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Background: CCN2/CTGF is an established effector of TGF(3 driven responses in diabetic nephropathy. We have
identified an interaction between CCN2 and TGF leading to altered phenotypic differentiation and inhibited
cellular migration. Here we determine the gene expression profile associated with this phenotype and define a
transcriptional basis for differential actin related gene expression and cytoskeletal function.

Results: From a panel of genes regulated by TGF3 and CCN2, we used co-inertia analysis to identify and then
experimentally verify a subset of transcription factors, E2F1 and CREB, that regulate an expression fingerprint
implicated in altered actin dynamics and cell hypertrophy. Importantly, actin related genes containing E2F1 and
CREB binding sites, stratified by expression profile within the dataset. Further analysis of actin and cytoskeletal
related genes from patients with diabetic nephropathy suggests recapitulation of this programme during the
development of renal disease. The Rho family member Cdc42 was also found uniquely to be activated in cells
treated with TGF(3 and CCN2; Cdc42 interacting genes were differentially regulated in diabetic nephropathy.
Conclusions: TGF3 and CCN2 attenuate CREB and augment E2F1 transcriptional activation with the likely effect of

altering actin cytoskeletal and cell growth/hypertrophic gene activity with implications for cell dysfunction in
diabetic kidney disease. The cytoskeletal regulator Cdc42 may play a role in this signalling response.

Background

The actin cytoskeleton is highly dynamic, constantly
being remodelled in living cells and may become dys-
functional in various kidney diseases, including diabetic ne-
phropathy (DN) [1-4]. In vitro [5,6] and in vivo [7] studies
have shown disruption of the cytoskeleton in renal
mesangial cells exposed to high extracellular glucose and
growth factors. Similarly, the migration of epithelial cells,
such as those undergoing epithelial to mesenchymal tran-
sition, is dependent on the reorganisation of the cytoskel-
eton. In vitro, actin mediated contractile changes are
often modelled using cell migration responses; migration
being characterised by the same polarisation, protrusion,
adhesion and extensive dynamic cytoskeletal and mi-
crotubular reorganisation seen in disease related cytoskel-
etal dysfunction [8]; and regulated by complex signalling
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networks initiated and integrated by integrins and other
receptors [9-11].

In the context of DN, it is accepted that both
Transforming Growth Factor-f (TGFp) and one of its
downstream effectors Connective Tissue Growth Factor
(CCN2/CTGF) play roles in regulating the pathogenesis
of this fibrotic kidney disease. CCN2 has been reported
to regulate TGFp superfamily signalling in various con-
texts including renal mesangial/epithelial cell dysfunction
[12,13] and DN [14]; coordinate expression of TGFf and
CCN2 has been demonstrated in glomerulonephritis and
DN [15] and the cooperative nature of TGF} and CCN2
in the promotion of fibrosis in animal models has been
established [16].

The role of CCN2 and TGEP in the modulation of
mesangial cell migratory response was first described by
Blom and colleagues [17] and subsequently characterised
as being dependent on ERK MAP kinase, Protein Kinase
B and Protein Kinase C [5,18]. Intriguingly, the interplay
between these factors and the migratory capacity of the
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cells was altered in the presence of high glucose levels,
attributed to changes in cell polarisation caused by
dysregulation of the PKC-{/GSK3p signalling axis [19].
We previously reported that the combination of TGFp
and CCN2 induce a gene expression profile characterised
by the differential expression of a unique subset of genes
in human mesangial cells [13]. In the present study we
interrogated this subset of genes and identified a role for
the transcription factors CREB and E2F1 in mediating al-
tered actin and cytoskeletal related dynamics. This tran-
scriptional programme is evidenced by a non-vectorial
migration profile in vitro when mesangial cells are
treated with both growth factors, reflecting an altered cell
phenotype that may be considered profibrotic and hyper-
trophic. The data from this study provide useful informa-
tion for the characterisation of cytoskeletal dysfunction

in fibrotic disorders associated with increased expression
of TGFfB and CCN2 [13].

Results and discussion

Co-treatment of mesangial cells with TGFp and CCN2
results in ERK dependent inhibition of migration

In the search for molecular linkers between haemo-
dynamic dysregulation, the renin-angiotensin system
and renal scarring, TGFf expression was found to be
upregulated in glomerular diseases including experi-
mental glomerulonephritis [20] and experimental and
human DN within the mesangium [21,22]. Increased
glomerular expression of CCN2 has also been reported
in a variety of human glomerulopathies, including IgA
nephropathy, focal and segmental glomerulosclerosis as
well as diabetic nephropathy [23-25]. Increased CCN2
expression has been documented in experimental models
of diabetic glomerulosclerosis [26,27]; in vitro studies have
shown that CCN2 is induced in HMCs by high glucose,
AGEs, TGFp and ROS [6,26,28]. In the streptozotocin
(STZ) diabetic mouse model, upregulated expression of
CCN2 has been found to be primarily contained to the
podocyte in the immediate phases after induction of dia-
betes [29]; STZ mice that transgenically over-express
CCN2 specifically in the podocyte developed more severe
proteinuria and mesangial expansion than their control
(non-transgenic) littermates [30]. Podocyte derived CCN2
has also recently been proposed to have a paracrine effect
on mesangial cells resulting in augmented profibrotic sig-
nalling and matrix accumulation independent of active
TGEP [31]. Co-ordinate expression of TGFp and CCN2
has been previously described [15,32,33]; a potentially
complex interplay between autocrine and paracrine factors
is likely present in the glomerular microenvironment and
contributes to the development of chronic fibrosis. In a re-
cent multi-disease study of the contribution of TGFp and
CCN2 to the development of fibrosis in the kidney, liver
and lung, Wang and colleagues demonstrated that CCN2
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was both sufficient and necessary to initiate fibrosis in the
presence of TGEp, and vice versa [16].

In the context of DN, dysregulation of the cyto-
skeleton is a feature associated with the response of
myofibroblast like cells to changes in the composition of
extracellular matrices. Modelling of migration in cells
provides a useful insight into the effects of TGFp and
CCN2 on the organisation of the cytoskeleton. In human
mesangial cells (HMCs) treated with TGEp or CCN2,
the number of cells migrating is increased, in line with
previous observations [18,34]. However, co-treatment of
HMCs with both growth factors is sufficient to prevent
the migration of cells (Figure 1A), with this effect found
independent of altered proliferation (Figure 1B). It has
previously been reported that decreased activation of ca-
nonical Smad signalling in cells treated with both TGEB
and CCN2 is associated with increased non-canonical
signalling by ERK MAP kinase [13]. In cells treated with
both TGFB and CCN2, inhibition of MEK/ERK with the
selective inhibitor PD-98059 was sufficient to rescue the
migration of HMCs (Figure 1C), again independently of
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Figure 1 Co-treatment of HMCs with TGFB and CCN2 inhibits
cell migration in an ERK dependent manner. A. HMCs were
grown to confluence, a wound scratch made and cell migration
assessed in response to treatment with TGF@, CCN2 or both
together. Both TGF@ and CCN2 increased cell migration, but
together inhibited the migration of cells. B. Altered migration was
not dependent on cell proliferation, as assessed by MTT uptake.

C. Inhibition of MEK/ERK signalling with the inhibitor PD-98059 was
sufficient to restore migration in cells co-treated with TGF(3 and
CCN2. D. This effect was not dependent on altered cell proliferation.
Data representative of n = 3 independent experiments with 10

biological replicates per condition per experiment. **p < 0.01.
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Figure 2 TGFf and CCN2 together induce differential gene expression associated with altered functional and canonical pathways and
unique transcription factor representation. A, B. Treatment of HMCs with TGF@3, CCN2 or both together induced differential expression of
shared and unique subsets of genes. For each condition, n = 3 gene arrays were used with the average determined by GC Robust Multi-array
average and the change in gene expression determined using Student’s t-test and Benjamini-Hochberg correction at p < 0.05. C, D. Pathway
analysis with Ingenuity IPA software identified the augmentation of functional pathways associated with the cell cycle, cell growth and
proliferation and renal hypertrophy/glomerular injury; canonical pathways including signalling via the TGF superfamily and cAMP were decreased
in activity while increased ERK/MAPK activity was identified. E, F. Co-inertia analysis of the promoters of the genes differentially expressed in
response to TGF(3, CCN2 or both together identified TFBSs that were over and under-represented in specific gene subsets at p < 0.05.

altered proliferation (Figure 1D), suggesting a role for
ERK in this process.

Pathway analysis of genes differentially expressed in cells
treated with TGFB and CCN2

Altered gene expression in HMCs treated with TGEp,
CCN2 or both together was previously determined by
gene array [13]. TGFB and CCN2 together differentially
regulated over 2000 genes in HMCs that were not regu-
lated by either growth factor alone (Figure 2A, 2B). CCN2
on its own only regulated the expression of approximately
120 genes, supporting the hypothesis that this growth fac-
tor plays a major role in the integration of signalling by
other molecules rather than CCN2 itself regulating gene
expression. Using Ingenuity Pathway analysis (IPA) (In-
genuity Systems, http://www.ingenuity.com) we iden-
tified that co-treatment of HMCs with TGFp and CCN2,
resulted in augmented expression of genes associated
with molecular and cellular functions including cell growth
and proliferation, while also enhancing nephrotoxicity as-
sociated pathways including proliferation and hypertrophy
associated genes (Figure 2C). Analysis of annotated func-
tional pathways (Figure 2D) found a decrease in genes as-
sociated with canonical TGFB/BMP signalling and cAMP
signalling with an increase in genes regulated by ERK
MAP kinase signalling; supporting a role for divergent acti-
vation of canonical and non-canonical signalling in the
mesangial cell expansion.

Identification of an altered transcriptional regulatory
signature - E2F1 and CREB are over and under-represented
in HMCs co-treated with TGFf and CCN2

We hypothesised that the differential gene expression
profile seen in co-treated HMCs would be dependent on
a change in the transcriptional regulatory network of the
cells. We interrogated the promoters of the differentially
regulated genes to determine common transcription fac-
tor binding sites (TFBSs) in the 500 bp region upstream
of the transcription start site. Co-inertia analysis of these
promoters identified TFBSs that were over or under-
represented relative to control HMCs (Figure 2E, 2F
known physiological functions summarised in the table in
Additional file 1). Some 22 TFBSs were found increased in
occurrence in genes common to HMCs treated with either

TGEP or TGEP and CCN2 together, while 14 TFBSs were
found to be decreased in occurrence. A subset of transcrip-
tion factors were found to be uniquely regulated by TGFp
and CCN2; two of these transcription factors were selected
for further characterisation — E2F1, as the sole transcrip-
tion factor over-represented by co-treatment and CREB,
with an established response to TGEp and as a key compo-
nent of cAMP signalling that was identified by pathway
analysis to be negatively regulated in cells treated with
TGEFP and CCN2. Pathway analysis of both transcription
factors confirmed altered expression of associated genes in
cells treated with both TGFp and CCN2 versus TGEf alone
(Figure 3).

Validation of transcription factor signature - co-treatment
of HMCs with TGFB and CCN2 results in decreased active
CREB levels and increased E2F1 activity, which is
dependent on ERK signalling

Members of the E2F family play essential roles in the regu-
lation of proliferation by stimulation of S-phase genes [18]
and overexpression of E2F1 overcomes the inhibition of
cell growth by TGEP at mid-G1 phase [19]. In diabetes,
E2F1 negatively regulates growth of mature pancreatic cells
and maintains differentiated pancreatic cell phenotypes
[20]; in renal disease, increased E2F1 has been found in
proliferating glomeruli in human IgA nephropathy [21]. In
the kidney, CREB is reported as a positive and negative
regulator of gene expression in disease pathophysiology. In
tubular cells it transduces pro-survival signals after oxidant
stress [22] and regulates hexosamine induced fibronectin
synthesis in mesangial cells [23]. High extracellular glucose
and TGEFp stimulate fibronectin production in mesangial
cells by cAMP/CREB [24]; use of anti TGF[ antibodies has
been reported to decrease CREB phosphorylation and
hypertrophy in diabetic glomeruli [25]. Treatment of
HMCs, with TGFB or CCN2, decreased pCREB levels,
co-treatment of cells consistently decreased the levels of
activated CREB further (Figure 4A). Neither TGFB nor
CCN2 altered the localisation of CREB within the cell,
suggesting intermediate transduction of the regula-
tory signal to already localised nuclear CREB. TGEpP
and CCN2 also increased expression of activated E2F1
(Figure 4A) and transcriptional activity of an E2F1
promoter containing luciferase reporter (Figure 4C),
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Figure 3 Altered CREB/E2F1 signalling networks in co-treated HMCs. A. Pathway analysis with Ingenwty IPA software identified interacting
partners of CREB differentially expressed in response to treatment with TGFf. B. In comparison, fewer genes related to CREB signalling were
differentially expressed in co-treated cells. C. Similarly, pathway analysis identified E2F1 interacting partners in cells treated with TGF@. D. The
number of E2F1 partners was enriched by co-treatment with TGF3 and CCN2. Interacting partners coloured pink/red were increased in
expression in response to treatment, those coloured green were decreased in expression.
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demonstrating a transcriptional consequence for genes
containing the TEBS. With the preceding observation
that inhibition of MEK/ERK signalling restored the ability
of HMCs to migrate when treated with TGEP and CCN2,
we investigated whether this was associated with the
regulation of E2F1/CREB. It is well established that many
growth factors can activate CREB via phosphorylation at
its Ser-133 site, with this effect being mediated by protein
kinases including MEK/ERK/p38 and Rsk [35]. Attenu-
ation of ERK expression in HMCs with the MEK inhibi-
tor PD-98059, was therefore unsurprisingly found not to
alter the phosphorylation state of CREB (Figure 4B).

However, inhibition of ERK both restricted the activation
of E2F1 (Figure 4B) as well as the activation of E2F1 lu-
ciferase (Figure 4C); these data suggest a role for ERK in
the regulation of E2F1.

Identification of an actin-related gene expression profile
with stratified occurrence of E2F1 and CREB TFBSs

CREB and E2F1 TFBSs were under and over-represented
(respectively) in HMCs treated with both TGFp and
CCN2; ERK inhibition restored migration and inhibited
E2F1. Therefore we examined the role of genes associ-
ated with actin cytoskeletal reorganisation and migration
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Figure 4 TGFB and CCN2 induce differential activation of both
CREB and E2F1 in HMCs, inhibition of MEK/ERK decreases E2F1
activation. A. HMCs were treated with TGF@, CCN2 or both
together, and expression of pCREB and pE2F1 were determined, as
well as their localisation within the cell. CREB activation is decreased
by co-treatment, while E2F1 activation is increased. The localisation
of either transcription factor was unchanged by treatment with
either growth factor. B. The effect of TGFf and CCN2 on E2F1
activation was dependent on ERK signalling, inhibition of MEK/ERK
prevented activation of the transcription factor. Blots representative
of n = 3 independent experiments. C. The activation of E2F1 by
TGFB and CCN2 had a transcriptional consequence as assessed by
the activation of an E2F1 promoter containing luciferase construct;
again this effect was ERK dependent. Data from n = 3 independent
experiments with 3 biological replicates per condition per
experiment. *p < 0.05, *p < 0.01.

containing CREB and E2F1 TFBSs. Gene ontology (GO)
annotation was used to address this and extract a subset
of genes containing the GO term ‘actin’ which were sub-
sequently examined for CREB and E2F1 sites in the
5000 bp region upstream of the transcription start site.
Interestingly, the occurrence of CREB and E2F1 sites
varied by gene expression profile: genes that decreased
in expression in co-treated cells relative to control cells
contained more CREB binding sites, while positively
regulated genes contained more E2F1 binding sites
(Figure 5A-5C). This data suggests a role for both tran-
scription factors in the altered migratory responses seen
upon co-treatment. The table in Additional file 2 sum-
marises the physiological functions ascribed to the actin
cytoskeletal genes found to be differentially regulated.
These genes include a number of master regulators asso-
ciated with cell structural dynamics including adhesion,
migration, cytoskeletal reorganisation and actin dynam-
ics. In DN, the expression of both TGEP [22] and CCN2
[24] are increased; altered actin and cytoskeletal dynamics
is a feature of the disease [36,37]. Data from the European
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Renal cDNA bank (ERCB) illustrates that genes associated
with actin reorganisation are altered in DN (Figure 5D); it
seems likely that the altered actin cytoskeletal dynamic
profile observed in vitro is re-capitulated in disease.

Differential regulation of hypertrophic genes in HMCs
treated with TGFB and CCN2

The earliest gross pathological renal feature of diabetes
mellitus is generalised renal growth [26]. Tubuloepithelial
hypertrophy and tubular basement membrane thickening
occur early while glomerular growth processes have been
found to always precede glomerulosclerosis in experimen-
tal models of DN [27]. The association between growth
and fibrogenesis may be due to the fact that similar net-
works of growth factors and cytokines that induce cellular
hypertrophy also stimulate extracellular matrix synthesis
and deposition [6]. TGEp is one of the principal effectors
of glomerular hypertrophy, with increased levels of the
growth factor found early in multiple models of DN, in
parallel with increased kidney weight [28]. In line with its
role as a mediator of TGFB, CCN2 is also reported to
transduce hypertrophic TGEp signalling [29]. With TGEFp
and CCN2 being reported as both pro-migratory and pro-
hypertrophic, we hypothesised that the altered phenotype
may represent an enhanced hypertrophic response. Using
Ingenuity pathway analysis, we extracted a panel of hyper-
trophy associated genes differentially regulated by TGFp
and CCN2, but inconsistent expression profiles provided
inconclusive evidence supporting a role for hypertrophy in
the change in migratory response (summarised in the table
found in Additional file 3).

Co-treatment driven Cdc42 activation and signalling in
HMCs and in disease

Cdc42, a member of the Rho family of GTPases, has been
shown to play a role in cell motility and migration [38].
Cdc42 is active towards the front end of migrating cells; in-
hibition or global activation of Cdc42 results in disrupted
directionality of migration [39]. To determine if an al-
teration of Cdc42 occurred in cells treated with TGEB
and CCNZ2, the activity of the protein was determined
using an active Cdc42 pull-down assay (Additional file 4:
Figure S1A). In cells treated with TGFp and CCN2, Cdc42
activation was increased (Additional file 4: Figure S1A); in
addition the phosphorylation of the Cdc42 effector kinases
Pakl/2 was also increased (Additional file 4: Figure S1B).
Pathway analysis of co-treatment regulated genes identified
differential expression of interacting partners of Cdc42 and
Pakl (Additional file 4: Figure S1C), suggesting the altered
migratory capacity in co-treated cells may be associated
with differential Cdc42/Pak signalling. Analysis of ERCB
data identified a cohort of Cdc42 interacting proteins
that were altered in expression between control and DN
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Figure 5 Actin related genes containing one or more CREB and E2F1 binding sites stratify in expression versus occurrence of
transcription factor binding sites; a subset of actin related genes are differentially expressed in DN. Actin related genes were extracted
from each gene set for each condition by gene ontology (GO) annotation search. For each actin related gene, the occurrence of CREB and E2F1
sites were determined in the 5000 bp region upstream of the transcription start site (TSS). A. The genes are arranged as fold change in
expression for the co-treated dataset versus the control dataset. B, C. The occurrence of CREB and E2F1 sites were determined, and appear to
stratify with change in gene expression, suggesting functional consequence for the presence of these transcription factor binding sites with
respect to the change in gene expression induced by TGF and CCN2. D. A subset of actin related genes from the ERCB biobank illustrate
differential gene expression in biopsy samples from patients with DN versus controls (genes differentially expressed at p < 0.05).

patients (Additional file 4: Figure S1D), supporting a dis-
ease role for this signalling context.

Conclusions

The data shown here examines the transcriptional basis
of how TGEP and CCN2 together alter the migratory
capacity of HMCs, determining that there is a role for
CREB and E2F1 in regulating the expression of actin re-
lated genes that contribute towards the ability of cells to
move. From their known functions in the regulation of
cell cycle transition [40], hypertrophy [41] and prolifera-
tion [42], it is likely that these functions are also part of
the mechanism by which CREB and E2F1 play roles in
cell migration; in HMCs these processes were identified
from gene expression data to be modified by the pres-
ence of both TGFP and CCN2. A further role for Cdc42
as a major effector of polarisation and cytoskeletal or-
ganisation was also found, with expression of the active
form of this protein being regulated by TGF and CCN2
together. In the context of DN, a better understanding
of the interplay between CCN2, a known effector of
cytoskeletal reorganisation and TGFp will undoubtedly
enhance our understanding of the dysregulation of actin
cytoskeletal processes in this kidney disease.

Methods

Cell culture

Primary HMCs from Clonetics (Lonza) were cultured
in MCDB-131 (GIBCO, Invitrogen), HEK-293 T/17 em-
bryonic kidney cells (ATCC) were cultured in DMEM
(Lonza); both media were supplemented with 10% fetal
bovine serum (FBS), 100 units/ml penicillin, 1 mg/ml
streptomyocin and 2 mM L-glutamine (all from Invitrogen).
Confluent cells were growth arrested for 24 hours prior
to treatment in media with penicillin/streptomyocin and
L-glutamine alone. Cells were cultured with TGEp
(10 ng/ml, PromoKine), CCN2 (25 ng/ml, Fibrogen Inc.)
or both together for 24 hours. The inhibitor of MEK, PD-
98059 (Calbiochem), was added at a final concentration
of 10 um 1 hour prior to stimulation.

Scratch wound migration assay
Cells were cultured on 12 well plates to confluency
and growth arrested. Scratches were made to the cell

monolayer using a pipette tip. The media was then
replenished with media containing growth factors as indi-
cated. After 24 hours, the cells were fixed with 3.7% para-
formaldehyde (Electron Microscopy Sciences) and stained
with Hoechst 33342 (Invitrogen). The number of nuclei
migrating into the wound was assessed on a Zeiss Axiovert
microscope for at least 10 different wounds per condition.

MTT proliferation assay

Cells were counted, plated onto 96 well plates and pro-
liferated for 24 hours before being growth arrested and
treated for 24 hours. 10 ul of MTT was added (final con-
centration 500 pg/ml) and the plate was incubated at 37°C
for 3 hours. Formation of formazan crystals was confirmed
and 100 pl of DMSO was added to solubilise. Absorbance
was determined at 570 nm.

E2F1 luciferase assay

The luciferase construct pGL2-AN-E2F1 (Addgene,
#20950), containing the promoter of the E2F1 gene and a
Renilla luciferase construct were transfected into HEK-
293 cells for 24 hours. The cells were growth arrested
and treated for 24 hours. Luciferase activity was assessed
with a dual-luciferase reporter kit (Promega).

RNA isolation and human genome array

Total RNA from HMCs was reverse transcribed, frag-
mented and hybridised to an Affymetrix human genome
U133 plus 2.0 array (Affymetrix). Data from replicates of
three arrays per condition were normalised by GC Robust
Multi-array average before a linear model was applied and
differentially expressed genes were identified using a modi-
fied Student’s t-test and Benjamini-Hochberg correction at
p<0.05. A complete list of all genes and their expression
levels for each of TGFB, CCN2 and both together can be
found in Additional files 5, 6 and 7 (respectively).

Preparation of cellular protein extracts including nuclear
fractionation and Western blotting

Protein extracts were prepared in lysis buffer containing
Tris/HCI, sodium deoxycholate, NaCl, EGTA, NaF, Igepal
CA-630, PMSF and protease/phosphatase inhibitor cock-
tails (all from Sigma). For fractionated samples, cells were
lysed with an NE-PER nuclear and cytoplasmic extracts
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kit (Pierce) according to the manufacturer’s instruc-
tions. Protein was quantified by Bradford assay (Bio-Rad
Laboratories). Samples were resolved by SDS-PAGE,
transferred to membrane, blocked in phosphate buff-
ered saline (PBS) containing 0.1% Tween 20 and 5%
(w/v) skimmed milk and incubated overnight with anti-
phospho-CREB (Cell Signaling), anti-phospho-E2F1
(Abcam) or Phospho-PAK1/2 (Cell Signaling) at 4°C. Sec-
ondary HRP-conjugated antibodies (Cell Signaling) were
incubated at room temperature for 1 hour.

Activated Cdc42 pulldown assay

Cdc42 activation was determined using an Active Cdc42
Pull-Down and Detection Kit (Thermoscientific) as per
manufacturer’s instructions. Briefly cells were washed,
lysed, centrifuged at 4°C for 15 minutes, followed by de-
termination of protein concentration. EDTA and either
GTPyS or GDP were added and incubated for 15 minutes
at 30°C. The reaction was stopped by the addition of
MgCl2. The lysate was then added to a spin column
containing a Glutathione Swell Gel Disc and GST-PAK-1-
PBD, incubated for 60 minutes at 4°C, centrifuged at
7200 g for 30 seconds and washed three times with PBS.
SDS containing 3-mercaptoethanol was added to the sam-
ple, collected by centrifugation and resolved by SDS-
PAGE. Expression of the pulldown protein and total pro-
tein was determined using an anti-Cdc42 antibody (Cell
Signaling).

Promoter analysis for differentially represented
transcription factor binding sites

Unsupervised co-inertia analysis (CIA) was used to extract
differentially represented transcription factor binding sites
in the promoters of genes regulated by TGFp, CCN2 or
both together in HMCs. A combined total of 1236 binding
sites were used with a position specific matrix of 0.85 ap-
plied to each gene set to produce a motif/gene matrix for
CIA [43].

Statistical analysis

Graphs are expressed as mean +/— standard error of the
mean (s.e.m.) Analysis was by one way ANOVA with
post hoc Tukey’s test or Student’s t-test as appropriate
for the number of groups; analysis was carried out with
GraphPad Prism (GraphPad).

Additional files

Additional file 1: Summary of transcription factors with differentially
represented Transcription Factor Binding Sites in gene subsets. Known
physiological functions of transcription factors with TFBSs found to be
differentially represented at p < 0.05 by co-inertia analysis.
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Additional file 2: Summary of actin related genes with CREB or
E2F1 binding sites. Genes containing GO annotation of ‘actin’ and
containing one or more binding sites for CREB or E2F1.

Additional file 3: Pathway analysis identified hypertrophic genes.
Genes identified by IPA pathway analysis with functional role in cell
hypertrophy.

Additional file 4: Activation of Cdc42 signalling in co-treated cells
and expression of associated interacting partners. Figure ST A. A
Cdc42 pulldown assay was used to determine expression of activated
Cdc42 in HMCs in response to TGFf, CCN2 and both together. Cdc42
activation was only responsive to treatment with both growth factors.

B. Downstream signal transduction by the Cdc42 effector proteins PAK1
and PAK2 was also increased by co-treatment of cells. C. Pathway analysis
of differentially activated genes identified that a number of Cdc42
interacting proteins (left) and PAK1 interacting proteins (right) were
differentially expressed by co-treatment of HMCs with TGF3 and CCN2.
Interacting partners coloured pink/red were increased in expression in
response to treatment, those coloured green were decreased in
expression. Figure S1 D. Analysis of the expression of these genes
from the ERCB biobank demonstrates that Cdc42 interacting partners
are differentially expressed in DN, suggesting disease relevance of the
HMC phenotype.

Additional file 5: Genes regulated in HMCs by TGFp. Array genes
differentially regulated by TGF@ at p < 0.05.

Additional file 6: Genes regulated in HMCs by CCN2. Array genes
differentially regulated by CCN2 at p < 0.05.

Additional file 7: Genes regulated in HMCs by TGFf3 and CCN2.
Array genes differentially regulated by TGF and CCN2 at p < 0.05.
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