
Williams et al. BMC Genomics 2013, 14:537
http://www.biomedcentral.com/1471-2164/14/537
METHODOLOGY ARTICLE Open Access
Rapid quantification of sequence repeats to
resolve the size, structure and contents of
bacterial genomes
David Williams1, William L Trimble2, Meghan Shilts1, Folker Meyer2,3 and Howard Ochman1*
Abstract

Background: The numerous classes of repeats often impede the assembly of genome sequences from the short
reads provided by new sequencing technologies. We demonstrate a simple and rapid means to ascertain the
repeat structure and total size of a bacterial or archaeal genome without the need for assembly by directly
analyzing the abundances of distinct k-mers among reads.

Results: The sensitivity of this procedure to resolve variation within a bacterial species is demonstrated: genome
sizes and repeat structure of five environmental strains of E. coli from short Illumina reads were estimated by this
method, and total genome sizes corresponded well with those obtained for the same strains by pulsed-field gel
electrophoresis. In addition, this approach was applied to read-sets for completed genomes and shown to be
accurate over a wide range of microbial genome sizes.

Conclusions: Application of these procedures, based solely on k-mer abundances in short read data sets, allows
aspects of genome structure to be resolved that are not apparent from conventional short read assemblies. This
knowledge of the repetitive content of genomes provides insights into genome evolution and diversity.
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Background
New sequencing technologies, by generating hundreds
of millions of reads from multiplexed samples, allow the
rapid and simultaneous acquisition of many genome se-
quences, and foster comparative analyses of closely related
organisms. Despite achieving high coverage, the short
reads generated by many sequencing platforms permit
only partial assembly of genomes, due largely to the pres-
ence of numerous classes of repetitive sequences. Only re-
gions of unique, single copy sequence and repeat regions
shorter than the read length can be accurately assembled,
yielding draft genomes that consist of unordered contigs
separated by gaps of unspecified size [1]. These techno-
logical limitations conceal the size and organization of a
genome because the number, contents and distribution of
repeat arrays remain unknown. To resolve the total size
and repeat organization of a genome typically demands a
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complete genome assembly, which is ultimately obtained
by linking contigs through combinatorial strategies and
additional sequencing [2], which may sometimes be
aided by additional finishing approaches, such as optical
mapping [3].
The number, types and configuration of repeated se-

quences varies greatly within and across species. Even
bacterial genomes, which consist mostly of single-copy
protein-encoding genes, can contain multiple classes of
repetitive sequences that can prevent their assembly and
analysis. Bacterial genomes encode as many as 15 riboso-
mal DNA operons, which can each span several kilobases
and are of nearly identical sequence within most organ-
isms, complicating the assembly of their genomes [4].
Even more problematic are the shorter repetitive elements
and sequence repeats present in bacterial genomes [5,6].
For example, most bacteria harbor multiple classes of
insertion sequence (IS) elements, which average about a
kilobase in length and whose copy numbers are highly
variable, sometimes reaching hundreds of copies per
genome [7,8]. In addition, there are several other types of
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repetitive sequences, including the 21-to-65-nt repetitive
extragenic palindromic (REP) sequences [9], the 127-bp
palindromic enterobacterial repetitive intergenic con-
sensus (ERIC) sequences [10], and the bacterial inter-
spersed mosaic elements (BIME) [11], each of which
can be dispersed throughout the genome or exist in
tandem arrays [12].
Heterogeneity in the numerous classes of repetitive se-

quences contributes to the genome size variation that has
been observed in many bacterial species. For example, iso-
lates of Escherichia coli can differ by up to 30% in genome
size, with sequenced strains ranging from 4.5 to 5.9 Mb
[13-15]. Some of this size diversity is also attributable to
the differential accumulation of plasmids and prophages.
Accessory elements can also complicate the repeat struc-
ture of genomes because the multiple prophages within a
genome can encode the same genes, and plasmids are
often maintained in very high copy numbers.
Because high-coverage, short-read data contain infor-

mation about repeat content that is not apparent in draft
assemblies, we developed a procedure to estimate the
size and repeat content of genomes from raw sequence
data. This method relies on the analysis of the frequen-
cies of overlapping fixed-length sequences (k-mers) [16],
thereby exploiting a computationally efficient and scalable
analytical technique that underlies many search and
assembly algorithms. To date, k-mer-based algorithms
have served as the basis for efficient similarity searching
[16], vector removal [17], graph-based, short-read assem-
bly [18,19], short-read error correction [20,21], estimation
of genome repeat structure [22], comparison of whole
genomes [23], identification of anomalous genome regions
[24,25] and binning of sequence fragments from different
sources [26,27].
We show that direct analysis of the abundances of

unique 21-mers (icosihenamers) recovered from sets of
whole-genome shotgun short read sequences yields robust
estimates of total genome size and of the proportion of
the genome represented by repeats of each copy number.
Furthermore, sequence coverage can be estimated, se-
quence quality can be characterized, and sample contam-
ination can often be diagnosed. Therefore, resolution of
the repeat architecture of a genome can facilitate compari-
sons of genome size, structure and complexity, help the
assembly of accurate genome sequences, and improve
confidence in genome assemblies.

Results and discussion
Analysis of short-read datasets from novel E. coli strains
Our choice of k-mer length, 21, was determined empir-
ically and reflects the minimum size for these genomes
that can reliably distinguish small repeats from single-
copy sequences. Abundance analysis using smaller k-mers
is sensitive to shorter repeats, resulting in larger
proportions of sequence inferred to occur in multiple
copies (Additional file 1: Table S1) and k-mers shorter
than 15 nucleotides in length are more likely to match by
chance alone. The wider range of repeat lengths spanned
by longer k-mers causes abundance analysis to be less sen-
sitive to short repeats, such that smaller fractions of the
genome will be classified as part of a repeat. Discussions
of k-mer length have treated it as a parameter to be opti-
mized [28,29] and as a sensitivity/specificity tuning param-
eter for search and assembly [28,30]. It should be noted
that a k-mer length of 21 is biologically relevant: it is short
enough to resolve small repeated elements that occur in
E. coli, such as REP and ERIC sequences [10,24] but long
enough to distinguish between single copy protein-
encoding regions by spanning the sequence that defines
such regions as unique.
There are several methods to efficiently enumerate

k-mers, including dense representations [31], hashing
[32], and probabilistic data structures [33]. Technical
limitations on computer memory and storage space
make dense representations unreasonable for k-mers
longer than k = 18; however, the hashing implementation
used here (i.e., JELLYFISH [32]) is applicable to k-mers as
long as 31, and can in principle be applied to very large
datasets (1012 bp). Due to reverse-complement degener-
acy, the total number of possible k-mers is approximately
(½) 4k, and for k = 15 or greater, there are many more pos-
sible k-mers (>500 million) than basepairs in the largest
observed bacterial and archaeal genomes (<13 Mb). The
scarcity of long k-mers, together with the fact that most
microbial sequence is non-redundant, has the conse-
quence that most k-mers that do occur are present only
once, contain sequence from single copy genes, and map
to unique locations of the genome.
The abundance histograms (Figure 1A – E) display the

number of distinct 21-mers at each abundance (black line)
for the short-read datasets generated for five environmen-
tal strains of E. coli. To improve visualization of these
spectra, we transformed the data by multiplying the total
21-mers at an abundance by that abundance. These histo-
grams share several features denoting similarities in the
read sets produced for each genome. Starting in the upper
left of each plot are numerous, but low-abundance, 21-
mers: these represent the unique and rare 21-mers
produced by sequencing errors and are therefore not
relevant to assessments of genome size and architecture.
Next along the curve is the principal peak comprised of
4–5 million different 21-mers present at approximately
the same abundance. These represent 21-nucleotide se-
quences that are present in a single copy in the under-
lying genome. The horizontal position of the principal
peak, representing the mode of the 21-mer abundance,
is proportional to sequencing coverage. For sequencing
runs of the E. coli strains that we examined, sequence
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Figure 1 Abundance histograms of icosihenamers (21-mers) for five strains (A–E) of E. coli. Black lines represent the total number of
distinct 21-mers at each abundance value (as present in the Illumina short-read dataset for a strain), and red lines are the best-fit model for each
of the empirical 21-mer spectra. To increase the area within the plot containing peaks, total numbers of distinct 21-mers are multiplied by their
corresponding 21-mer abundances. This transformation does not affect the model fitting, and estimates of repeat structure and genome size
remain unaffected. Panel labels are as follows, A: strain A_03_34; B: strain B_04_28; C: strain C_04_22; D: strain D_04_27, E: strain E_01_37.
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coverage ranged from 55× in strain B to 85× in strain A,
resulting from variation in the number of sequencing
reads produced for each strain.
The multi-modal distributions of 21-mers at abundances

above that of the principal peak reflect primarily the
several classes of repetitive sequences that are present at
different copy numbers in a genome, although unevenness
in read coverage of the target genome can cause distortion
of the peak shape. The successive peaks occur at multiples
of the principal peak’s abundance, each of which reflects
the repeat copy number of the sequence contained in
those 21-mers, and the area under each peak is deter-
mined by the amount of unique sequence at that copy
number. In all five E. coli genomes analyzed, the first peak
is the largest, consistent with the expectation that
complete E. coli genome sequences, and bacteria in gen-
eral, are relatively gene-rich and consist primarily of single
copy sequences.
To help interpret the 21-mer spectra of unassembled

short-reads, we also examined the relationship between
21-mer abundances and the distribution of repeated se-
quences in a fully assembled genome. The abundance fre-
quencies of 21-mers in the complete E. coli DH1 genome
(Table 1) reveals a total of 4,494,886 unique 21-mers
(representing 97% of the genome), and another 33,614 21-
mers present between two and 75 times. It is also notable
that 5,132 21-mers in the E. coli DH1 genome were re-
peated seven times, corresponding to sequences common
to the seven near-identical ribosomal DNA (rrn) operons
(which includes the genes encoding the 16S and 23S ribo-
somal subunits) and to the insD IS2 transposase, which is
also at seven copies in this genome. Additionally, 1,240
21-mers are repeated more than 10 times, most of which
correspond to the insH IS5 transposase, present fifteen
times in the DH1 genome.

Relating abundance histograms to genome repeat
structures
The number of 21-mers that reside under each peak in an
abundance histogram corresponds closely to the number
of basepairs of sequence at a particular repeat copy-
number. To estimate the amount of unique sequence
under each peak and to gain insight into the repeat struc-
ture of each target genome, we applied a maximum likeli-
hood estimator to model the distribution of 21-mers in
each histogram spectrum (red lines in Figure 1). This ap-
proach is similar to but has advantages over the method
used by Li & Waterman [22] to estimate repeat structure
from sequence reads. In our implementation, the inference
of sequence repeats is guided by the natural property of
21-mer abundances to occur at integer multiples of the
modal k-mer abundance (the principal peaks in Figure 1).
Whereas our fitting procedure exploits this property to
stabilize the likelihood optimization, the implementation
of Li & Waterman [22] uses the expectation-maximization
algorithm. In addition, our approach was evaluated using



Table 1 Size and repeat structure of E. coli genomes estimated by icosihenamer (21-mer) analysis

Genome sequence (bp)

Strain A_03_34 Strain B_04_28 Strain C_04_22 Strain D_04_27 Strain E_01_37 DH1 (reference)

Copy numbera Unique Total Unique Total Unique Total Unique Total Unique Total Unique Total

1× 4,650,095 4,650,095 4,834,774 4,834,774 4,590,007 4,590,007 5,002,844 5,002,844 4,836,194 4,836,194 4,494,886 4,494,886

2× 34,059 68,119 5,364 10,728 177,520 355,041 45,770 91,541 111,882 223,764 14,578 29,196

3× 3,550 10,649 8,511 25,532 25,052 75,156 9,630 28,890 34,198 102,595 6,959 20,877

4× 1,158 4,632 6,296 25,183 8,270 33,079 2,235 8,939 30,549 122,197 2,072 8,288

5× 845 4,223 24 119 5,855 29,277 447 2,236 8,777 43,887 1,874 9,370

6× 0 0 286 1,714 2,271 13,627 196 1,175 4,611 27,665 1,415 8,490

7× 2,208 15,455 1,283 8,982 2,786 19,505 5,489 38,420 8,167 57,168 5,132 35,924

8× 2,566 20,530 3,311 26,486 4,028 32,222 3,170 25,360 3,301 26,405 213 1,704

9× 0 0 41 365 1 13 99 887 662 5,961 23 207

10× 0 0 6 64 424 4,242 6 56 989 9,888 26 260

11 × -20× 107 1669 24 329 679 10,796 1,331 17,155 3,080 45,197 1,240 18,757

21 × -79× 14 333 32 835 709 17,629 70 1,884 68 1,590 62 2,728

Cumulative totals: 4,775,705 4,935,111 5,180,594 5,219,387 5,502,511 4,630,687
aEach row corresponds to the number of nucleotides and the total amount of genome sequence inferred from the mixed Poisson model fit to each peak of the
21-mer spectrum of short reads for each of the novel E. coli strains (Figure 1A-E), and from direct counts of 21-mer in the E. coli DH1 genome sequence.
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high-coverage, short-read raw sequencing data and is
optimized for current technologies.
The amount of unique sequence, as well as the total

amounts of the genome sequence accounted for at each
repeat copy-number, vary among the five strains indicat-
ing that the strains differ in their repeat structure and
numbers of multicopy elements (Table 1). The choice of
k limits the shortest repeat that can be resolved. Our
choice of k = 21 allows resolution of the small repeated
elements that typically occur in E. coli and other bacteria.
Resolution of the repeat structure of a genome also
provides an estimate of the total genome size (Table 1,
bottom row). Despite different values of k providing differ-
ent interpretations of repeat structure (Additional file 1:
Table S1), estimates of genomes size are almost unaffected.
Other choices for k from 15 to 29 changed the genome
size estimates among our five E. coli datasets by less than
0.25% (Additional file 2: Table S2).
A common characteristic of the repeat structures of

these E. coli genomes is a trend towards less unique
sequence at higher copy numbers, except around seven
times the abundance of the principal peak. The peaks at
this copy number correspond to the rrn operons and
any other sequence repeated a similar number of times.
The rrn operons are present in seven copies in virtually
all strains of E. coli and were observed in the 21-mers
counted seven times in the completely sequenced E. coli
DH1 genome (Table 1).
Despite the similarities in repeat structure, 21-mer

abundance analysis using KMERSPECTRUMANALYZER
allows differences in repeat structure between these five
novel E. coli genomes to be resolved. The amount of
unique sequence at six to eight copies per genome ranges
from 4.8 kb in strain A_03_34 to 16.1 kb in strain
E_01_37. While E. coli rrn operons are approximately 5.4
kb and expected to be present at seven copies, they are
often non-identical at a few positions. Because 21-mer
abundance analysis only resolves identical sequence
repeats, the two smallest estimates of sequence at six to
eight copies were 4.8 kb in strain A_03_34 and 4.9 kb in
strain B_04_28 may not be an underestimation but an
accurate reflection of the identical sequence among rrn
operons. Any differences among the rrn operon sequences
would be included in the total genome size estimate but at
copy numbers less than seven. The estimates of sequence
at six to eight copies in strains C_04_22, D_04_22 and
E_01_37 were 9.1, 8.9 and 16.1 kb respectively and are
greater than can be explained by the presence of seven rrn
operons alone. These larger estimates are evidence of
additional repeated sequences at abundances similar to
that of the rrn operons.
There is little sequence repeated at high copy numbers

within strains A_03_34 and B_04_28: the repeats in nine
or more copies are represented by less than 121 bp of
unique sequence in both cases. In contrast, strains
D_04_22 and E_01_37 possess 1.3 kb and 3.0 kb respect-
ively, of sequence repeated nine or more times. The 1.3 kb
of high copy-number sequence from strain D_04_22 con-
tains two protein-coding regions sharing high similarity
with sequences annotated as IS911 transposases (GenBank
accession number AY555729.1), and some of the 3-kb se-
quence at high copy number in strain E_01_37 shares high
sequence similarity to plasmid pCE10B from E. coli O7:K1
strain CE10 (GenBank accession number: CP003036.1).



Williams et al. BMC Genomics 2013, 14:537 Page 5 of 11
http://www.biomedcentral.com/1471-2164/14/537
Accuracy of 21-mer analysis for determining microbial
genome sizes
The accuracy of estimates of total genome size obtained
by our fitting procedure was tested in three ways. First, we
assessed the sensitivity for discriminating the genome sizes
from the whole-genome shotgun short-read datasets of
five novel strains of E. coli, whose genome sizes were also
estimated by totaling the lengths of I-CeuI restriction frag-
ments resolved by pulsed-field gel electrophoresis (PFGE).
Next, we tested the range of microbial genome sizes over
which the procedure remains accurate by comparing the
size estimates made from publicly available short-read
datasets to the lengths of the corresponding complete
genome sequences. Finally, we assessed the robustness of
these genome size estimates by varying the read depths on
target genomes and varying error content by quality-score-
based read trimming.
The genome sizes obtained by enumerating 21-mers

were very similar to those estimated by physically sizing
I-CeuI restriction fragments by PFGE (Table 2). Based
on PFGE, the strains ranged in size from 4.87 Mb (Strain
A_03_34) to 5.50 Mb (Strain E_01_37), well within the
size range of completely sequenced E. coli genomes (4.59
Mb to 5.86 Mb). On average, genome sizes obtained by
PFGE differed by only about 2.5% from those obtained by
21-mer analysis, with the largest disparity observed in
E. coli strain D, for which we obtained genome size
estimates of 5.22 Mb by 21-mer analysis and 5.42 Mb by
PFGE. Aside from this strain, the two methods are in
agreement with respect to the relative genome size
estimates, identifying Strain A_03_34 as the smallest with
increasing sizes through Strain B_04_28, Strain C_04_22,
Strain D_04_27 and Strain E_01_37.
To assess the accuracy of the PFGE estimates, we

also sized E. coli strain MG1655, for which the gen-
ome sequence is available [34], by PFGE, and com-
pared fragment lengths to those expected based on the
I-CeuI sites in the sequenced genome. Except for the
largest I-CeuI restriction fragment, fragment length
sizes estimated by PFGE were very close to those
predicted by in silico digestion of the genome and are
listed in Additional file 3: Table S3 along with each
fragment size for the novel E. coli strains. Due to the
vagaries of resolving and sizing fragments > 1 Mb by
PFGE, we estimated the size of the largest I-CeuI in
the E. coli MG1655 genome to be 2.793 Mb, whereas
Table 2 Total genome sizes of five E. coli strains estimated by

Method Strain A_03_34 Strain B_0

PFGEa 4.869 5.047

21-mer analysis of sequencing reads 4.776 4.935
aRestriction digests of genomic DNAs with I-CeuI endonuclease yielded seven restri
file 3: Table S3.
it is actually 2.498 Mb according to published se-
quence [34].
Although the genome sizes determined by PFGE were

similar to those estimated by 21-mer analysis of the
short-read data, there remains some discrepancy be-
tween the two methods. One source of the difference is
that the PFGE only accurately assesses the sizes of linear
DNA fragments. Bacterial genomes often contain small
circular plasmids that remain intact after I-CeuI digestion
and these circular elements are not included when tabulat-
ing genome size. The reported lengths of complete gen-
ome sequences may differ from size estimates by 21-mer
analysis of read-sets because sequences, such as those
encoded on multicopy plasmids, are represented in read
data in proportion to their actual molecular quantities. In
contrast, published genome sizes do not accommodate
such differences in copy number leading to disparities
in the canonical genome size and actual DNA content
of the cell.
To further test the accuracy of k-mer analysis for esti-

mating genome sizes, we applied the 21-mer abundance
analysis to short-read datasets for a set of 19 microbial
genomes whose known sizes range from 5,386 to
9,033,684 bp (Additional file 4: Table S4). The correl-
ation coefficient between the actual sizes of these ge-
nomes and those estimated made by 21-mer abundance
analysis is 0.997, with a root-mean-squared error relative
to the known genome size of 6% (Figure 2). The largest
absolute discrepancy of 642 kb was observed for
Niastella koreensis GR20-10 (7% of the actual size) and
the largest relative discrepancy of 11.7% was observed
for Listeria monocytogenes J0161 (353 kb). Given the
difference in the size of the Niastella koreensis (9 Mb),
and Listeria monocytogenes (3 Mb) genomes, there is
little relationship between the estimation error and the
size of the genome over the range tested. However, any
underlying relationship between the estimation accuracy
and genome size may be masked by variation in systematic
sequencing error among the datasets tested.
Some of the differences, particularly the overestimations

of genome size by 21-mer analysis, may be caused by the
presence of multicopy plasmids: these elements are always
counted only once when reporting a completed genome
size but are included in proportion to their actual copy
numbers in 21-mer analysis. The over-estimate of the
7.6 Mb Cylindrospermum stagnale PCC 7417 genome
PFGE and icosihenamer analysis

Genome size (Mb)

4_28 Strain C_04_22 Strain D_04_27 Strain E_01_37

5.149 5.423 5.268

5.181 5.219 5.502

ction fragments for each genome, the sizes of which are listed in Additional



0 2000 4000 6000 8000 10000

0

2000

4000

6000

8000

10000

Complete Genome size (kb)

E
st

im
at

ed
 G

en
om

e 
S

iz
e 

(k
b)

Figure 2 Accuracy of genome sizes inferred from icosihenamer
(21-mers) abundances. Blue circles indicate genome sizes based
on 21-mer abundance analysis of short-read datasets compared to
published lengths of the same genomes. Red circles indicate
genome sizes based on 21-mer abundance analysis compared to
genome sizes for the identical strains estimated by PFGE. (See
Additional file 4: Table S4 for list of genomes used in this analysis).
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(Additional file 4: Table S4) by only 6,600 bp is consistent
with single copy plasmids and a small degree of error, and
the genome size estimated for Nostoc sp. PCC 7524 could
accommodate two copies of its smallest plasmid (6,361
bp) per chromosome. Similarly, the genome size estimated
for Thermovirga lienii DSM 17291 accommodates two or
three copies of its 31,872 bp plasmid in addition to its
chromosome. E. coli KO11FL carries a single plasmid,
pRK2, which has been shown experimentally to be
maintained in E. coli strains at between 25 to 40 molecules
per chromosomal equivalent [35,36]. We estimate the
genome size of E. coli KO11FL to be 181,588 bp greater
than its published chromosome size (5,021,812 bp),
yielding ≈ 34 copies of the 5,360 bp pRK2 plasmid, in
agreement with its known copy numbers. Figure 2 also
displays the genome size estimates of the five novel
E. coli strains as sized by PFGE demonstrating close
agreement between the assessment of accuracy within a
single species and across genome sizes of three orders
of magnitude.
Our method is most accurate when read coverage

over the entire genome is relatively even, since it pro-
vides k-mer abundance spectra with mixed Poisson dis-
tributions. One limitation in our approach is how well
the proposed model can account for systematic errors
in contemporary sequencing methods and still retain
accuracy. Uneven read coverage broadens the peaks in
the k-mer abundance spectra, sometimes causing errors
in the assignment of sequences to a particular read
coverage. Other factors that bias the k-mer abundance
spectra include random sequencing errors and sequences
derived from non-target DNA. Sequencing errors replace
high-abundance sequences among reads with com-
paratively rare sequences creating many novel low-
abundance k-mers. The fitting procedure implemented in
KMERSPECTRUMANALYZER is designed to exclude
these low-abundance k-mers by applying a heuristic low-
coverage cutoff. We tested whether the genome sizes of
the five novel E. coli, as estimated by 21-mer abundance
analysis, were affected by removal of read positions likely
to contain errors. We applied a trimming algorithm that
retained the longest contiguous read positions with a less
than 10% likelihood of being incorrect (i.e., a quality score
of 10). This trimming procedure had little effect on the
estimates of overall genome size, which changed by a max-
imum of only 0.19% (Additional file 5: Table S5). There-
fore, KMERSPECTRUMANALYZER is sufficiently robust
against sequencing error to negate any need for the pre-
processing of read data for error mitigation.
The 21-mer abundance analysis described here would

also be appropriate to the whole-genome shotgun sequen-
cing datasets of eukaryotes of known ploidy. Although a
kmer length of 21 is sufficient to ensure sparse sampling
for microbial genomes, greater values for k may be ne-
cessary for the largest eukaryotic genomes. However, ge-
nomes with more complex repeat structure and lower
sequencing coverage depths, can present challenges to the
estimation approach presented here..In principle, this 21-
mer abundance analysis can be applied to any sequencing
methodology; however, there are some additional limita-
tions. Extremely low coverage datasets (less than ≈ 10×)
and datasets with very high error rates (>5%) contain in-
sufficient sampling of the true k-mers to support numer-
ical inferences. While numerical inferences are supported
above 10× coverage depth, accuracy is compromised
below about 75× coverage depth (Additional file 6:
Figure S1). Among the four example datasets we tested,
only the estimates for the Owenweeksia hongkongensis
DSM 17368 reads (SRA run number: SRR190843) were
relatively inaccurate between 75–400× coverage; however,
it never differed by more than 4% from the completely as-
sembled genome length. k-mer spectrum approaches can
measure sequencing error, characterize heterozygosity,
strain variation or mixtures of organisms [37] within a
sample in an annotation-independent, scalable way, and
therefore, are applicable to a several sequencing applica-
tions, including the interpretation of metagenomic data
sets and diagnosing technical aspects of the sequencing
procedure.

Conclusions
Sequence repeats severely hamper the assembly of most
genomes, and these repeats continue to obscure genome
structure even with the high read depths afforded by
new sequencing technologies. We provide a simple and
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rapid means to resolve the repeat structure and total size
of a genome by directly analyzing the abundance of dis-
tinct k-mers among short reads. By obtaining the gen-
ome size and repeat structure of environmental isolates
of E. coli from 76-bp Illumina reads, we demonstrate
that the sensitivity of this method is great enough to re-
solve differences among bacterial strains. Total genome
size estimates corresponded well with those obtained for
the same strains by long-range RFLP mapping on
pulsed-field gels. In addition, inferences of genome size
from short-read datasets are not limited to strains within
species but are accurate across a wide range of genome
sizes from 0.005 to 9 Mb. The fitting procedure intro-
duced here depends only on the k-mer spectrum, which
summarizes the sequence redundancy of the data set but
preserves none of the sequence content.
Previous work on plants [38] and humans [39] has

exploited k-mer indices of raw sequence data to make
inferences about the genome structure, particularly
about the frequencies and contents of repetitive ele-
ments. More current analyses based on high-throughput
sequencing data have proposed a variety of heuristics
for estimating genome size by identifying features in
the k-mer spectrum [21] or by using arbitrary cutoffs
in the k-mer spectrum [40]. However, such approaches
have failed to exploit the fact that repetitive sequences
must occur at integer multiples of single copy sequences.
By incorporating this information, our method imple-
ments a more biologically accurate model of the k-mer
abundance distribution, adapting the procedure of [22] to
high-coverage (>30×), short-read sequences.
Accurate estimates of total unique sequence from raw

reads, as provided by KMERSPECTRUMANALYZER,
can also aid in the optimization of read assemblies.
Whereas the accuracy of an assembly is generally more
important than its assembled length, the extent to which
the total length of assembled contigs accounts for the
actual length of the sequenced genome is a potential
metric for the completeness of an assembly. The length
of the target sequence is usually unknown, but it can be
obtained directly from raw reads by 21-mer analysis,
thereby allowing an absolute measure of assembly suc-
cess. Moreover, abundance distributions in k-mer spectra
are also useful in identifying samples that are dominated
by PCR artifacts, samples contaminated with sequencing
adapters, and samples that contain mostly positive-
control calibration genomes (e.g., PhiX174, in the case of
Illumina) without performing assembly or similarity
searches.
We have observed that the reliability of many widely

used statistics for summarizing the k-mer spectrum,
including the number of unique k-mers, the fraction of
k-mers that are unique, or the fraction of k-mers above
an arbitrary or model-fitted threshold, are sensitive to
changes in sampling depth. Two summary statistics
that appear to be stable descriptions of certain inform-
ative properties of the k-mer spectrum are (i) the rank
order distribution of k-mers and (ii) the cumulative
fraction of the data consumed by rank ordered k-mers.
In addition to genome repeat structure resolution, the
KMERSPECTRUMANALYZER package includes tools
to visualize the rank-order distribution of k-mers and
assist in understanding sequence datasets, even in cases
where fitting the spectrum to a mixed over-dispersed
Poisson model fails.
Whole-genome shotgun sequencing applies technolo-

gies that generate hundreds of millions of short reads and
has recently become the most widely used tool in genome
analysis [41]. We introduce a straightforward methodology
that provides information about the repeat structure of
genomes that is ordinarily missing from assemblies of
short reads. This additional information offers new in-
sights about genome diversity and evolution that can be
gained through the analysis of novel datasets or through
the re-analysis of the large volumes of archived short read.

Methods
k-mer counting in sequence reads
The abundances of all overlapping 21-bp sequences
present in a set of whole-genome shotgun short-read
sequences were counted using JELLYFISH [32] k-mer
counting library (vers.1.1.5). No read trimming or error-
correcting algorithms were applied. The frequencies of
different k-mers (in this case 21-mers) at each abun-
dance value contained in a set of sequences are plotted
as a k-mer abundance spectrum (sometimes referred to
as an abundance or coverage histogram).
A repeated sequence in a sampled genome affects the

shape of these k-mer abundance spectra depending on
its length and copy number. A sequence of length l will
contain (l – k +1) different k-mers if it does not contain
repeats of length greater than k – 1. If the same sequence
occurs n times in a genome, shotgun sequencing would
sample these k-mers n times more often than those that
are single-copy in a genome, resulting in (l – k +1) k-mers
with abundances n times higher than the average read-
depth based on the number of sequencing reads. There-
fore, repeated sequences in the genome results in higher
abundances of the corresponding k-mers. These collec-
tions of k-mers at higher-than-normal abundances appear
as multiple peaks at different positions along the x-axis of
the k-mer abundance spectrum.

Relating k-mer abundance to genome size and repeat
abundance
We modeled the abundance distribution of k-mers as a
mixture of over-dispersed Poisson (negative binomial)
distributions in which the mixture coefficients represent



Williams et al. BMC Genomics 2013, 14:537 Page 8 of 11
http://www.biomedcentral.com/1471-2164/14/537
amounts of sequence at each copy number and the
overdispersion parameter accommodates uneven read-
depth across the target genome. We refer to the peak in
the abundance spectrum that consists of the k-mers cor-
responding to single-copy sequence in the target genome
as the principal peak. Peaks in the abundance spectrum
that have greater abundance than the principal peak cor-
respond to sequences with different levels of abundance
(i.e., repeat copy numbers), which are expected to occur
at integer multiples of the principal abundance.
If k-mers were randomly sampled from a genome with-

out repeats, the shape of the k-mer abundance spectrum
would be a single Poisson distribution [22]:

P1 x; a1;c
� � ¼ a1Poisson x; cð Þ;

where P1 (x) represents the number of k-mers observed x
times, a1 is the number of unique k-mers, and c is a par-
ameter describing the abundance of the principal peak.
This model is expanded to include a mixture of compo-
nents {a1, a2, … an}, denumerated by n, that describe the
number of sequences at each integer level of abundance
by summing Poisson distributions for each abundance
level:

PN x; c; anf gð Þ ¼ ∑nan Poisson x; c�nð Þ;

which terminates at the number of occurrences of the
highest-abundance k-mer in a genome (or at some pre-
scribed cutoff ). We interpret the mixing coefficients
{a1, a2, … aN} as estimates of the amount of unique se-
quence at each repeat copy number. Finally, this can be
generalized to over-dispersed Poisson shapes by intro-
ducing a single over-dispersion shape parameter s to
allow distributions with excess variance:

PNO x; c; anf g; sð Þ ¼ ∑nan NegBinomial

x;mean ¼ c � n; alpha ¼ s=nð Þ:

NegBinomial is the mu-alpha parameterization of the
negative binomial, where NegBinomial (x; mu, alpha)
gives the negative binomial distribution with mean = mu
and variance = (1 + alpha)*mu2. When comparing plots
of the actual 21-mer spectrum of E. coli K12 to the
PN and PNO models calculated from 21-mer counts
in the reference genome, we found that the mixed-
Poisson model showed multiple peaks that fail to
match the shape and general character of the peaks
in the actual spectrum, whereas the over-dispersed
adequately models the shape of the peaks of the
spectrum.
We use this mixed Poisson with over-dispersion

model to infer the k-mer-abundance distribution by
maximizing the likelihood. Thus, for an observed k-mer
spectrum zi:

Likelihood c; anf g; s ziÞ ¼ ∑i Poisson zi;PNO i; cov; anf g; sð Þð Þ:jð

Here, the sum includes the full range of observed k-mer
abundances, including values of i, for which zi is zero, and
PNO ( ) is the sum of terms defined above.
After the set of coefficients {an} has been estimated, the

number of unique k-mers is the sum of the a coefficients:

Nunique ¼ ∑an:

The estimate of the genome size in base pairs is the
sum of the products of the unique k-mers and their rela-
tive abundances. This estimate is obtained by weighting
k-mers by the occurrence number n before adding them
up i.e., the amount of unique sequence at each copy
number multiplied by the copy-number:

Gsizeest ¼ ∑n an:

Fitting and implementation
The first three terms in the equations above, a1, c, and s,
describe the height, abundance, and width of the princi-
pal peak in the k-mer spectrum. Twenty-nine additional
terms, fitted sequentially, describe the height of peaks
centered at integer multiples of the abundance of the
principal peak ranging from 2× to 30×. Although sequen-
cing errors are not explicitly modeled, by excluding points
in the abundance spectrum at abundances less than half of
the fitted abundance of the main peak, low-abundance se-
quencing artifacts effectively do not affect model fitting.
We tested this assertion by estimating genome sizes with
and without the quality score-based trimming of read po-
sitions. DynamicTrim from the SolexaQA package ver-
sion 2.2 [42] was used to trim reads. The fitting procedure
also employs several heuristics, including the masking of
parts of the spectrum that are out of the range of abun-
dances being fitted, weighted-least-squares optimization
to set initial values, non-negativity constraints on the se-
quence size parameters, and successive fitting of low-
order (and lower-dimensional) models before high-order
models, all of which serve to stabilize the maximum likeli-
hood optimization on real data.
Short-read datasets were downloaded from the NCBI

Sequence Read Archive [43] and the corresponding
complete genome sequences were obtained from the
NCBI RefSeq database [44]. For this analysis, the smallest
genome size was that of phiX174 (5,386 bp) and the
largest was Niastella koreensis GR20-10 (9,033,684 bp). To
fit the phiX174 genome, the procedure required a manual
low-abundance cutoff of 10,000× and was constrained to
fit only 1 term in the mixture model because of the
extremely high coverage in that dataset (100,000×);
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otherwise, all of the microbial genomes were analyzed
with the same procedures and parameters. To aid in the
interpretation of the k-mer spectra (and the estimation of
repeat copy numbers) for the five E. coli strains, we also
queried and tabulated the amounts of repeated sequence
in the complete genome sequence of E. coli DH1
(NC_017625).
The fitting procedure was implemented in PYTHON

2.7.2 using NUMPY, SCIPY, and MATPLOTLIB. An
open-source implementation of this tool, KMERSPEC-
TRUMANALYZER, and the scripts used to retrieve,
process, and produce the numerical data in these ana-
lyses are available at http://github.com/MG-RAST/
kmerspectrumanalyzer.git [45]. The tool is available as
a module in the KBase sequence analysis framework
[46], allowing end-users to perform these analyses on a
third-party, scalable computing infrastructure rather
than their own hardware. Motivated by previous work
[47] our procedure is intended to be conveniently
reproducible.
Sampling, isolation and strain characterization of
environmental Escherichia coli
Strains of Escherichia coli were isolated from liquid
samples collected in July 2008 at the Central Contra
Costa Sanitary District Treatment Plant in Martinez,
California. Samples were titrated to a final concentra-
tion of 15% glycerol and stored at −80°C. An aliquot of
each sample was diluted 1:100 in LB broth, and 100 μl
was plated on MacConkey agar and incubated overnight
at 37°C.
Colonies of E. coli were initially selected based on colony

morphology and then typed genetically by sequencing
fragments of three diagnostic loci, fumC, gyrB and adk,
used in the multilocus sequence typing (MLST) analysis of
E. coli [48]. MLST proceeded by the colony PCR [49]
using primer pairs: fumC forward 5′-TCA CAG GTC
GCC AGC GCT TC-3′ and fumC reverse 5′-GTA CGC
AGC GAA AAA GAT TC-3′; gyrB forward 5′-TCG GCG
ACA CGG ATG ACG GC-3′ and gyrB reverse 5′-ATC
AGG CCT TCA CGC GCA TC-3′, adk forward 5′-ATT
CTG CTT GGC GCT CCG GG-3′ and adk reverse
5′-CCG TCA ACT TTC GCG TAT TT-3′. PCR frag-
ments were verified by agarose gel electrophoresis,
and prepared for sequencing through the addition of
0.2 μl exonuclease and 0.2 μl calf intestinal phosphat-
ase. Sanger sequencing of purified PCR products was
performed at the University of Arizona Genetics Core
for Sanger sequencing. Strains that differed in nucleo-
tide sequence from any of the >3000 MLST-typed
E. coli at any of the three diagnostic loci were deemed
as “unique” and stored in LB broth supplemented with
15% glycerol and stored at −80°C.
Whole-genome shotgun sequencing
Unique strains were streaked onto MacConkey agar and
grown overnight at 37°C. Individual colonies were trans-
ferred to 2 ml LB broth and grown overnight at 37°C.
DNA was isolated by disrupting pelleted cells in 1 ml of
TES buffer containing 50mM NaCl, 50 mM Tris–HCl,
50 mM EDTA, 5% SDS (pH 7.6) followed by mechanical
lysis with 0.1 mm zirconia/silica beads (BioSpec). The
aqueous phase was removed, and treated with an equal
volume of phenol/chloroform/isoamyl alcohol pH 7.9
(Ambion), followed by chloroform extraction and the
isopropanol precipitation of DNA. Purified DNAs were
quantified with Quant-iT PicoGreen (Invitrogen) and
submitted to the Yale Center for Genome Analysis for
library preparation and sequencing. Whole-genome shot-
gun sequencing was performed on an Illumina HiSeq
2000 generating 76-bp paired reads from the ends of
155-bp fragments. Short-read data were processed with
the CASAVA 1.8.2 package.

Sizing genomes by pulsed-field gel electrophoresis
Estimates of the genome sizes of the five newly se-
quenced strains of E. coli and of a control strain (E. coli
MG1655) were determined by pulsed-field gel electro-
phoresis following methods described in [50]. In short,
cells were grown in 5 ml of LB broth and treated with
180 μg/ml chloramphenicol to align chromosomes. Cells
were harvested by centrifugation, washed and resuspended
in 0.5 ml of TEN (10 mM Tris [pH 7.5], 100 mM EDTA
[pH 8], 250 mM NaCl), and mixed with 0.75 ml of 1.5%
low melt temperature agarose (RPI, Mount Prospect, IL)
in TEN. Agarose plugs were incubated for 21 hours in
lysis solution (0.1% lysozyme, 0.002% RNase, 0.5%
Sarkosyl, 10 mM Tris [pH 7.5], 100 mM EDTA [pH 8],
250 mM NaCl), with subsequent overnight incubation at
45°C in 250 mM EDTA containing 0.1% proteinase K
and 1% Sarkosyl. To inactivate excess proteases, agarose
plugs were incubated in 1 mM PMSF for 1 hr, and
washed and stored in 10mM Tris, 100 mM EDTA (pH 8)
at 4°C. Agarose plugs were washed five times, each for 20
min, in 50 volumes of distilled H2O, and equilibrated in
NEBuffer 4 with 0.1 mg/ml BSA (New England BioLabs,
Ipswich, MA). Five units of I-CeuI restriction endonucle-
ase (NEB) was added to initiate digestion, and after incu-
bation overnight at 37°C, EDTA was added to each sample
to a final concentration of 0.1 M to terminate digestion.
Electrophoresis was performed on a CHEF-DR II appar-

atus (Bio-Rad Laboratories, Richmond, CA) in 0.5× Tris-
borate-EDTA at 14°C. To resolve DNA fragments in the
20 to 200 kb range, pulse durations were ramped from
5 sec to 12.5 sec; for DNA fragments in the 400 to 800
kb range, pulse durations were ramped from 60 sec to
100 sec. In both cases, electrophoresis proceeded for
24 hr in a 0.9% agarose gel at 6 V/cm. To resolve DNA

http://github.com/MG-RAST/kmerspectrumanalyzer.git
http://github.com/MG-RAST/kmerspectrumanalyzer.git
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fragments in the 2000 to 3000 kb range, pulse durations
were ramped from 600 sec to 960 sec for 90 hr in a 0.7%
agarose gel at 2.4 V/cm. Gels were stained and
photographed digitally, and TIFF files of these images were
loaded using the tifffile.py PYTHON module (version
2013.01.18, [51]). Fragment sizes were estimated by
interpolation to standards of known size using second order
splines implemented in SCIPY. PYTHON 2.7.2 source
code is included in the KMERSPECTRUMANALYZER
repository in the ‘pfge_analysis’ folder [45].
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