among the statistical significance, the strength of the
correlation and the biological reproducibility. Further-
more, we performed the analysis on 7 different data sets,
containing the gene expression profiles of more than
1200 EOC samples, obtained on different array plat-
forms, to increase the robustness on the bioinformatics
results. We found a gene signature common to both ad-
vanced stage and LMP serous EOCs, and another 7-gene
signature specific for advanced stage EOCs. The integra-
tion of the results obtained by IPA and GSEA, allowed
us to determine that all EOCs, independently of their ag-
gressiveness, co-regulate IL6 together with genes associ-
ated with cell growth and early growth factor response,
arguing for the hypothesis of common mechanism/s of
transformation. Only advanced-stage EOCs appeared to
be characterized by a scenario that involves genes such
as FPR1, KLF2 and THBD, to date associated with
thrombosis and cardiovascular disease, thus suggesting
that this pathway contributes to the growth and/or the
spread of this type of tumor.

Our data indicate the existence of a biological inter-
action between IL6 expression and that of the co-
regulated genes as resulted upon IPA and GSEA analyses.
On the other hand, since knockdown of IL-6 by specific
siRNA did not affect the amount of the transcripts ana-
lyzed (data not shown), the regulation of the expression of
the identified genes appeared not directly dependent to
that of IL6. Although the IL6 gene was not associated with
the networks identified by IPA or with the gene sets se-
lected by GSEA, these results are in agreement with our
previous observations in a subset of advanced stage EOC
where ligand-dependent EGFR activation induced NFkB-
dependent transcription of IL6 together with PAI-1,
encoded by the SERPINE1 gene [15]. NFkB also emerged
to be a possible transcriptional regulator of 13 out of 40
genes according to the reported informations [35], data
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which might further indicate that a growth factor-
dependent NFkB signaling is activated in a subset of EOC.
It is noteworthy that IL6 and 19 of the 40 correlated genes
were found up-modulated upon 2 hr serum stimulation of
quiescent keratinocytes [36]. We can therefore argue that
the activation of growth factor activated signaling can
either directly or indirectly induce the expression of IL6
and genes which likely play a role in the growth of EOCs.
Furthermore, this growth factor-induced signaling path-
way induces positive regulators of cellular function that
are in turn regulated by negative feedback regulators such
as ZFP36 and KLF2 [30]. The HBEGF gene, encoding for
an EGER ligand, was also highly significantly correlated in
all seven data sets analyzed, indicating the prevalence of
ligand-dependent EGFR activation. The regulation of
growth factor signaling pathways by negative feedback is a
universal mechanism for limiting the duration and inten-
sity of signaling output. While negative feedback is a key
component of normal cellular signaling, its role in cancer
cells is more complex. Indeed, the loss of some negative
feedback regulators might contribute to tumor progres-
sion, but might also be expressed at considerably higher
levels in oncogene-mutant tumors as observed in BRAF-
mutated melanomas [37]. Interestingly, the presence of a
feedback negative mechanism has also been associated
with greater efficacy of growth factor receptor-targeted
therapy [38]. The fact that in EOC cells, with active
EGFR/NFKB/IL6 signaling, EGFR-targeted therapy was
more effective might be due to the up-regulation of feed-
back negative regulators of growth factor signaling [15].
Taken together, these data suggest that the IL6-associated
signature might have a translational impact helping to se-
lect EOC patients who are likely responsive to EGFR-
targeted therapy. Experiments are now ongoing to verify
this hypothesis.

Nuclear expression of the Wilm’s tumor suppressor is
found in OSE cells and in the majority of serous EOCs
[39]. However, the corresponding gene, named WTI1,
has been never associated with IL6 gene expression.
WT1 is required for kidney development, and the report
in which the relevant gene set has been derived particu-
larly emphasized the finding that the genes encoding the
EGF family ligands EREG, AREG, and HBEGF may be
transcriptionally regulated by WT1, orchestrating a fine-
tuning of the EGF signaling pathway [32]. Altogether
these observations support that the EGF signaling path-
way is pivotal in the biology of EOC.

The gene signature common to advanced stage serous
and LMP EOCs is not unexpected if one considers the
theory that LMP EOCs derive from serous low grade
EOC with a borderline morphologic phenotype [40].
However, if this is the case, advanced-stage and LMP
tumors might share common genetic alterations that in-
duce aberrant growth. In addition, in vitro validation
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experiments performed on gene transcripts of non-
transformed surface ovary cells argue for the notion that
the signature associated with a growth factor response is
not expressed and/or EGF-dependent in normal ovary
cells.

The bioinformatics approach also produced hypothesis-
generating results. The association of the 7-gene signature
with advance stage EOCs is novel. At present only
angiogenesis-related genes and proteins, such as VEGF
and its receptor, have a well documented role in EOC
biology and are already well-exploited targets in the ther-
apy of more aggressive EOCs [39]. Our findings open new
questions on the role of genes associated with thrombosis
and cardiovascular disease in the progression of EOCs. It
has been recently hypothesized that low-dose aspirin as
antithrombotic therapy may inhibit progression rather
than the induction of EOC [41]. Indeed, aspirin and se-
lective COX inhibitors could reduce progression not
only by inhibiting prostaglandin production, thus re-
ducing inflammation, but also by negatively modulating
thrombosis-associated genes. Therefore, the inhibition of
both pathways synergistically might be an interesting ap-
proach to block the growth and dissemination of advanced
stage EOCs.

MMP19, a gene of the 7-gene signature specific for
malignant EOCs and encoding the metallo-protease
(MMP) 19 was present in network 3 of IPA analysis, but
was not in any of the gene sets selected by GSEA ana-
lysis. MMPs are key molecules of tumor cell invasion,
including EOCs [42] and, since the majority of samples
were advanced stage EOCs, MMP19 could be a new
player in the dissemination of these tumors and experi-
ments are now ongoing to test its presence and role in
advanced stage EOCs.

Conclusions

By applying a bioinformatics approach we identified
genes co-regulated with IL6 expression in clinically-
relevant subtypes of EOC, their interactions in networks
and pathways as well as their functional association to
growth factor response. IL6 gene expression together
with that of the correlated gene signature could help
identifying EOC patient’s subgroups in which the identi-
fied signaling pathways might be biologically relevant
during the progression of the disease and, in the long
term, might represent new pharmacological targets.

Methods

Computational analysis

Seven EOC data sets, six arrayed on Affymetrix plat-
forms and one on an Agilent platform, were analyzed
(Table 1). Raw data of data sets I, II, and III [19-21] were
downloaded from the NCBI Gene Expression Omnibus
(GEO) repository (IDs GSE9891, GSE12172 and GSE3149,
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respectively) and those of data set VI were downloaded
from the proprietary repository [43]. Data sets IV and V
[23,24] were downloaded from the Duke Institute website
as suggested in the original publications. The raw data
from Affymetrix were normalized through the RMA
method using the Expression Console software developed
by Affymetrix. Upon quality control, probes were anno-
tated with the current annotation files (version 32) for the
proper array format. Normalized data of data set VII [25],
obtained on Agilent platform, were downloaded from
GEO (ID GSE17260).

For each data set, the expression data from serous
histotype cases were selected. Since in all but one (IV),
data sets the percent of cases at early stage (I-1I) ranged
from 0 to 10%, no stage selection was applied; in the
case of data set IV, in which stage I and II represented
50% of case material, to avoid difficulty in comparison
with the others, only advanced stages (III-IV) were se-
lected. According to these selection criteria, we consid-
ered our overall case material to be composed of
advanced stage EOC. Each data set was analyzed separ-
ately and the gene expression intensity of IL6, repre-
sented by a single probe in all the analyzed array
formats, was correlated to the remaining probes across
all EOCs samples in the array. The Pearson’s correlation
coefficients (r), p and FDR values were calculated using
cor, cortest and p.adjust (using the Benjamini &
Hochberg method) functions, respectively, from the
Stats package in R programming language (version
2.12.0). For genes represented by multiple probes in the
same array format, the probe with the highest correl-
ation to IL6 in the data set with the highest number of
patients was chosen and considered for the other data
sets when present. Only genes exhibiting a p value <
0.05 and r > 0.4 in at least 4 of the 7 data sets were con-
sidered significant (Additional file 1). In three studies
(L, II and IV), serous LMP EOCs were also profiled
and their expression data analyzed as described above.
Correlation values to IL6 corresponding only to the
list of genes significant in advanced stage EOC were
further considered (Additional file 1). IPA (Ingenuity
Systems, 2012 release), a software leveraging a manu-
ally reviewed repository of biological interactions and
functional annotations was used to analyze the signal-
ling pathways, cellular location, function and, network
connections of the identified genes [28].

Gene Set Enrichment Analysis (GSEA) [29], was used
to find whether a set of genes defined based on prior
biological knowledge (e.g., those in a common signaling
pathway) shows statistically significant correlations with
IL6. Briefly, for each of the seven EOCs datasets,
through the “use a gene as phenotype” option, GSEA
ranks the genes according to their correlation with IL6.
This ranked lists is then interrogated against gene sets
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contained within the C2 curated gene sets (c2.all.v3.0.
symbols.gmt), a collection of 2516 gene sets that are part
of the Molecular Signatures Database (MSigDB) v3.0
(12, 13). The primary GSEA result is the enrichment
score (ES), which reflects the degree to which a gene set
is overrepresented at either the top or bottom of the
ranked list of genes. To estimate the statistical signifi-
cance of the ES, a nominal p value is calculated by per-
muting the genes 1,000 times. The ES score is
normalized to account for the gene set sizes (NES). Gene
sets associated to a false positive rate (FDR) of less than
0.25 were considered significant.

Reagents

Recombinant human EGF was from Peprotech. Tagman®
Gene Expression Assays were from Applied Biosystems
(Foster City, CA, USA).

Ovarian cancer cell lines

SKOV3, IGROV1 (serous histotype) cell lines were
obtained from ATCC and maintained in RPMI 1640
medium (Sigma Aldrich) with 10% fetal calf serum
(FCS) (Hyclone, Logan, UT) and 2 mmol/L glutamine,
in a 5% CO, humidified atmosphere at 37°C. OAW42
(serous histotype, kindly provided by Dr. A. Ullrich,
Max Planck Institute of Biochemistry, Martinsried,
Germany) cells were cultured in MEM (Sigma Aldrich)
and supplemented as above. IOSE-64 hTERT cells were
maintained and prepared as described [34]. All cell lines
used in this study were subjected to short tandem repeat
(STR) analysis and the profiles were compared to publi-
cally available databases to verify their authenticity. For
the in vitro validation, a time course (up to 24 hr) with
EGF stimulation was performed and IL6 expression was
monitored by real timer RT-PCR in order to assess the
shorter time necessary to detect IL6 up-modulation. Based
on this method IGROV1, OAW42 and IOSE 64 hTERT
were EGF stimulated for 4 hr and and SKOV3 for 8 hr.

RNA Extraction and real time RT-PCR

Real time RT-PCR on selected IL6-correlated genes was
performed on total RNA extracted from EOC cell lines
stimulated for 4 hr (IGROV1 and OAW42 cells) and
8 hr (SKOV3 cells) with EGF (20 ng/ml). Total RNA
from cell lines was extracted using a commercial kit
(Amersham Bioscience-GE Healthcare). RT-PCR ana-
lysis was performed as described [17]. Human GAPD
(GAPDH) Endogenous Control (VIC/MGB Probe)
(RefSeq NM_002046.3) was used as housekeeping
gene for normalization among samples. The Tagman
Assays used for amplification were: Hs00174131_m1 for
IL6; Hs00236966_m1l for CXCL2; Hs00181813 m1l for
HBEGF; Hs01126604_m1 for SERPINE1; Hs00610256_g1
for DUSP1; Hs00185658 m1 for ZFP36; Hs00174674 _ml
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for IER3; Hs00171851_m1 for FOSB; Hs00374230 m1l for
NR4A1; Hs00166165_ml for EGR2; Hs00275699_ for
MMP19; Hs00264920_s1 for THBD; Hs003604396_g1 for
KLF2 (Applied Biosystems). Data analysis was performed
by the Sequence Detection System (SDS) 2.2.2 software
(Applied Biosystems).

Additional files

<
Additional file 1: Table containing: a. Selected probe sets for each
platform; b. IL6-correlated genes in serous high malignant EOCs.

Additional file 2: Figure reporting IL6 distribution (density plot) in
the three data sets containing expression data of both advanced
stage (204, 60 and 40 patients in data set |, Il and IV, respectively)
and LMP (18, 30 and 19 patients in data set |, Il and IV, respectively)
EOCs.

Additional file 3: Table reporting IL6-correlated genes in serous
advanced stage and LMP EOCs from data set .

Additional file 4: Table reporting the networks identified by IPA
software.

Additional file 5: Table reporting IL6-correlated genes included in
each the gene sets selected by GSEA.
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