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condition-dependent transcriptomes in E. coli K12
through accurate full-length transcripts assembling
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Abstract

RNA, Non-coding RNA

Background: Although prokaryotic gene transcription has been studied over decades, many aspects of the process
remain poorly understood. Particularly, recent studies have revealed that transcriptomes in many prokaryotes are far
more complex than previously thought. Genes in an operon are often alternatively and dynamically transcribed
under different conditions, and a large portion of genes and intergenic regions have antisense RNA (asRNA) and
non-coding RNA (ncRNA) transcripts, respectively. Ironically, similar studies have not been conducted in the model
bacterium E coli K12, thus it is unknown whether or not the bacterium possesses similar complex transcriptomes.
Furthermore, although RNA-seq becomes the major method for analyzing the complexity of prokaryotic transcriptome,
it is still a challenging task to accurately assemble full length transcripts using short RNA-seq reads.

Results: To fill these gaps, we have profiled the transcriptomes of E. coli K12 under different culture conditions and
growth phases using a highly specific directional RNA-seq technique that can capture various types of transcripts in the
bacterial cells, combined with a highly accurate and robust algorithm and tool TruHMM (http://biocinfolab.uncc.edu/
TruHmm_package/) for assembling full length transcripts. We found that 46.9 ~ 63.4% of expressed operons were
utilized in their putative alternative forms, 72.23 ~ 89.54% genes had putative asRNA transcripts and 51.37 ~ 72.74%
intergenic regions had putative ncRNA transcripts under different culture conditions and growth phases.

Conclusions: As has been demonstrated in many other prokaryotes, E. coli K12 also has a highly complex and dynamic
transcriptomes under different culture conditions and growth phases. Such complex and dynamic transcriptomes
might play important roles in the physiology of the bacterium. TruHMM is a highly accurate and robust algorithm for
assembling full-length transcripts in prokaryotes using directional RNA-seq short reads.
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Background

In prokaryotes, several adjacent genes on the same strand
of DNA are often co-transcribed as a polycistronic
mRNA, forming a multi-gene transcription unit called an
operon. Furthermore, in addition to protein- and RNA-
coding genes, some parts of a non-coding sequence and
the opposite strand of a coding sequence can also be tran-
scribed under certain conditions, generating non-coding
RNAs (ncRNAs) [1,2] and anti-sense RNAs (asRNAs)
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[3,4], respectively. Accumulating body of evidence suggest
that ncRNAs [1,2] and asRNAs [3,4] may play important
roles in the physiology of prokaryotes. Therefore, a full
understanding of the transcriptomes of prokaryotic
cells is necessary to annotate the functional elements in
their genomes and to reconstruct the gene transcriptional
networks in their cells. However, experimental determin-
ation of operon structures, ncRNAs and asRNAs by trad-
itional molecular biology methods is time-consuming and
labour-intensive. As a result, no single prokaryote has so
far had all of its operon structures, ncRNA and asRNAs
characterized using such methods. For instance, even for
the most well-studied model bacteria E. coli K12 and
B. subtilis, only 3,409 [5] and 736 [6] operons have been
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determined in their genomes using these methods, re-
spectively, after decades of research while not each of their
genes has been assigned to an operon. On the other hand,
although a great progress has been made in computational
prediction of operons [7-14] and small RNA genes [15-18],
the accuracy of these predictors is still low [13,19], and
they can only predict the static longest possible operons
without considering possible alternative operons [7-14].

In the past few years, increasing applications in pro-
karyotes of whole genome directional (strand-specific)
tiling array and directional RNA-seq techniques have
completely changed our way to study and our view of
the architecture and complexity of prokaryotic tran-
scriptomes (for a thorough review, see [20-22]). For ex-
ample, using a combination of whole genome directional
tiling array and RNA-seq techniques, Guell et al. [23]
found that operon utilizations in the reduced parasitic
M. pneumoniae genome were highly variable and dy-
namic, almost half of the 139 identified multi-gene op-
erons showed varying levels of (dynamic) expression in a
staircase-like manner. Under different conditions, large
operons could be transcribed as smaller sub-operons,
resulting in many alternative transcripts, suggesting that
the operon structures in M. Pneumonia were highly
complex and dynamic, a phenomenon that was compar-
able to the alternative splicing in eukaryotes [23]. They
also identified a large number of ncRNAs and asRNAs
expressed under various culture conditions, hence a
much larger portion of the genome was transcribed than
originally anticipated [23]. Similar results were observed
in many other taxonomically distinct species, such as ep-
silon proteobacteria H. pylori [24]; firmicutes B. sutiblis
[25] and B. anthracis [26); cyanobacteria Synechocystis
sp. PCC6803 [27]; euryarchaeota Halobacterium
salinarum NRC-1 [28]; and bacteroidia Porphyromonas
gingivalis [29], to only name a few. However, not all
these surprising observations were noted in some other
studies. For instance, prevalent alternative operon utili-
zations were not reported in many studies in a variety
of prokaryotes, such as B. subtilis [30], Salmonella
entericaserovar Typhi [31], Burkholderia cenocepacia
[32], Caulobacter crescentus [33], Staphylococcus aureus
[34], Vibrio cholera [35], Chlamydia trachomatis [36],
Chlamydia pneumonia [37], Clostridium beijerinckii NC
IMB 8052 [38], Listeria monocytogenes [39], Anabaena sp.
strain PCC 7120 [40], Synechococcuselongatus PCC 7942
[41], and Sulfolobus solfataricus P2 [42]. Contradictory
results have also been reported. For instance, although
Rasmussen et al. [30] did not note alternative operon uti-
lizations in B. subtilis, more recently, Nicolas et al. [25]
observed highly prevalent condition-dependent operon
utilizations using a similar tiling array technique. More-
over, although most of these studies found extensive
asRNA and ncRNA transcriptions, the levels of their
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prevalence could vary quite differently from different stud-
ies even in the same strains. For instance, although Selinger
et al. [43] reported that up to 4,000 E. coli K12 genes
had asRNA transcriptions using directional tilling arrays,
Dornenburg et al. [44] only identified about 1,000 asRNAs
in the same strain under similar growth conditions using
directional RNA-seq. These discrepancies can be due to dif-
ferent experimental conditions and methods used in these
studies. Nevertheless, they inevitably raise the question: are
the prevalent alternative operon utilizations, asRNA and
ncRNA transcriptions ubiquitous phenomena in all pro-
karyotes or only prevalent in some specific species?

E. coli K12 is probably the best known free living
model organism [45,46], where novel biological hypoth-
eses and computational algorithms can be tested. Indeed,
it is mainly through the studies in E. coli K12 that we
have understood many fundamental biological processes,
including the mechanisms of gene transcriptional regula-
tion [47-49]. As a result, the E. coli K12 genome is in
fact the best understood among all the model organisms
in almost all aspects [50,51]. Since the finishing of its
genome sequence in 1997 [52], almost all newly devel-
oped high throughput technologies have been applied to
this bacterium. As a result, 4,501 genes have been experi-
mentally or computationally identified in the MS1655
strain, and 3,384 (75%) of them have been assigned a
biochemical function [51]. Of these 3,384 genes with an
assigned function, 2,941 (87%) had their functions char-
acterized experimentally (66% of the total encoded
genes) [46,51]. The products of the 918 genes with ex-
perimentally characterized function catalyze 1,008 meta-
bolic reactions, which constitute the best understood
metabolic network [51]. As for its transcriptomes and
transcriptional regulatory networks, RegulonDB database
[53] that is dedicated to compiling all experimentally
verified relevant information in E. coli K12 has docu-
mented 3,409 operons (including singleton genes), 1,878
promoters, 1,940 transcription factor binding sites of
175 transcription factors (TF) in the regulatory region of
703 operons, and 2,697 TF-target gene regulations [53].
Furthermore, more than a hundred of ncRNAs and
asRNAs have been experimentally identified in the E.
coli [54-56]. More recently, Cho et al. [57] applied a
combination of tiling array, 5-end RNA deep sequen-
cing, RNAP ChIP-chip and proteomics analyses to reveal
the transcription unit architecture in the E. coli K12 gen-
ome. They identified 4,661 transcription units, many al-
ternative Transcription Start Sites (TSSs), alternative
operons and ncRNAs under a few cultural conditions. In
another study, Mendoza-Vargas et al. [58] identified ~
1,500 new TSSs using a modified 5-RACE method and
a 5’-end RNA sequencing method in the genome. Con-
sequently, after more than 40 years intensive molecular
genetics research in this bacterium, including the recent
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high throughput studies [43,44,57,58], our experimen-
tally validated knowledge of the transcriptome and gene
regulatory systems in E. coli K12 is the most complete
currently available for any organism [46,51]. However,
ironically, our understanding about the complexity of
the transcriptomes in this model bacterium is rather
limited compared to its counterpart model Gram-
positive bacterium B. subtilis [25]. In particular, large
scale dynamic and alternative operon utilizations under
various conditions have not been reported in E. coli
K12, so do they exist in this bacterium? Furthermore, how
many asRNAs and ncRNAs are transcribed in E. coli K12
given the aforementioned inconsistent results [43,44]?
Technically, compared to directional tiling array tech-
niques, directional RNA-seq methods are more suitable
and powerful tools for understanding the complexity of
the prokaryotic transcriptomes due to their single-
nucleotide resolution, higher dynamic range, and lower
noise levels, thus they have gained increasing popularity
[59]. One important step in RNA-seq data analysis is to
accurately assemble all meaningful transcripts in their
full-length, so that correct conclusions can be drawn from
tens of thousands of RNA-seq short reads generated by
next generation sequencing (NGS) technologies. However,
it has been recently released [23,24,28,29,60,61] and we
will indicate later in this paper, that the coverage of reads
generated by the current RNA-seq techniques on tran-
scribed regions is highly non-uniform. More seriously,
there are even numerous uncovered parts in transcribed
regions, leading to gaps in otherwise a continuous map-
ping in the region [62-67]. These highly non-uniform
coverage and uncovered gaps make the transcripts assem-
bly and quantitative analyses highly challenging tasks
[23,60,68-71]. Several technical problems in the current
RNA-seq library construction protocols and sequencing
technologies have been identified responsible for the non-
uniform coverage and gaps. First, the chemical RNA
fragmentation methods used in many protocols may
have a bias to break or degrade some sequences [72]. Sec-
ond, the random primer based reverse transcription may
preferentially transcribe some sequences [66,73]. Third,
ligases may preferentially link the adaptors to some se-
quences [74-76]. Fourth, PCR amplification is well-known
for introducing GC content-dependent bias in libraries
[77-80]. Fifth, it was recently found that sequencing errors
could be biased to some specific sequences, making such
sequences missing from the reads [81]. Moreover, prokary-
otic RNAs are more labile than their counterparts in eu-
karyotes, thus segments of some RNAs can be more easily
lost during the library preparation. Although some of these
problems can be avoided by new technical development,
such as using FRET-seq for amplification-free sequencing
to avoid GC content-dependent PCR bias [82], or using
single RNA molecular sequencing for longer reads to ease
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the assembly problem [83,84], no effective routine tech-
nique has yet been developed to avoid all these problems.

On the other hand, although several transcriptome as-
semblers using RNA-seq short reads have been developed
in the past few years, they are mainly for reconstructing
alternative isoforms in eukaryotes [70]. These assemblers
can be classified into two basic categories [70]: the
reference-based assemblers when a reference genome se-
quence is used, and the de novo assemblers when a refer-
ence genome is not used. The reference-based assemblers
usually involve two steps: RNA-seq reads are first mapped
to the reference genome using an aligner, such as BLAT
[85], TopHat [86] or Bowtie [87], and then a graph
representing all possible isoforms from overlapping reads
is constructed, and the isoforms are resolved by traversing
the graph. Examples of this strategy include Cufflinks [71]
and Scripture [88]. The de novo assemblers such as Trinity
[89], Oases [90], TransAByss [91], Rnnotator [92], and
Multiple-k [93], generally assemble isoforms based on a
De Bruijn graph constructed using overlapping reads. The
advantage of de novo strategy is that it can assemble tran-
scripts when a reference genome is not available and can
recover transcripts that are missing in the genome assem-
bly. However, de novo transcriptome assembly is very sen-
sitive to sequencing errors, in particular, missing and
chimerical reads in the dataset, thus their accuracy is gen-
erally lower than the reference-based approaches [70].

De novo transcriptome assembly in prokaryotes can also
be more challenging in prokaryotes owing to the preva-
lence of uncovered gaps caused by the aforementioned
technical reasons and the unique prosperities of their
RNAs. Fortunately, with thousands of sequenced prokary-
otic genomes available now, transcriptome assembly in
prokaryotes can often be done using the reference-based
approaches. However, the only reference-based transcrip-
tome assembler for prokaryotes that we are aware of is a
Hidden Markov Model (HMM)-based method for re-
constructing operons in Bacillus anthracis [94], yet no
tool was delivered from this research. Furthermore, there
are at least two limitations in this method. First, the preva-
lently uncovered gaps were not explicitly treated in this
method [94], thus the interrupted partial transcripts could
not be effectively bridged. Second, although this method
attempted to model transcripts of different transcription
levels using different expression states, it did not allow
transitions among the states [94]. Thus, without an effect-
ive method to correct the high non-uniformity of the read
coverage along a transcript [65,72,73,75,81], this method
can break a transcript into smaller fragments. Because of
the lack of a good prokaryotic assembler, currently pro-
karyotic transcripts were assembled by either simply
stitching the two covered segments if the gap between
them is shorter than a cutoff [26], or determining 5’ and 3’
ends of transcripts via a probability-based approach [41],
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or relying on an additional source of information for the
assembly, such as tiling array data that tend to have a
more even and consecutive coverage along transcribed re-
gions albeit at lower resolution [23,25]. As RNA-seq be-
comes a routine technique for probing transcriptomes in
prokaryotes, an efficient and accurate full-length tran-
scripts assembly algorithm and tool tailored to prokary-
otes are urgently needed in the research community.

To gain a better understanding of the complexity of
the transcriptomes in E. coli K12, we have profiled the
transcriptomes of the bacterium under different culture
conditions and growth phases using a highly specific dir-
ectional RNA-seq technique that can capture various
types of transcripts in the cells, including mRNAs,
asRNAs, and ncRNAs. To assemble all types of full
length transcripts using the directional RNA-seq short
reads, we have developed a new Hidden Markov Model
based algorithm, TruHMM (TRancription Unit assembly
by a Hidden Markov Model), attempting to addresses
the highly non-uniform read coverage and uncovered
gap problems of current RNA-seq techniques. TruHMM
differs from the earlier HMM-based algorithm [94] in
several ways (for details see Methods and Discussion). In
particular, TruHMM overcomes the aforementioned lim-
itations of the earlier method by allowing a transcript to
have highly non-uniform coverage at different positions,
and explicitly addressing the uncovered gap problem
using a sliding window-based centroid read counting
strategy in a pre-processing step. Furthermore, TruHmm
can also predict alternative operons and TSSs of the as-
sembled transcripts. When evaluated on sets of known
operons, asRNAs and ncRNAs in E. coli K12, TruHMM
was able to assemble various types of transcripts with ra-
ther high accuracy. The parameters trained in E. coli
K12 can be applied to an earlier directional RNA-seq
dataset in H. pylori [24] with similarly high accuracy,
and vice versa, thus TruHMM is also very robust. Based
on the transcripts assembled in TruHMM, we found
that 46.9 ~ 63.4% of expressed operons were utilized in
their putative alternative forms, 72.23 ~89.54% open
reading frames had putative asRNA transcriptions and
51.37 ~ 72.74% intergenic regions had putative ncRNA
transcriptions under different culture conditions and
growth phases. Thus, it seems that there are more
prevalent alternative operon utilizations as well as
asRNA and ncRNA transcriptions in E. coli K12 than
originally anticipated, and they may play important roles
in the physiology of the bacterium.

Results

Our directional RNA-seq libraries are highly strand-specific
and can capture various types of RNAs

We prepared the directional RNA-seq libraries from
seven E. coli K12 samples collected at the log phase
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growth in LB, and different time points under heat
shock (HS) or phosphorus starvation (M-P) treatments,
denoted as LB, HS15 min, HS30 min, HS60 min, M-PO h,
M-P2h, and M-P4h to reflect the treatment and sam-
pling time point. The experimental procedure of our
work is listed in Additional file 1: Figure S1. The librar-
ies were sequenced on either the Illumina GAII or the
HiSeq 2000 platform. Specifically, the sample LB was se-
quenced using the GAII platform, samples HS30 min,
HS60 min, M-PO h, and M-P2 h were sequenced using the
HiSeq 2000 platform, whereas samples HS15min and
M-P4h were sequenced using both the platforms. Each
sample sequenced using the HiSeq 2000 platform was
repeated twice (technical replicates). The reads obtained
from different platforms for the same sample are highly
correlated (Additional file 1: Figure S2), thus the data for
the same sample were combined for the analysis. A total
of 330,611,663 reads were generated from the seven
samples. The mapping statistics of the samples are sum-
marized in Additional file 1: Table S1 showing that
23.07 ~ 44.18% of reads could be uniquely mapped to
the genome, resulting in 7,735,369 ~ 29,581,761 uniquely
mapped reads in each sample, corresponding to a se-
quencing depth of 93 ~ 355 times of the genome. Of the
47.08 ~ 63.04% multiple mapped reads in each sample,
over 99.6% were from duplicated tRNA/rRNA genes
(data not shown). Thus discarding these multiple
mapped reads does not affect our analysis of mRNA,
asRNA and ncRNA transcriptions. Furthermore, as
shown in Figure 1, in all the samples over 90% and less
than 10% of the total mapped nucleotides were mapped
to the sense strand and intergenic regions, respectively,
with only 0.35 ~ 0.95% of the total mapped nucleotides
mapped to the antisense strand. Moreover, as shown in
Additional file 1: Figure S3, our uniquely mapped reads
consisted of well-balanced different sizes of RNA inser-
tions, indicating that, in additional to mRNA, our library
preparation protocol could potentially capture small
RNA species such as asRNAs and ncRNAs, which were
otherwise left out by a typical size selection step in other
library preparation protocols. All these results indicate
that our sequence reads are highly strand-specific and of
high quality, which is consistent with an earlier result
using a similar library construction protocol [61]. The
seven sequence datasets have been submitted to the
Gene Expression Omnibus (GEO) database with acces-
sion number GSE48151.

Uncovered-gaps in transcribed regions are prevalent and
read coverage is highly non-uniform

However, as shown in Figure 2, even with such deeply
sequencing coverage, less than 60% genes in the genome
had their length completely covered by at least one read,
while only less than 90% genes in the genome had at
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M Sense, 89.86%
M Antisense, 0.35%

 Intergenic, 9.79%

HS30min

M Sense, 93.22%
B Antisense, 0.50%

I Intergenic, 6.28%

W Sense, 92.34%
B Antisense, 0.62%
W Intergenic, 6.76%

M Sense, 92.57%
M Antisense, 0.82%

¥ Intergenic, 6.61%

strand and intergenic regions is shown for the seven samples.

Figure 1 Strand specificity of the directional RNA-seq libraries. The percentage of total nucleotides mapped to sense strand, antisense

M Sense, 90.88%
M Antisense, 0.52%

M Intergenic, 8.60%

W Sense, 92.34%
M Antisense, 0.62%

W Intergenic, 7.04%

M Sense, 93.78%
H Antisense, 0.95%
¥ Intergenic, 5.27%

least 10% of their length covered by at least one read,
suggesting that some transcribed regions were not cov-
ered by the reads, leaving uncovered gaps in transcribed
regions. The same problem has been widely noted in
both eukaryotes [61-63,66,67,95] and prokaryotes [24,60]
due to the aforementioned technical artefacts of the
current RNA-seq techniques [65,72,73,75,81]. In fact, we
found that this uncovered gap problem was even more
serious in many published prokaryotic datasets we have
reanalyzed, a typical example from [60] is shown in
Additional file 1: Figure S4. These prevalent uncovered
gaps may be also partially caused by the loss of some
RNA fragments during the library preparation due to

the highly labile nature of prokaryotic RNAs as men-
tioned earlier. Our data seems to support this hypoth-
esis, as the percentage of gene body coverage in our
samples collected under heat shock treatment were gen-
erally lower than that in other treatments, in particular,
after 30 and 60 min heat shock (Figure 2). It is well
known that RNAs have a shorter living time at a higher
temperature. It is because of this uncovered gap prob-
lem that we define a gene with >50% of the length cov-
ered by at least one read to be sufficiently expressed.
Also, this 50% cutoff was chosen, as all the samples ex-
cept HS60min had over 80% of genes with at least 50%
length being covered (Figure 2). Additionally, as shown
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Figure 2 Distribution of the genes with more than the
indicated percentage of their length covered by at least one
read in the samples. Less than 60% of genes have their length
completely covered by at least one read. Over 80% genes have over
50% of their length covered by at least one read except for

sample HS60 min.

in Figure 3, our libraries were also biased to the 5-end
of transcription units, which is consistent with the earl-
ier results [24,57,58].

Furthermore, we also found that the read coverage
along genes were highly non-uniform (an example is
shown in Additional file 1: Figure S5). Interestingly, the
pattern of non-uniform coverage did not depend on the
culture conditions and growth phase; rather, it strongly
depended on the positions in the transcribed region
(Additional file 1: Figure S5). Such highly non-uniform
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Figure 3 Reads are biased to the 5-end of operons. The
sufficiently expressed known multiple-gene operons (Additional file 2)
and singleton operons are equally divided into 20 bins, and the
average expression values in each bin of all operons in each sample
were displayed. The top 10% most highly expressed genes were
excluded from the calculation.
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read coverage along a transcribed region has been widely
noted in recent studies [23,24,28,29,60,61], and were
shown to be caused by several technical artifices in
current RNA-seq techniques [66,72-81]. Clearly, both
the uncovered gaps and highly non-uniform read cover-
age along transcribed regions make the full-length tran-
script assembling and alternative operon identification
challenging tasks.

TruHMM assembles operons with high accuracy

We used the 476 experimentally verified operons in
RegulonDB (Additional file 2) to train the parameters of
the HMM and applied the leave-one-out strategy to test
our TruHMM algorithm. To compensate for the nega-
tive effect of uncovered gaps in the expressed regions on
assembling, we used a centroid coverage value in a slid-
ing window to represent the reads coverage for each nu-
cleotide of DNA (see Methods). Meanwhile, we do not
want to increase false positives by mistakenly bridging
irrelevant reads using such a strategy. To find an appro-
priate widow size for this purpose, we plotted the distri-
butions of interoperonic and gap lengths shown in
Figure 4, which suggest that the optimal window size
might be shorter than 41 nt. Therefore, we evaluated the
performance of our algorithm when the window size
varied from 1 to 41 nt with an increment of 10 nt on all
the seven samples using the leave-one-out validation
strategy (Methods). As shown in Figure 5, when evaluated
using the adjacent operon pairs (neighbouring gene pairs
within an operon, for details see Methods), our algorithm
was very robust for the choice of the window size in the
range of 11 ~ 21 nt (the mean values for each metric are >
94%). Particularly, when the window size L = 11 nt, the al-
gorithm achieved probably the best-balanced performance
(the mean values for each metric are > 95.87%), especially
in terms of the three most important measures: sensitivity,

1.0 1
—a— Interoperon
0.8
.5 0.6
i<
2
O 0.4
ol
0.2+
0.0+ ;
‘I T T T ‘I T T T T T T T T T T T
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Length (nt)
Figure 4 Cumulative distributions of the length of interoperonic
regions and the length of gaps in sufficiently expressed regions.
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Figure 5 Evaluation of the algorithm based on operon pairs in the seven samples. The dashed horizontal line is at the 95.87% level, and
the vertical bars indicate standard errors.
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specificity and accuracy. When evaluated using the entire L =11 nt for our further analysis. We also evaluated the
operon structure, our algorithm still achieved very good effect of sequencing depth on the performance of our
performance with all the five metrics being over 94.6% for  algorithm. As shown in Additional file 1: Table S2 using
window size of 11 ~21 nt (Figure 6), and the best per- M-P4h as an example, when the sequencing depth is
formance (the mean values for each metric are>95.3%) over 153 times of genome size, our algorithm was very
was also obtained when L =11 nt. Therefore, we chose robust to the sequencing depth.
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Figure 6 Evaluation of the algorithm based on entire operon structures in the seven samples. The dashed horizontal line is at the 95.3%
level, and the vertical bars indicate standard errors.

94 -

92

90

88

Peformance (%)

86




Li et al. BMC Genomics 2013, 14:520
http://www.biomedcentral.com/1471-2164/14/520

The performance of TruHMM is robust

To evaluate the performance of TruHMM and the ro-
bustness of its parameters on different organisms and
datasets, we first applied TruHMM with the parameters
trained on the E. coli K12 dataset to the earlier direc-
tional RNA-seq datasets of H. pylori generated under
five different culture conditions [24]. We then trained
the algorithm using an H. pylori training set (Additional
file 3, and see Methods) based on the results in [24], and
applied the algorithm with the trained parameters to
both the H. pylori and E. coli K12 RNA-seq datasets. Re-
markably, the operons reconstructed in both H. pylori
and E. coli K12 using the E. coli- or H. pylori-trained pa-
rameters are exactly the same (data not shown), and
have high accuracy measured by all the five metrics
(Figures 5 and 6, and Additional file 1: Table S3 and S4).
This might be explained by the fact that the parameters
of the algorithm trained on the H. pylori training sets
and on the E. coliK12 training sets are almost the same
(Additional file 1: Table S5), although our E. coli and
the earlier H. pylori RNA-seq datasets were generated
by quiet different methods. These results unambiguously
demonstrate that the performance of our algorithm is
highly robust, thus parameters trained in one organism
can be well extended to other organisms, at least in our
tested datasets. The assembled operons in H. pylori for
each sample are listed in Additional file 4.

The boundaries of operons can largely be captured by
our libraries and assembled by TruHMM

We next evaluated the ability of TruHMM to define op-
eron boundaries, i.e., the TSSs and transcription termin-
ation sites (TTSs) of assembled transcripts. However, an
accurate evaluation of predicted operon boundaries is
complicated by the recently discovered fact that alterna-
tive TSSs and TTSs are far more prevalent than previ-
ously thought [23-25,57,58] and the lack of a gold
standard TSS and TTS datasets because although some
different TSSs and TTSs are documented for some op-
erons in RegulonDB, they were generally characterized
in different studies under various conditions that are not
necessarily the same as we used in this study. Thus, we
evaluated our reconstructed TSSs by the following alter-
native ways. First, we wanted to know how many experi-
mentally verified TSS in RegulonDB could be recovered
by the boundaries of our assembled operons in any of
the seven samples. If two known TSSs in RegulonDB are
within 10nt from each other, we considered them as the
same one in our evaluation. Thus, there are 1,742 known
TSSs (Additional file 5) associated with the genes tran-
scribed in at least one of our seven samples. We consid-
ered a known TSS was recovered by our predicted TSS if
they were at most 50nt from each other. Using this criter-
ion, 908 out of 1,742 (~52.1%) known TSS were recovered
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by a total of our 5,706 predicted TSSs (Additional file 5).
Second, as for the remaining 4,798 predicted TSSs with no
match to a known TSS, 2,830 of which appeared in at least
two samples, thus they are likely to be novel true TSSs.
For example, although genes 62628-b2627 on the reverse
strand is documented as an operon in RegulonDB, there is
no TSS documented for gene b2628. We predicted a po-
tential TSS in the upstream intergenic region of 52628
(2,763,486) in five samples (Additional file 1: Figure S5).
The remaining 1,968 predicted TSSs appeared only in one
sample. The 4,798 predicted TSSs are listed in Additional
file 6. The low coverage of known TSSs in RegulonDB
does not necessarily indicate the inaccuracy of our predic-
tion, considering the prevalence of alternative TSSs utiliza-
tions under different conditions and the fact that TSSs in
RegulonDB were mostly characterized by different re-
searchers, and under different conditions. Therefore, the
limited number of TSSs in RegulonDB might be the major
reason.

Third, we checked whether there is a potential ¢”°
binding site (Pribnow box) near the predicted TSSs. To
this end, we used the motif profile of the Pribnow boxes
(Additional file 1: Figure S6A) found by MEME [96] in
539 (31%) out of 1742 upstream promoter sequences to
scan for the potential Pribnow box in the [-100 nt,
100 nt] interval around the predicted TSSs. According to
the distribution of the scanning scores in the random pro-
moter sequences (see Methods), when a score is greater
than 4.5487, the corresponding empirical p-value would
be smaller than 0.05. In all, 1,327 (47%) out of the 2,830
predicted putative TSSs appearing in multiple samples
harbour a putative ¢’° binding site around predicted TSSs
with a p-value <0.05 (Additional file 1: Figure S6B and
Additional file 7), and 1,150 out of the 1,968 (58.4%)
predicted putative TSSs appearing in only one sample
bear a putative ¢’ binding site with p-value <0.05
around the predicted TSSs (Additional file 1: Figure S6C
and Additional file 7). However, the predicted TSSs
appearing in multiple samples are more likely to be
genuine ones since around 80% of which have a poten-
tial 0’° binding site located around the [-50 nt, 50 nt]
interval of the predicted TSSs, compared to the rather
evenly distributed Pribnow box positions of predicted
TSSs appearing in a single sample (Figure 7).

Lastly, Sharma et. al [24] have determined 735 primary
TSSs (defined as the most frequently used TSS by an an-
notated transcript, supplementary information of [24])
in H. pylori, using dRNA-seq technique that enriches
the reads coverage on the 5" end of a transcript. There-
fore, the TSSs determined in this study could be a good
dataset to test the accuracy of our algorithm. Specific-
ally, we compared our predicted TSSs in H. pylori using
their directional RNA-seq datasets with their TSSs de-
termined by dRNA-seq. On average, 73.12% of our
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predicted TSSs in each sample are located within the
[-50nt, 50nt] interval around a TSS determined by
dRNA-seq (Additional file 1: Table S6). Thus our algo-
rithm has achieved a rather high specificity. Our pre-
dicted TSSs in each of the five samples, located within
the [-50nt, 50 nt] interval around a verified TSS are
listed in Additional file 4. Furthermore, we used the pri-
mary TSS to check the recall rate (sensitivity) of our
program. Our program detected 558 (~76%) out of the
735 total primary TSSs. The majority of the verified
TSSs recalled by our algorithm had a dominant coverage
on the 5 end of the transcript, one of such cases is
shown in Additional file 1: Figure S7. By contrast, the
majority of primary TSSs missed by our algorithm did
not have a dominant read coverage on the 5-end, two
such cases are shown in Additional file 1: Figure S8. The
primary TSSs both covered and missed by TruHMM are
listed in Additional file 8. The much higher recovery rate
of known TSSs by our algorithm in H. pylori than in E.
coli K12 might be due to the fact that the gold standard
dataset in H. pylori were derived from the same condi-
tions as the RNA-seq datasets that we used for assem-
bling the transcripts, while the datasets in RegulonDB
were derived under various conditions.

As for the TTS predictions, our algorithm recovered
148 out of 221 (~67%) known TTSs associated with
expressed genes in E. coli K12 (Additional file 5), which
is higher than the recovery rate of known TSSs, even
though the mapped reads are strongly biased to the 5’-
ends (Figure 3). The lower recovery rates of known 5’
ends (TSS) compared to 3’ ends (TTS) might indicate
that operons utilize more alternative TSSs than TTSs
under different conditions. In other words, the predicted
TSSs without a match with a known TSS in RegulonDB
are likely to be novel alternative TSSs used in different
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conditions. Taken together, all these results strongly sug-
gest that most of the predicted TSSs and TTSs are likely
to be true transcription boundaries. The assembled op-
erons and their alternative TSSs in each sample are listed
in Additional file 9. However, as also demonstrated in
earlier studies [24,57,58], to more accurately detect TSSs
and TTSs of transcripts/operons, in particular TSSs, in
addition to directional RNA-seq datasets, special data-
sets targeted to the 5-endof transcripts are clearly
needed, such as dRNA-seq data [24] and datasets for the
more recently discovered transcription start site RNAs
(tssRNAs) [97].

Condition-dependent alternative operon utilizations
appear to be prevalent in E. coli K12

As summarized in Additional file 1: Table S7, our algo-
rithm detected more than 2,000 operons involving more
than 4,200 genes in each sample. There were 1,121 con-
sistent operons that were transcribed in at least two of
the seven samples, and 207 of which were multiple-gene
operons (Additional file 10). Of these 207 consistent
multiple-gene operons, 206 were expressed in all the
seven samples except the operon istR-1-istR-2/b4616,
which was not expressed in the samples HS60min and
M-P2h (Additional file 10). Figure 8 shows an example
of a consistent operon hemCDXY encoding enzymes for
tetrapyrrole synthesis. Although all the four genes were
consistently expressed and continuously covered by the
reads under different cultures and growth phases, they
had similar position-dependent non-uniform read cover-
age along the operon, again indicating the non-uniform
coverage of the libraries.

Furthermore, we consider a non-consistent operon as
an alternative operon if it shares a portion of genes with
another operon in other samples. As shown in Additional
file 1: Table S7, from 981 (46.9%) to 1,815 (63.4%) alterna-
tive operons were detected in each sample. Thus around
half of the reconstructed operons in each sample have at
least one putative alternative form, a number comparable
to that found in M. Pneumonia [23] and other prokaryotes
[24,25,28,29], indicating that like many other prokaryotes
[20,22-25], E. coli K12 seems to express enormous alterna-
tive operons under different culture conditions and
growth phases, a phenomenon that is more prevalent than
previously expected. An interesting example is the 14-
gene operon phnCDEFGHIJKLMNOP coding for proteins
responsible for the assimilation of C-P bond-containing
phosphonates under phosphorus starvation conditions
[98]. In the LB, and heat shock samples (HS15 min,
HS30min and HS60 min), this operon was transcribed in
several short suboperons (Additional file 1: Table S8 and
Additional file 9) with low expression levels, whereas under
phosphorus starvation (samples M-P2h and M-P4h),
the phn genes were transcribed as a large operon
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phnCDEFGHIJKLMNOP with high expression levels
(Figure 9 and Additional file 9), which is consistent with
previous observations [98]. In fact, this 14-gene operon
and its suboperons have been studied previously by sev-
eral groups [98-101]. The phnCDE suboperon encoding
a phosphonate transport system, was transcribed in the
sample M-POh, and phnF is a repressor for this
suboperon [102]. Moreover, the products of the genes
phnGHIJKLM are essential for the C-P bond cleaving ac-
tivity [103]. More recently, Jochimsen et. al [101] have
shown that phnGHIJK encodes a protein complex essen-
tial for organophosphonate utilization; this suboperon
was detected in the sample HS15min. Furthermore,
genes phnNP function as downstream processing en-
zymes [104], whereas the phnO gene is unnecessary for
transport or catalysis, and may therefore have a

regulatory role [103]. Finally, as shown in Figure 9, the
phnCDEFGHIJKLMNOP operon displayed varying/de-
creasing expression levels along the operon, another
form of the complexity of prokaryotic transcriptomes in
addition to alternative operon utilization [23]. However,
further investigation of this phenomenon is out of the
scope of this work.

Another interesting example is the alternative uti-
lization of the 13-gene operon fliFGHIJKLMNOPQR en-
coding proteins in the flagella of E. coli K12 (Additional
file 1: Table S9 and Additional file 9). Although the fli
operon was expressed as a 13-gene polycistron in the
sample LB, it was split into short suboperons under the
treatments of heat shock or phosphorus starvation in a
time dependent manner (Additional file 1: Table S9). For
example, at the beginning of heat shock (the sample
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HS15 min), the fli operon was divided into four
suboperons, then it was further split into six to seven
suboperons (samples HS30 min and HS60 min). Interest-
ingly, it has been shown that heat shock reduces bacterial
mobility possibly through the regulatory interactions be-
tween the heat shock system and the flagellum/chemo-
taxis system [105]. Moreover, it has been shown that
inorganic phosphorus is necessary for the motility of bac-
teria [106]. However, the underlying mechanisms of these
observations are largely unknown. Therefore, our results
might provide a possible molecular explanation of these
earlier observations: the extreme conditions (heat shock/
phosphorus starvation) alter the expression of flagella
proteins by changing the patterns of alternative usages
of the fli operon, thus influence the motility of the bac-
terial cells.

Condition-dependent asRNA and ncRNA transcriptions
appear to be prevalent in E. coli K12

Intriguingly, about 0.35 ~ 0.95% and 5.27 ~ 9.79% of our
uniquely mapped read were mapped to the antisense
strand of annotated open reading frames (ORFs) and
intergenic regions, respectively (Figure 1). We consider
the assembled transcripts from these reads as putative
asRNAs and ncRNAs, respectively. As shown in Figure 10,
majority of these putative asRNAs and ncRNAs have a
length of 20 ~ 200 nt, while some can be > 1,000 nt long.
Interestingly, majority (72.23 ~ 89.54%) of ORFs were pre-
dicted to have asRNA transcriptions (Additional file 1:
Table S10), which is consistent with an earlier studies
showing that 3,000 ~ 4,000 ORFs had asRNA transcrip-
tions using tiling array [43]. However, a recent study
[44] identified only about 1,000 asRNA in the same gen-
ome under similar growth conditions using directional
RNA-seq. This discrepancy might be due to different
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Figure 10 Distribution of the length of assembled asRNA and
ncRNAs. For clarity, only the range of 1~400 nt is shown, but some
asRNA can be longer than 1,000 nt.
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techniques and analysis methods used. Furthermore,
1,942 ~ 2,780 (51.37 ~ 72.74%) out of the 3,808 intergenic
regions had putative ncRNA transcriptions in a condition-
and/or growth phase-dependent manner (Additional file 1:
Table S10). To evaluate the accuracy of our assembled
asRNAs and ncRNAs, we compared them with the 112
known asRNA and ncRNAs compiled by Storz’s group
[55,56] and RegulonDB [53], and found that our results re-
covered 102 (91%) of these 112 known asRNA and
ncRNAs (Additional file 11). Thus, TruHMM has also
achieved rather high sensitivity in assembling asRNAs and
ncRNAs. However, the authenticity and functions of the
remaining putative novel asRNAs and ncRNAs need to be
further investigated. The assembled putative asRNAs and
ncRNAs in the seven samples are listed in Additional file
12 and Additional file 13, respectively.

Some hypothetical genes are transcribed

Although E. coli K12 is probably the best studied and
understood model organism, researchers have not com-
pletely defined even its coding genes. For instance, there
are still 36 sequences labelled as hypothetical protein
genes as of this writing in the RegulonDB [53]. Interest-
ingly, we found that all these 36 hypothetical genes were
transcribed in at least one of our seven samples (Additional
file 14), and 21 (b0050, b0137, b1356, b1382, bi419,
b1446, b1457, b1607, b1952, b1998, b3471, b3638, b3937,
b4325, b4335, b4336, b4593, b4596, b4610, b4615 and
b4620) of them were expressed in all the seven samples,
suggesting that they are highly likely to be true protein
coding genes. Furthermore, 20 of them formed multi-gene
operons with other known genes (Additional file 14). The
functions of these known genes might provide hints to
possible functions of the associated hypothetical genes for
“guilt by association”.

Discussion

Although a few high throughput studies have attempted
to delineate the architecture of E. coli K12 transcriptomes
[43,44,57,58], they mainly focused on identifying TSSs
[57,58], promoters [58] and other features [57]. Thus we
still lack a good understanding of the level of the complex-
ity of the transcriptomes in E. coli K12, from which we
gained most of our knowledge about transcription in bac-
teria, but the more recent revolutionary view of the high
complexity and dynamics of prokaryotic transcriptomes.
Therefore, there is an urgent need for a better understand-
ing of the complexity of the transcriptomes in this most
widely-used model Gram-negative bacterium, in particu-
lar, when the same highly complex and dynamic tran-
scriptomes have recently been revealed in its counterpart
model Gram-positive bacterium B. Subtilis [25]. To fill the
gap, we have profiled the transcriptomes in E. coli K12
during the course of heat shock and phosphorus
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starvation conditions using a highly strand-specific RNA-
seq method that can capture various forms RNA tran-
scripts, in conjunction with a highly accurate full-length
transcript assembler, TruHMM. Indeed, as has been
widely reported in many other prokaryotes [24-29], we
have also identified numerous putative novel and/or alter-
native operons and TSSs, as well as novel putative asRNAs
and ncRNAs in E. coli K12. More importantly, the tran-
scription patterns of these putative alternative operons,
asRNAs and ncRNAs were highly dependent on the
growth phases and culture conditions of the bacterium,
suggesting that they might play important roles in the
physiology of the bacterium. In the future, it would be very
interesting to study how the alternative operons, asRNAs
and ncRNAs are related to transcriptional and transla-
tional regulations and cellular functions, in particular in re-
sponses to environmental cues. Furthermore, the
molecular mechanisms that lead to the highly complex
and dynamic transcriptomes in E. coli K12 and other or-
ganisms also warrant further investigations.

Based on the ever increasing body of evidence [20-22],
and the data presented in current study, it is highly likely
that prokaryotes generally have highly dynamic and
complex transcriptomes to cope with environmental
changes. The failure to observe such highly complex and
dynamic transcriptomes in some earlier studies [31-42],
and the inconsistent results in E. coli K12 and B. subtilis
[25,30], might well be due to the limitations of experi-
mental and computational methods used in these stud-
ies. For instance, although an earlier study [30] did not
detect alternative operon utilizations in B. subtilis using
tiling arrays under two culture conditions, a more recent
study [25] observed highly prevalent condition-dependent
operon utilizations as well as numerous asRNA and
ncRNA transcriptions using higher resolution tiling arrays
and more sophisticated computational analysis in ~120
culture conditions. Furthermore, although Selinger et al
[43] found that up to 3,000 ~ 4,000 E. coli K12 genes had
asRNA transcriptions using directional tilling arrays,
Dornenburg et al. [44] only identified about 1,000 asRNAs
in the same genome under similar growth conditions
using a directional RNA-seq technique. Our results is in
excellent agreement with the former results [43], as we
detected that 72.23 ~ 89.54% annotated genes have puta-
tive asRNA transcriptions (Additional file 1: Table S10).
Thus again asRNA transcription appears to be more
prevalent than originally anticipated in E. coli K12. With
the continuous drop in costs of the NGS technologies, dir-
ectional RNA-seq becomes a routine technique to profile
transcriptomes in thousands of sequenced prokaryotic ge-
nomes. We expect that highly complex and dynamic
transcriptomes will be identified in more and more pro-
karyotes using improved directional RNA-seq techniques
and analysis tools. The experimental methods and the
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transcripts assembler that we developed in this study can
add in these efforts.

Specifically, our directional RNA-seq libraries prepar-
ation method based on the Illumina small RNA-seq prep
method is highly strand-specific, avoiding potential gen-
omic DNA contaminations. Our method is also capable
to capture various types RNA transcripts, including
mRNA and small RNAs such as asRNAs and ncRNAs,
eliminating the need to prepare two libraries targeted to
mRNAs and small RNAs separately [34]. Additionally,
before the advent of a routine full-length RNA sequen-
cing technology, reference-based assembly of full-length
transcripts is probably the best choice and a necessary
step to analyze the transcriptomes using RNA-seq short
reads. Due to the highly labile nature and various tech-
nical biases introduced during the sequencing library
preparation [66,72-80] and the sequencing process per
se [81], transcribed regions are highly non-uniformly
covered, and more seriously, a considerable portion of a
transcribed region may not be covered by the reads,
resulting in uncovered gaps in transcribed regions
[62-67]. Our assembler TruHMM has effectively ad-
dressed these issues. TruHMM differs from an earlier
HMM based method for analyzing transcriptomes in B.
anthracis [94] in the several important aspects, and
overcomes its shortcomings. First, by arbitrarily dividing
read coverage values of genes into several bins, the earl-
ier HMM [94] contains multiple expression states that
are not directly connected, thus in principle it cannot as-
semble transcripts with highly non-uniform coverage. By
contrast, TruHMM uses only a single state to model a
wide range of read coverage along a transcript, thus it is
able to assemble transcripts with highly non-uniform
coverage. Second, the earlier method assumes a first
order dependence of the mapped reads [94], which can-
not effectively bridge the larger and prevalent uncovered
gaps along a transcribed region as we see in our and
other RNA-seq datasets. In contrast, we treat the gap
problem explicitly by using a sliding-window based cen-
troid coverage values, which as we have demonstrated in
this paper, can largely relieve the gap problem. Third,
the earlier method empirically assigns emission probabil-
ities to several expression states [94]. By contrast, we de-
rived the emission probabilities by fitting our centroid
read coverage values to a Poisson distribution, which
nicely models the highly non-uniform read coverage
phenomenon (Figure 11). Lastly, by using a post pro-
cessing strategy, our algorithm can accurately predicted
TSSs, whereas the early method lacks such capability.
For these reasons, our algorithm has largely solved the
highly non-uniform coverage problem as well as the
prevalent gap problem in assembling prokaryotic tran-
scripts using RNA-seq short reads. Indeed, when evalu-
ated on the seven RNA-seq datasets that we generated
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in E. coli K12 as well as datasets produced in H. pylori,
TruHMM has achieved rather high performance in as-
sembling operons (Figures 5 and 6, and Additional file 1:
Tables S3 and S4) and locating TSSs (Figure 7, and
Additional file 1: Table S6) in both our E. coli K12 datasets
and the earlier H. pylori datasets. TruHmm also was able
to accurately assemble asRNAs and ncRNAs as it recov-
ered 102 (91%) of the 112 known such RNAs in E. coli
K12 [3] (Additional file 11). Equally importantly, the per-
formance of TruHMM also is very robust as we have dem-
onstrated that the E. coli-trained parameters can be used
to assemble the transcripts in H. pylori and vice versa,
while achieving in both the cases exactly the same results
as being done using the parameters trained on their own
verified operons. Therefore, one can use our trained pa-
rameters to assemble transcripts in a different organism
when enough known operons in the organism of interest
are not available for training the parameters.

Another interesting and rather prevalent phenomenon
called dynamic operon transcription is recently revealed
by transcriptome profiling studies in M. Pneumonia [23]
and B. subtilis [25] using high density tiling arrays that
give more uniform signal coverage along genes albeit at
lower resolution [23,25]. Dynamic operon transcription
is characterized by varying levels of transcription along
an operon, resulting in staircase like transcription levels
between adjacent genes in the operon [23,25]. This
phenomenon also is clearly seen in our datasets
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(examples are shown in Figure 9). However, TruHMM
in its current form is unable to detect such dynamic op-
eron transcription events due to the highly non-uniform
read coverage along genes in an operon. Furthermore, if
multiple alternative operons start at the same TSS, but
terminate at different TTS in the same sample,
TruHMM will fail to detect such coexisting alternative
operons in the same sample. Clearly, to solve these prob-
lems, one needs to transform the highly non-uniform
read coverage along the genes into a more uniform one
by effectively correcting the aforementioned technical
biases in the current RNA-seq methods, or relies on a
better sequencing technology with minimal read bias, or
capable of sequencing transcripts in their full-length. In
addition, TruHMM might not be able to separate over-
lapping transcripts if the downstream transcript has no
outstanding primary TSS. Finally, additional sequencing
library targeted to the intact 5'-end of RNAs might be
needed in order to identify all possible TSSs in a sample.

Conclusions

Using a highly efficient and strand-specific RNA-seq
method combined with a highly accurate and robust al-
gorithm and tool, TruHMM for assembling full-length
transcriptomes, we showed that alternative operon utili-
zations in E. coli K12 appear to be more prevalent than
originally anticipated, and that a large portion of ORFs
and intergenic regions of the genome appear to have
asRNA and ncRNA transcriptions, respectively. Further-
more, the patterns of alternative operon, asRNA and
ncRNA transcriptions are dependent on the culture con-
ditions and growth phases of the bacterium, thus they
might play important roles in the physiology of the bac-
terium. Furthermore, with the recognition of the highly
complex nature of prokaryote transcriptomes and the
wide application of RNA-seq techniques in the prokary-
otes research community, TruHMM can also be very
useful for biologists to reveal the complexity of
transcriptomes and the underlying molecular mecha-
nisms in all sequenced prokaryotic genomes.

Methods

Bacterial culture

A frozen stock of Escherichia coli K12 strain MG1655 (a
gift from Dr. Todd Steck, Department of Biology, the Uni-
versity of North Carolina at Charlotte) was thawed, inocu-
lated in LB medium in a test tube by 1:100 dilution and
cultured overnight at 37°C and 250 rpm. The cells were
then transferred to fresh LB medium in a flask by 1:100 di-
lutions, and cultured at 37°C and 250 rpm. When the cells
grew to the log phase with an optical density at 610 nm
[ODg10] of 0.87, they were spun down at 3,200 g for
25 min. For heat shock treatment (HS), the cell pellets
were resuspended in the same volume of MOPS medium
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(100 ml of 10X MOPS mixture, 880 ml of sterile H,O,
10 ml (0.132 M) KH,PO4 and 10 ml of 20% glucose,
Teknova, Hollister, CA), and incubated at 48°C and
250 rpm. For phosphorus-starvation treatment (M-P), the
cell pellets were resuspended in the MOPS medium with-
out KH,PO4. Three milliliter cell suspension were col-
lected in a tube containing 1.5 ml RNA Later (Invitrogen)
immediately after the cell pellets were resuspended in the
indicated medium (0 min) and at the indicated time points
thereafter (HS:15 min, 30 min and 60 min; M-P: O hrs,
2 hrs, 4 hrs). Cells were spun down at 6,000 g, 8 min
and —4°C, and the pellets were resuspended in 1.5 ml of
RNAlater. The samples were stored at —80°C until use.

Isolation and enrichment of mRNA

Total RNA was isolated using a RiboPure™ -Bacteria Kit
(Ambion) following the manufacturer’s instructions. Once
isolated, ~10 pg total RNA was treated with 8 units DNase
(Invitrogen) twice to remove genomic DNA, and the
complete removal of DNA was confirmed bythe absence
of the product of 35 cycles PCR amplification of a 196 bp
fragment of the crp gene (5-primer: AGCATATTTCGG
CAATCCAG; 3-primer: TACAGCGTTTCCGCTTTTTC).
To enrich mRNAs and other transcripts, majority of
rRNAs were removed from the DNase-treated total RNA
using a MICROBExpress kit (Ambion) following the
manufacturer’s instructions.

Construction of directional RNA-seq libraries

In our early stage of experiments, sequencing was done
on an Illumina GAII platform at the sequencing core fa-
cility of the University of North Carolina at Chapel Hill,
and the directional RNA-seq libraries were constructed
by following an Illumina’s instruction using their Small
RNA Sample Prep Kit with some modifications. Briefly,
after the purified mRNA was fragmented using a RNA
fragmentation kit (Ambion), the fragmented RNA was
treated with Antarctic phosphatase (NEB) to remove the
5-tri-phosphate groups of RNAs with an intact 5-end.
A mono-phosphate group was then added back to the
5-end of fragmented RNAs by polynucleotide kinase
(PNK, NEB) in the presence of 10 mM ATP. The v1.5
sRNA 3’ Adaptor (5'/5rApp/ATCTCGTATGCCGTCTT
CTGCTTG/3ddC/) was ligated to the 3’-end of frag-
mented RNAs using truncated T4 ligase 2 (NEB), and
the SRA 5 RNA adaptor (5GUUCAGAGUUCUACA
GUCCGACGAUC) was ligated to the 5-end of frag-
mented RNAs using T4 ligase. To preserve short inserts
from small RNAs we omitted the size selection step after
PCR application of inserts. In our later experiments, se-
quencing was done on an Illumina HiSeq 2000 platform
at David H. Murdock Research Institute of the North
Carolina Research Campus (Kannapolis, NC), and we
constructed the directional RNA-seq libraries using
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Ilumina’s TruSeq Small RNA Sample Prep Kit, so that
multiplex sequencing can be achieved by using the
barcoded PCR primers. The details of the method will
be described elsewhere (Dong, Li and Su). Briefly, after
similar treatments as described above, the 5 Adapter
(RA5: 5 GUUCAGAGUUCUACAGUCCGACGAUC),
and 3’ Adapter (RA3: 5 TGGAATTCTCGGGTGCC
AAGQG) were ligated to 5- and 3-end of fragmented
RNAs, respectively. Reverse transcription-PCR (RT-
PCR) was performed using SuperScript II Reverse Tran-
scriptase Kit using the SRA RT primer, followed by
16 cycles of PCR amplification. Again, the size selection
was omitted on PCR products to preserve short inserts
from possible small RNAs. Single-end sequencing on the
[lumina GA 1II platform was done with 76 cycles, while
that on the HiSeq 2000 platform was done with 100 cy-
cles. Some samples (HS15 min and M-P4 h) were se-
quenced on both platforms.

Mapping and filtering RNA-seq reads

The genome sequence and annotation files of E. coli K12
substr. MG1655 were obtained from NCBI (ftp://ftp.
ncbi.nlm.nih.gov/genomes/Bacteria/Escherichia_coli_K_
12_substr__MG1655_uid57779/), and the experimentally
verified operons in the bacterium were downloaded from
RegulonDB [53] (http://regulondb.ccg.unam.mx/). Addi-
tional 112 experimentally verified small RNAs in E. coli
were obtained from Storz’s group (http://cbmp.nichd.
nih.gov/segr/ecoli_rnas.html). A total of 4,501 annotated
genes (also including pseudo genes and small RNAs) are
included in this analysis. As the reads were not size-
selected during the library construction, we trimmed the
3" adapters attached to some short insertions. Adapter-
free reads with lengths of <10 nt were discarded; the
remaining reads were mapped to the E. coli K12 genome
using Bowtie [87]. For the reads of length 10-14, 15-29
and =30 nt, up to 1, 2, and 3 mismatches were allowed,
respectively. Since over 99.6% of the multiple mapped
reads in each sample were from duplicated tRNA/rRNA
genes (data not shown), only uniquely mapped reads
were used for further analysis. The alignment of mapped
reads to the reference genome was visualized by Inte-
grated Genome Browser (IGB) [107]. To map the direc-
tional RNA-seq reads of H. pylori [24], we trimmed the
polyA tails of the original datasets, which were intro-
duced during the library preparation, and mapped the
reads to the reference genome using Bowtie with the
same parameter settings as for E. coli K12.

Normalization of the mapped counts

Normalization of the mapped read counts is crucial for
differential expression detection using RNA-seq [108], as
different samples may have different total read counts, i.e.
sequencing depths, as well as various biases mentioned
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earlier. The most commonly used normalization methods
include reads per kilobase of exon model (or ORF) per
million mapped reads (RPKM) [62], fragments per
kilobase of transcript per million fragments mapped
reads (FPKM) [71], the hypergeometric model [109] and
other more recent sophisticated model-based methods
[63,64,66,67,77,78,110,111]. However, it has been shown
that these global normalization methods are strongly af-
fected by a small proportion of highly expressed genes in
the published datasets, leading to biased estimation of
gene expression levels across different conditions [108].
As shown in Figure 12, our datasets are no exception to
the problem as around 10% of genes with the highest
number of mapped nucleotides contribute up to 80% ~
90% of mapped nucleotides in the gene-coding regions
across all the seven samples. Inspired by [108] and also for
computational efficiency, in this study we used N* defined
as the total nucleotide counts minus the counts of the top
10% of genes with the highest counts to scale the gene ex-
pression levels in each sample, instead of using the total
counts of mapped nucleotides in each sample.

Furthermore, because our mapped reads have different
lengths (see Results), instead of using the mapped read
counts per gene, we used the mapped nucleotide counts
per gene to measure the gene expression levels defined
as “Nucleotides Per Kilo base of transcript per Billion
nucleotides mapped” (NPKB):
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Figure 12 Impact of highly expressed genes on the mapped
nucleotides in coding regions. Genes were sorted in the descending
order of their number of mapped nucleotides in reads. The top 10
percent of genes with the highest read counts contribute to around
80% ~90% mapped nucleotides in the coding regions.
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Where n is the number of nucleotides of the reads
mapped to the transcript, N* our normalization factor de-
fined above, and L the length of the transcript. Clearly,
when all reads have the same length, NPKB and RPKM
differ by a constant scaling factor. A similar method has
been used earlier [60], except that our NPKB is further
normalized by the global scaling factor N* in each sample.

Training the HMM

An HMM is a machine-learning algorithm that can be
used to decode the path of hidden states that generate a
sequence. In this paper, we use an HMM to infer whether
or not a segment of a strand of DNA is consecutively tran-
scribed given the expression values obtained from the
mapped reads. The model consists of two states: the ex-
pression state E and non-expression state N (Figure 13).

Selection of expressed adjacent operon pairs

A gene was considered to be sufficiently expressed if
over 50% of its length was covered by at least one read
and at least 20 nt of both of its termini were covered by
at least one read. We used the 476 experimentally veri-
fied operons in RegulonDB (Additional file 2) to train
the parameters of the HMM and to evaluate the per-
formance of our algorithm. Since these operons were
not necessarily expressed in our samples, and alternative
operon utilizations could be very prevalent, as the first
step to construct a positive operon set in a sample, we
selected a pair of adjacent genes in a known operon (ad-
jacent operon pair) if they met the following two criteria:
1) both genes were sufficiently expressed and over 50%
of the length of their intergenic region were covered by
at least one read in the sample; and 2) the correlation
between the expression levels of the two genes and their
intergenic region was greater than a cutoff. To compute
the correlation between the expression levels of the two
genes and their intergenic region, we extended the two
ends of the intergenic region into the two flanking genes
to double its length or extended until the other end of
either gene was reached (Figure 14A). We equally di-
vided the extended intergenic region as well as the
intergenic region into n bins, and thus the expression
levels (NPKB) over these bins formed two n-element vec-
tors (Figure 14B). Pearson correlation coefficient (PCC)
between the two vectors was used to quantify the correl-
ation between the expression levels of the two genes and
their intergenic region. To find an appropriate cutoff, we
similarly divided a sufficiently expressed gene as well as its
central half into #n equal bins, and computed the correl-
ation of the expression levels between the whole gene and
its central half. We reason that for an expressed adjacent
operon pair, the PCC value between the intergenic region
and the extended intergenic region should follow the same
distribution of the PCC value between the central half of
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an expressed gene and the whole gene, since an adjacent
operon pair and their intergenic region should be
expressed in a similar way as the different parts of a gene.
The distribution of the PCC value between the central half
and the whole gene (1 =4) is shown in Figure 14C. We
chose 0.3 as the cutoff for our second criterion to select
positive adjacent operon pair since this would allow us to
include over 60% of sufficiently expressed genes.

Positive and negative training sets

To train the HMM, we constructed a positive training
set in a sample by simply stitching the known adjacent
operon pairs that met the two criteria described above
to form a large operon if they are parts of a known op-
eron according to RegulonDB. These positive training
sets in the seven samples are listed in Additional file 2.
To construct a relatively large negative training set in a
sample, we included all the uncovered regions in the
genome excluding the ones inside the sufficiently ex-
pressed genes in the sample.

Positive and negative testing sets

We evaluated the operon prediction accuracy using two
methods: one was based on adjacent operon pairs, and
the other on the entire operon structure using all the

gene pairs of a known operon. For the first method, we
constructed a positive testing set in a sample, consisting
of sufficiently expressed adjacent operon pairs, and a
negative testing set consisting of known adjacent non-
operon pairs that were both sufficiently expressed in the
sample. A known adjacent non-operon pair consisted of
either the first gene of a known operon and its immedi-
ate upstream gene, or the last gene in a known operon
and its immediate downstream gene, as long as the
intergenic region of the gene pair had at least one un-
covered region, regardless of its length. For the second
method, we constructed a positive testing set in a sample,
consisting of all pair-wise combinations of the genes in a
sufficiently expressed operon, and a negative testing set
consisting of the gene pairs between the genes of the op-
eron and the immediate upstream or immediate down-
stream gene, given that the known adjacent non-operon
pairs had no overlapping un-translated region (UTR) and
that all these relevant genes were sufficiently expressed.

Leave-one-out cross validation

We employed a leave-one-out cross validation strategy
to evaluate the performance of our algorithm. Specific-
ally, we used the positive training sets and negative
training sets in (n-1) samples to train the emission and
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transition probabilities of the HMM, and used the posi-
tive testing set and the negative testing set in the
remaining sample to test the trained model.

Training emission probabilities

The number of reads mapped to a specific position (nu-
cleotide) in the reference genome is denoted as “coverage”
of the position in this paper. To deal with the uncovered
gap problem, we used a sliding window to compute the
centroid coverage of each position on a strand of DNA,
assuming that if the flanking regions of a position are tran-
scribed, it is very likely that the position itself also is tran-
scribed. Specifically, given a window size L (L is an odd
number), the centroid coverage of the nucleotide i in the
middle of the window is defined as:

10° (1 it (e-
Centroid (i) = log ( N <Z ;j:(i (2/12) /o Coverage(k) + 1> >7

(2)

Where i is the i-th position (nucleotide) on the
chromosome. N* the normalization factor defined in

equation (1), L the window size, and Coverage (k) the
coverage of position k on the genome. Note that a
pseudo count of 1 is added to the coverage value of each
window. The optimal window size is determined by bal-
ancing two goals with opposite effects: to cover as many
gaps as possible and to exclude as many interoperonic
regions as possible. See Results for the details of window
size selection.

The emission signals of the states E (r;, r» ...,) and
N (sp, s» ...) are the centroid coverage values of the
nucleotides in the reference genome. We used the
positive training sets to estimate the emission prob-
abilities of the signals of E. The distribution of centroid
coverage values of the positive training set from all
samples except LB is shown in Figure 11. The QQ plot
indicates that the centroid coverage values of the posi-
tive training set approximately follow a Poisson distri-
bution, which is consistent with the earlier results
[108]. Thus, the emission probability of the centroid
coverage values in the state £ could be computed by
the Poisson distribution, whose parameters were esti-
mated with the maximum likelihood method. Since
our negative training set were virtually not covered by
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reads, the signals that the state N emits should be the
centroid coverage values with zero coverage,

10° (1 wit(@-1)/2
log (V (Z k=i-(1-1)/20 + 1) ) - (3)

We arbitrarily assigned a high probability 1-102° for
N to emit this value, and a low probability10™° for N to
emit any other values. The value 102 is also a pseudo
probability to avoid zero probability for decoding the
HMM later.

Training transition probabilities

We chose to model the lengths of both expressed and
non-expressed regions with geometric distributions, though
other distributions may provide a fit. To this end, let P; be
the transition probability from state i to j. To estimate the
transition probabilities Prr and Pgy; ie., the probability to
stay in the state £ and to transit from the state E to the
state N, respectively, let X be the length of a consecutively
expressed region of the genome. Under the Markov as-
sumption, X should follow a geometric distribution,

P(X = n) = Pgp-(1-Pg) (4)

Similarly, let Y be the length of a consecutively non-
expressed (uncovered) region of genome, then Yalso fol-
lows a geometric distribution,

P(Y:I’l) :PX[N(I_PNN) (5)

To generate “full length transcripts training sets”, we
simply stitched overlapping reads along the body of a
known gene or operon to assembly larger contigs. We
consider as sufficiently expressed contigs those that
cover at least 50% of a known gene or an adjacent op-
eron pair of a known operon. We used the lengths of
such contigs to estimate the probability of staying in the
state E as Prz= E(X)/(E(X) + 1), where E(X) is the mean
length of sufficiently expressed regions. E(X) can be
determined from the sufficiently expressed contigs in
the samples. For example, using such contigs from all
the samples except LB, we obtained E(X) = 1,537 nt and
Pgxr=0.0006503 (Figure 15A). Notably, the vast majority
of contigs have a length shorter than 8,000 nt. Further-
more, we used the lengths of non-expressed regions in
the negative training sets to estimate the probability of
remaining in the state N as Pyy=E(Y)/(E(Y) + 1), where
E(Y) also can be determined from raw coverage data, for
example, E(Y) =127 nt, and Py =0.005773 for all the
negative training sets from all samples except LB
(Figure 15B). The derivation of transition probabilities
estimations is given in Additional file 1: Figure S9.
The QQ plot indicates that although not precisely, the
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lengths of the sufficiently expressed contigs can be largely
modelled as a geometric distribution (Figures 15A and C),
in particular when the length of contigs is shorter than
7,000 nt. However, the lengths of non-expression re-
gions could not be modelled by a geometric distribution
(Figures 15B, D), probably because of the uncovered gaps
in the expressed regions, which were much shorter than
authentic non-expressed regions. Nevertheless, we found
that this deviation had little effects on the performance of
the algorithm (see Results). We should point out that al-
though several previous studies have shown that the
lengths of exons in eukaryotes or ORFs in prokaryotes do
not follow a geometric distribution [112,113], and we have
confirmed this in E. coli K12 (Additional file 1: Figures
S10A and C), it is not very surprising that the lengths of
prokaryotic mRNA transcripts largely follow a geometric
distribution (Figures 15A and C). This result might be due
to the fact that the length of a prokaryotic mRNA tran-
script is not limited by the lengths of its constituent ORFs,
rather, it also depends on the lengths of the 5° UTR, con-
stituent intergenic regions and 3" UTRs. The lengths of
the UTR regions are known to follow geometric distribu-
tions, at least in eukaryotes [112,114]. In addition, the
lengths of all of the intergenic sequences are known to fol-
low a geometric distribution [112] (Additional file 1:
Figures S10B and D). Therefore the lengths of prokary-
otic mRNA transcripts behave very differently from
those of OREFs.

Reconstruction of full length transcripts/operons

We used the Viterbi algorithm [115] to decode the path
of the states that best explains the centroid coverage
values of a region of DNA. If a string of adjacent genes
are connected by a consecutive sequence of expressed
states, then these genes are predicted to form an operon.
Furthermore, we stitched two candidate adjacent op-
erons, for instance, A-B and B-C, to obtain the full
length transcripts/operons A-B-C. If over half of the
length of a terminal gene is predicted to be expressed,
this gene is considered as a member of the predicted
operon, otherwise the expressed part of the terminal
gene is only considered as the UTR of the operon. The
TSS and TTS of an assembled operon/transcript were
determined by the locations of its 5-end and the 3’-end,
respectively.

However, errors could be introduced in the assembled
operon/transcripts, and thus need to be fixed. Specific-
ally, due to the short length of the reads, if a sub-operon/
transcript overlaps with an upstream operon/transcript
that are expressed in a sample, the algorithm will assemble
the two operons/transcripts into a single one, missing
the downstream sub-operon/transcript. Furthermore, if
multiple alternative operons with different TSSs are
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transcribed in a sample, the assembled transcripts will
be the possible longest alternative operon used in the
sample. To identify such possible alternative operons as
well as their TSSs, we applied to each assembled op-
eron/transcript the following procedure based on the
observation that there is often an abrupt increase in the
read coverage at a TSS. The procedure attempts to iden-
tify a possible TSS inside an assembled transcript by

detecting the position at which an abrupt increase in
the coverage occurs in the upstream region of a tran-
scribed gene. Specifically, for each assembled operon/
transcript with a long 5° UTRs (>50 nt), we used two
sliding windows of size 2w; and 2w, around the position
i, [i-wy, i+wy] and [i-wy, i+ wsy], Wi >wy>0, to scan
each position of the 5 UTR associated with the first
gene in the operon, and compute coverage ratios ri(i)
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and r,(i) between the downstream and upstream half
windows, defined as follows,

( " (Coverage(k) + 1))/

(Z;:l;w] (Coverage(k) + 1)) forwardstrand

y,1(0) = ‘
( i, (Coverage(k) +1)) /
( ;:;Jlrl(Covemge(k) +1)  reversestrand
(6)
(ZZ*?L(Covemgdk) +1)/
(Z;:i_wZ(Covemge(k) + 1)) forwardstrand
Yo (i) =

(Z;li_w (Coverage(k) +1))/

(7)

Since there must be a TSS associated with the first
gene of an assembled transcript, we predict position j in
the 5" UTR, with the largest sum of ratios y;(j) + y»(j) as
the TSS associated with the first gene in the assembled
transcripts, i.e.,

j = ArgMaxly, (i) + y,(0)) (8)

To identify potential alternative TSSs for the down-
stream genes of the assembled transcripts, we used a ra-
ther strict threshold of 5-fold for the ratio y(j), to
guarantee that there is an outstanding ‘jump’ of read
coverage in the downstream of position j. In both cases,
we set w; =80 nt and w, = 10 nt. The TTSs were simply
determined by the locations of the 3’-end of the assem-
bled operons/transcripts.

The algorithm was encoded in C++ and perl. The soft-
ware package is open-source, and can be downloaded
from http://bioinfolab.uncc.edu/TruHmm_package/. We
provide users the option to train their model if enough
known operons are available in their genomes of inter-
est. Otherwise users can apply our algorithm using the
default settings without the need of any training.

(ZZifil(Covemge(k) + 1)) reverse strand
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Motif detection in promoters

We applied MEME [96] to search for ¢’° binding sites
(Pribnow box) within 25 nt upstream of 1,742 experimen-
tally verified TSSs. The motif profile was then used to scan
for the potential Pribnow box within the [-100 nt, 100 nt]
interval around the predicted TSS by the scoring function
(formula (9,10,11)) we developed before [116,117]:

L pli,h(i))

Su(t) = maxy., Lilog———~ 9
M( ) i=1 g q(h(l)) ( )
. pli,b)

Ii = < 5 1
(Zb (a.c.crpli,b)log 20) )/ﬂ (10)
n+1
a= 4log(n +1)-log(n + 4)
1
—mZbe{A,C,G,T}Iqu(b) (11)
n X
Tl i a0

To estimate the statistical significance of motif scores,
we used a 3™-order Markov model to generate 50,000
random sequences based on the transition probabilities
learned from the set of experimentally verified pro-
moters in E. coli K12. The distribution of the motif
scores in the random sequences was used to define an
empirical p-value.

Performance metrics
To evaluate the performances of our algorithm, we use
the following metrics.

P
ensitivity eca EL
TN
Specificity = 1-FPR = ——~
peesit FP+ TN
A TP + IN
4 =
ccuracy R L IN AN
.. P
Precision = ————
TP + FP
F—factor = 2 X Recall x Precision

Recall + Precision

Where, TP (true positive) = Number of known operon
pairs accurately classified as operon pairs by the model.

FP (False Positive) = Number of non-operon pairs
falsely classified as operon pairs by the model.

EN (False Negative) = Number of known operon pairs
falsely classified as non-operon pairs by the model.

TN (True Negative) = Number of non-operon pairs ac-
curately classified as non-operon pairs by the model.
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Sensitivity, i.e. TPR (True Positive Rate or recall) is the
proportion of known operon pairs that can be correctly
identified as operon pairs by the model. Specificity, i.e.
1-FPR (False Positive Rate) is the proportion of non-
operon pairs that are correctly classified as non-operon
pairs. Accuracy combines the two metrics to quantify
the overall performance of the model. A high Accuracy
value represents a low total error rate. Precision denotes
the proportion of predicted positives that are true posi-
tives. F-factor combines Recall and Precision and nor-
malized them to an idealized value.

Additional files

Additional file 1: Supporting figures and tables. Figure S1-S10 and
Table S1-S10.

Additional file 2: The known operons of E. coli K12 and training set
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