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Abstract

Background: Mammalian hibernators display phenotypes similar to physiological responses to calorie restriction and
fasting, sleep, cold exposure, and ischemia-reperfusion in non-hibernating species. Whether biochemical changes
evident during hibernation have parallels in non-hibernating systems on molecular and genetic levels is unclear.

Results: We identified the molecular signatures of torpor and arousal episodes during hibernation using a
custom-designed microarray for the Arctic ground squirrel (Urocitellus parryii) and compared them with molecular
signatures of selected mouse phenotypes. Our results indicate that differential gene expression related to
metabolism during hibernation is associated with that during calorie restriction and that the nuclear receptor
protein PPARa is potentially crucial for metabolic remodeling in torpor. Sleep-wake cycle-related and temperature
response genes follow the same expression changes as during the torpor-arousal cycle. Increased fatty acid
metabolism occurs during hibernation but not during ischemia-reperfusion injury in mice and, thus, might
contribute to protection against ischemia-reperfusion during hibernation.

Conclusions: In this study, we systematically compared hibernation with alternative phenotypes to reveal novel
mechanisms that might be used therapeutically in human pathological conditions.
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Background

Hibernation in mammals is a naturally occurring process
of profound suppression of metabolic demand and
tolerance to hypothermia that enables individuals to
fast for 6-8 months. In addition, animals are protected
from injury following cycles of hypoperfusion and
reperfusion that occur as they cool and rewarm. In
an extreme example of hibernation, the Arctic ground
squirrel (AGS, Urocitellus parryii, family Sciuridae)
decreases its basal metabolism by 98% and body
temperature (Tb) to as low as -2.9°C when it enters
bouts of torpor, which can last for over 3 weeks [1].
In all small mammalian hibernators, torpor is periodically
interrupted by spontaneous arousal episodes when
animals raise their metabolism and Tb returns to
normal, euthermic levels for no more than 24 h. Animals
then re-enter torpor and repeat the torpor-arousal cycle
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until the end of the 6-8-month hibernation season. Gene
transcription [2] and translation [3] are dramatically
suppressed during torpor, and many additional physio-
logical parameters also greatly decrease and then recover
after arousal, e.g. heart rate, respiration, electrical activity,
and renal function [4].

The complex phenotypes in hibernation are examples
of extreme physiology that represent limits to adaptive
design and are therefore intriguing to biologists. Funda-
mental questions surrounding hibernation remain largely
unanswered; for instance, the relationship between
torpor and arousal and wake and sleep. Electroencephalo-
gram (EEG) recordings during entry into torpor suggest
that torpor and sleep may be homologous [5]. During
deep torpor, however, the EEG is isoelectric, and it has
been hypothesized that the associated low brain tem-
perature is incompatible with the restorative function of
sleep [6]. EEG recordings in the AGS taken during the
arousal cycle have demonstrated that the majority of time
at high body temperatures is spent in slow-wave and rapid
eye movement sleep, which may represent compensation
for the accumulation of sleep debt during torpor [7].
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Arousal episodes also restore metabolic homeostasis lost
from the plasma during torpor [8].

The role of circadian rhythms in hibernation is also
unclear. Core clock genes including Per1, Per2, and Bmall
stop oscillating in their expression levels during torpor in
European hamsters (Cricetus cricetus L.), which suggests
that the circadian clock is arrested during hibernation [9].
Circadian rhythms of body temperature have not been
detected during hibernation in either Arctic or European
ground squirrels, and arrhythmic patterns of body
temperature continue for several weeks after the animals
end torpor and resume constant high body temperatures
in spring, provided they experience constant darkness
[10,11]. However, very low amplitude cycles of body
temperature persist during torpor in the golden-mantled
ground squirrel (Callospermophilus lateralis) [5].

More information about the molecular basis of the
phenotypes displayed during mammalian hibernation may
lead to the development of novel clinical approaches for
the treatment of injuries and disease in humans. For
example, the tissues of hibernators experience regular
cycles of rapid changes in blood pressure and flow during
the torpor-arousal cycle; yet organs such as the liver, brain,
heart, and gut do not exhibit the type of damage expected
from ischemia-reperfusion in non-hibernating animals,
even when hibernators experience long periods of no blood
flow, blood loss, or trauma [4,12-15]. An understanding
of the molecular mechanisms of natural resistance to
hypoperfusion-reperfusion in hibernators may result
in treatments for or the prevention of heart attack,
stroke, or perioperative injuries. This approach could
be extended to preserve transplant organs, prevent
disuse atrophy, or treat sleeping disorders.

Here, we address these questions by studying the mo-
lecular signatures of hibernation in mammals. Microarray
experiments generate differential molecular signatures
under physiological and biochemical perturbations that
reflect genetic regulatory mechanisms [16]. Our initial
high-throughput efforts to create molecular signatures of
hibernation in small mammalians had limited coverage
that was insufficient for comprehensive comparisons to
signatures that define potentially related regulatory
pathways in model organisms [17,18]. In this study,
we designed a new cDNA microarray for the Arctic
ground squirrel with genome-wide coverage. Using this
microarray, we identified wide molecular signatures of
hibernation in the AGS liver during different stages of the
torpor-arousal cycle. Gene expression changes in the
liver are related to the overall inhibition of metabolism,
mechanisms of differential fuel use, and long-term fasting
during hibernation. In this systematic dissection of the
hibernation phenotype, we compared hibernation signa-
tures with those from different physiological conditions in
mice, including calorie restriction, PPARa knockout, sleep
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deprivation, cold exposure, and ischemia-reperfusion
(Table 1). Our study is the first attempt to investigate the
relationship between hibernation and other physiological
conditions at the molecular level.

Methods

Animals

AGS tissue samples were taken from the same animals
as in our previous microarray study [17]. Briefly, AGS
were trapped during July near Toolik Lake in northern
Alaska (68°N 149°W, elevation 809 m) and transported to
the University of Alaska, Fairbanks. Animals were initially
housed at 20+2°C with a 16:8-h light:dark photoperiod
and provided with Mazuri Rodent Chow and water ad
libitum. Hibernating animals were previously implanted
abdominally with temperature-sensitive radio transmitters
and maintained at a 4:20-h photoperiod. Core Tb was
monitored for precise stage of torpor and arousal by an
automated telemetry system that measures and records
core Tb every 10 min [19]. Animals sampled in torpor and
arousal episodes were deprived of food for the entire period
of hibernation. Animals were collected early in a torpor
bout after 10-20% of the duration of the bout (early torpor,
between 4—6 days, n=4). Animals late in a torpor bout
were collected after 80-90% of the duration of the previous
bout (late torpor, between 8-12 days, n=5). Animals
sampled early after spontaneously arousing from torpor
were collected 1-2 h after Tb had increased above
30°C during rewarming (early arousal, n=4). Animals
late in the arousal episode were collected 7-8 h after
Tb had increased above 30°C (late arousal, n=4).
Post-reproductive euthermic animals (P, n=7) that
had completed reproductive maturation and regres-
sion as assessed by external inspection of gonads and
genitalia and had entered molt were used as a non-
hibernating control. Torpid animals were euthanized
by decapitation without anesthesia. Aroused and post-
reproductive animals were deeply anesthetized with
isoflurane vapors and decapitated. Animal protocols
were approved by the University of Alaska, Fairbanks,
Institutional Animal Care and Use Committee.

AGS cDNA libraries construction

We constructed cDNA libraries enriched for full-length
inserts by applying the SMART template-switching
protocol, primer extension PCR [20], normalization, and
subtraction [21], as described by Federov et al. [22]. Five
AGS cDNA libraries were constructed: 100 - mixed library
(brain, liver, heart, brown adipose tissue, and muscle) used
for subtracting all other libraries, 101 - heart, 102 - brain,
and 103, 104 - liver. 24,371 AGS ESTs (expressed
sequence tags) 496 (SD +133) bases long were sequenced
at the University of Alaska, Fairbanks AGS cDNA library
project. Equal amounts of mRNA from hibernating and
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Table 1 Mouse microarray datasets on hibernation-related physiological conditions collected from GEO or

ArrayExpress databases

GEO/ArrayExpress ID Stress Source Microarray
E-MEXP-748 Calorie restriction Liver Mouse4302
GSE1093 Calorie restriction Liver MG-U74A
GSE2431 Calorie restriction Liver MG-U74A
GSE10657 Ischemia-reperfusion Liver Mouse4302
GSE9441 Sleep deprivation Liver Mouse4302
GSE8292 PPARa knockout Liver Mouse4302
GSE20645 Cold exposure Oligodendrocyte precursor cells Mouse4302

non-hibernating animals were pooled in cDNA libraries to
enhance transcript representation.

AGS EST clustering and annotation

We developed a bioinformatics pipeline to cluster and
annotate 24,371 AGS ESTs. The 1.90X coverage assembly
of the 13-lined ground squirrel (Ictidomys tridecemlineatus)
genome (speTril, Jun 2006) was obtained from Ensembl,
including genome sequences and 14,831 gene annotations.
The low coverage of the genome may still lead to incom-
plete gene models and annotations. EST sequences of
the golden-mantled (Callospermophilus lateralis; 8,803
sequences) and 13-lined ground squirrels (5,256 sequences)
were obtained from NCBIL We aligned the AGS ESTs and
those of the other two squirrels to speTril with BLASTN,
requiring > 50% alignment length and > 95% identity. The
sim4 program was used to identify the accurate splice sites
on the ESTs. Meanwhile, we aligned the human and
mouse RefSeq mRNA sequences to speTril using the
same method, requiring > 50% alignment length and > 85%
identity. The aligned ESTs and RefSeqs were clustered if
they shared common splice sites or their alignments over-
lapped by > 50% of the length of the shorter sequence. The
unaligned ESTs were aligned and clustered to each other.
To remove the redundancy on EST clusters due to genome
duplication or incomplete assembly, two or more EST
clusters were merged into one if they shared > 80% of the
ESTs in each cluster.

We chose the annotation for each EST cluster in the
following order of precedence: speTril annotation, human
RefSeq, and mouse RefSeq. For EST clusters that were not
annotated by the above, all ESTs in the cluster were
patched together to obtain an annotation in the NR
(non-redundant) database by BLASTX. Overall, 64% of
AGS ESTs were reliably aligned to speTril and 54% were
annotated with known gene symbols. 9,600 cDNA clones
were printed on the membrane cDNA arrays.

AGS cDNA microarray hybridization
Total RNA was extracted from tissues with RNeasy Kits
(Qiagen) and stored at -80°C, linearly amplified by the

[llumina TotalPrep RNA Amplification Kit (Ambion),
labeled with [33P]dCTP, and hybridized with array filters
as previously described [22]. All RNA samples were
processed in the same batch. The filters were exposed to
phosphorimager screens for 4 days and scanned at 50 pum
resolution in a Storm Phosphorimager. Images were
analyzed by the ImaGene program (Biodiscovery).

AGS cDNA microarray analysis

Out of 9,600 probes, 68,000 on the cDNA microarray
had a signal/background > 2. Only 50-120 probes were
undetected. The signals were subtracted from the back-
ground, divided by the median, and log2 transformed.
Early arousal and late arousal were treated together as
arousal (A). Early torpor and late torpor were treated
together as torpor (T). In total, A, T, and P contained
eight, nine, and seven animal replicates, respectively.
Three-state (A, T, P) one-way ANOVA was performed
on 9,600 probes. 5,314 unique genes with human symbols
were identified after removing redundancy at the probe
level according to the minimal ANOVA p-value. False
discovery rate (FDR) was evaluated by g-value using a
conservative method proposed by Storey and Tibshirani
[23]. Differentially expressed genes between each pair
of two states were selected by ANOVA models with
q-values < 0.05 and Tukey’s honestly significant difference
(HSD) test p-values < 0.05. Data analysis was performed in
R 2.11.1. Microarray data series were submitted to
the National Center for Biotechnology Information Gene
Expression Omnibus (NCBI GEO) under the accession
number GSE38700.

Mouse microarray analysis

Normalized data from GSE1093, GSE2431, and raw data
from the other microarrays were either collected from EBI
ArrayExpress repository or NCBI GEO datasets (Table 1).
Raw data were normalized by robust multi-array average
in the R package affy. The Mouse4302 microarray was
annotated by the R package mouse4302. The MG-U74A
microarray was annotated by Affymetrix platform GP
L81 on NCBI. Mouse gene symbols in annotation
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were replaced by the gene symbols of human homologues,
which facilitated the comparison of AGS and mouse
microarrays. According to the experimental design,
ANOVA (for PPARa knockout and sleep deprivation)
and t-tests (for cold exposure) were performed to obtain
differentially expressed genes at the q<0.05 significance
level. Differentially expressed genes in PPARa knockout
were also limited by a threshold on log2 fold-change as
suggested by Rakhshandehroo et al. [24]. Differentially
expressed genes in calorie restriction were determined by
a meta-analysis strategy [25], i.e. requiring consistent
changes of gene expression in three out of four
experiments. To remove redundancy on multiple probes
annotated by the same gene, we kept the probe with the
minimum g-value. Data analysis was performed in R 2.11.1.

Comparison of AGS and mouse microarrays

To determine the associations between hibernation and
calorie restriction, PPARa knockout, sleep deprivation,
and cold exposure, we calculated Pearson’s correlation
coefficient (PCC) of log2 fold-changes of differentially
expressed genes in both non-hibernating physiological
conditions and hibernation. The p-value for testing
the null hypothesis (PCC=0) was calculated based on
Pearson's product moment correlation coefficient. To
compare ischemia-reperfusion to hibernation, we turned
to the patterns of gene expression, assuming that P,
T, and A in hibernation are similar to the control
(CN), ischemia (IS), and reperfusion (RP), respectively.
A mathematical clustering technique, self-organizing
map, was applied to cluster the patterns of gene expres-
sion with robustness and accuracy [26]. Data analysis was
performed in R 2.11.1.

Comparison of AGS microarrays and PPARa and CIRBP
target genes

We required the target PPARa genes to be differentially
expressed in PPARa knockout and bound by PPARa.
The PPAR«a binding sites were collected from chromatin
immunoprecipitation with massively parallel DNA se-
quencing (ChIP-Seq) [27]. Differentially expressed genes
in PPARa knockout [24] were searched for PPARa
bound from 10 kb upstream to 3 kb downstream,
relative to the start of transcription, resulting in 614
target genes for PPARa.

We required the CIRBP (cold-inducible RNA-binding
protein) target genes to be differentially expressed in CIRBP
knockdown and bound by CIRBP clusters [28]. The bind-
ing CIRBP clusters were collected from cross-linking
and immunoprecipitation-high-throughput sequencing
(CLIP-Seq) [28]. Two hundred and one target genes
were obtained for CIRBP. Fisher’s exact test was performed
to detect the enrichment of target genes in differentially
expressed genes during hibernation.
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Results

Identification of molecular signatures of hibernation

We analyzed differential gene expression in AGS as a
model species for mammalian hibernation. The custom
microarray comprised 6,403 annotated AGS genes,
among which 5,314 were annotated with human gene
symbols. Because the aim of this study was to compare
AGS with non-hibernating model animals, we focused
on these 5,314 genes in downstream analyses.

More than one thousand genes (Additional file 1)
exhibited differential expression (q-value <0.05) across
torpor (T), arousal episodes (A), and post-reproduction
(P). Of these, 916, 823, and 383 genes were significantly
differentially expressed in T vs. P, A vs. P, and T vs. A com-
parisons (Tukey’s HSD test p < 0.05), and were labeled TP,
AP, and TA signatures, respectively. TP and AP signatures
have 509 genes in common (Figure 1). Of these genes, 508
that had consistent changes of direction in T vs. P and A
vs. P were defined as hibernation signatures. This indicates
that the seasonal differences in mRNA levels between
hibernating and post-reproduction states (T vs. P or A vs. P)
are larger than those within hibernating states (A vs. T).
Gene set enrichment analysis [16] was performed to
calculate the enrichment of canonical pathways in the
differentially expressed genes (Table 2).

Comparison of the calorie restriction and hibernation
datasets

During hibernation, fasting can last for most of the year; for
example, 7-8 months in female Arctic ground squirrels

3

Figure 1 Venn diagram of differentially expressed genes during
hibernation. 916, 823, and 383 genes were differentially expressed
in Tvs. P, Avs. P, and T vs. A comparisons, respectively. T: torpor; A:
arousal episodes; P: post-reproduction.

190
A vs. P
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Table 2 Top ranking enriched gene sets in different signature groups during hibernation
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Gene set description # Genes in set # Overlapping genes FDR g-value
477 genes that were over-expressed during T compared to P

Lipid and lipoprotein metabolism 478 26 35x107
Fatty acid metabolism 42 9 18x107
Valine, leucine, and isoleucine degradation 44 9 1.8x107
Fatty acid, triacylglycerol, and ketone body metabolism 168 14 49x107
PPAR signaling pathway 69 9 7.1x10°
439 genes that were under-expressed during T compared to P

Lipid and lipoprotein metabolism 478 34 0
Biological oxidations 139 19 0

Drug metabolism - cytochrome P450 72 16 0

Phase Il conjugation 70 15 0

301 genes that were over-expressed during A compared to P

Lipid and lipoprotein metabolism 478 14 2.7%107
522 genes that were under-expressed during A compared to P

Lipid and lipoprotein metabolism 478 36 0
Biological oxidations 139 29 0
Retinol metabolism 64 16 0

Phase Il conjugation 70 19 0
Steroid hormone biosynthesis 55 16 0

291 genes that were over-expressed during T compared to A

RNA metabolism 330 23 0
Ribosomes 88 16 0

60S ribosomal subunit, cytoplasmic 47 13 0

92 genes that were under-expressed during T compared to A

HCF-1 complex 19 3 84x107

Gene set enrichment analysis (v3.87) was performed with canonical gene pathways in the comparisons between torpor (T), arousal episodes (A), and

post-reproduction (P).

[29]. To examine the relationship between changes in gene
expression during hibernation and those during the best
available animal model of calorie restriction, we collected
calorie restriction (10-40% calories) microarray datasets
from mice [GSE1093, GSE2431, and E-MEXP748] [30-32].
This included two short-term (3 or 8 weeks) and two long-
term experiments (17 or 24 months). We focused on the
253 calorie restriction affected genes (Additional file 2) that
consistently showed significant differential expression in at
least three out of four experiments.

Because the AGS fasts during hibernation, calorie
restriction affected genes were compared with TP, AP, and
hibernation signatures (Table 2). These genes overlapped
best with hibernation signatures (PCC=0.58, p =0.01).
Eighteen genes were both significant in calorie restric-
tion and hibernation signatures (Additional file 3). The
over-expression of genes involved in gluconeogenesis
(PCK1) and the under-expression of genes in triglyceride
biosynthesis (ELOVL6, LPIN2) were observed during both
hibernation and calorie restriction. In particular, Lipin

2 (LPIN2), a phosphatidate phosphatase involved in
triglyceride metabolism and implicated in adipocyte
development was under-expressed [33]. In addition to
these metabolic genes, we identified that a transmembrane
receptor, growth hormone receptor (GHR), was under-
expressed during both hibernation and calorie restriction.
GHR expression in the liver decreases after food restric-
tion [34]; its under-expression may play a regulatory role
in slowing down cell growth when energy is conserved.

Comparison of the PPARa knockout and

hibernation datasets

PPARa is an important transcription factor regulating
fatty acid metabolism [35]. To examine if PPAR« is associ-
ated with the shift from the metabolism of glucose to fatty
acids in hibernation, we analyzed a PPARa knockout
microarray dataset [GSE8292] [24], consisting of wild type
mice and PPAR«a gene knockout mice under two feeding
conditions (with and without PPARa agonists). Two-way
ANOVA was performed with mouse genotype and feeding
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condition as factors. Of 21,248 genes, expression
levels of 1,587 differed significantly in PPAR«a knockout
(g-value < 0.05, log2 fold-change > 0.5).

TP signatures were significantly negatively correlated
with PPARa knockout (PCC =-0.19, p = 0.036, Table 3).
One hundred and twenty-three genes were both dif-
ferentially expressed in PPARa knockout and torpor
(Additional file 3). Of these genes, 33 were over-expressed
in PPARa knockout and torpor, and were enriched in
mitochondrial fatty acid B oxidation (HADHB, ACADL,
and ACADVL) and PPAR signaling (EHHADH, ACADL,
ACOXI, HMGCS2, and SLC27A2). HMGCS2, a key
gene involved in ketogenesis, is regulated by PPARa.
Thirty-eight genes were under-expressed in PPARa knock-
out and torpor, but were enriched in cholesterol and steroid
biosynthesis (FDFT1, FDPS, HMGCR, and SC4MOL).
Thus, PPARa plays a dual role of up-regulating fatty
acid catabolism and ketone body synthesis while down-
regulating cholesterol and steroid biosynthesis, which
are energetically costly. Comparison of the PPARa knock-
out and torpor datasets indicates that the genes regu-
lated by PPARa are involved in metabolic shifts
during torpor.

To further study the regulatory function of PPAR«
during hibernation, we collected 614 PPARa target
genes by combining ChIP-Seq [27] and differentially
expressed genes in PPARa knockout. Out of 916
genes in the TP signatures, 65 were PPARa target
genes (Fisher’s exact test p=0.002, odds ratio=1.6,
Additional file 3).

Comparison of the sleep deprivation and

hibernation datasets

We collected a sleep deprivation dataset [GSE9441] [36]
consisting of three strains of mice in two sleep states
(sleeping control and sleep deprived for 6 h). Two-way
ANOVA was performed with mouse strain and sleep
state as factors. Out of 21,248 genes, we identified 1,156
that consistently showed significantly different expression
levels during sleep deprivation among the mouse strains
(g-value < 0.05).
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To determine how sleep deprivation is related to tor-
por or arousal, we compared gene expression changes in
sleep deprivation with TA signatures. Thirty-seven out
of 383 genes in the TA signatures exhibited similar
differential expression patterns during sleep deprivation
(Additional file 3). PCC of log2 fold-changes of 37 genes
was -0.66 (p=10"° Table 4), which indicates that, in
terms of global gene expression in the liver, the effect of
sleep is more similar to torpor, whereas sleep deprivation
is similar to arousal. In contrast, sleep deprivation and
TP signatures were not significantly correlated. Next, we
focused on the genes with the opposite changes between
sleep deprivation and TA signatures. Twelve genes were
over-expressed during sleep deprivation and arousal
episodes; these included four heat shock protein genes
(HSPH1, HSP90AA1, HSPAS8, and HSP90ABI). CIRBP, in
response to low temperature stimulus, was the most
significantly under-expressed gene out of 16 during sleep
deprivation and arousal episodes. Temperature-responsive
genes were noticeably similar in expression changes
during both mouse sleep and AGS torpor.

Comparison of the cold exposure and

hibernation datasets

To further examine the relationship between temperature
response and hibernation, we obtained a mouse cold
exposure dataset [GSE20645] [37], consisting of two groups
(n=4) of mouse oligodendrocyte precursor cells cultured
at 31.5°C and 37°C, for 48 h. Although this system is quite
different from the AGS liver, the influence of a temperature
decrease is the most common feature of the two datasets.
We considered 31.5°C cold exposure and 37°C the control.
Of 21,248 genes, 1,675 were differentially expressed during
cold exposure (g-value < 0.05).

AGS body temperature is much lower during torpor
than arousal or post-reproduction. Thus, we compared
differentially expressed genes during cold exposure with
TP and TA signatures (Table 4). The PCC of log2 fold-
changes of overlapping genes in cold exposure was not
significant for either TP or TA signatures. However, genes
with a consistent change in direction common to both TP

Table 3 Hibernation signatures, TP signatures, and AP signatures compared with calorie restriction and

PPARa knockout

TP signatures (916 genes)

AP signatures (823 genes)  Hibernation signatures (508 genes)

Calorie restriction (253 genes) ~ Overlap # 24
PCC 041
p-value 0.04
PPARa knockout (1587 genes)  Overlap # 123
PCC -0.19
p-value 0.04

29 18
0.23 0.58
0.23 0.01
103 73

-0.14 -0.15
0.17 0.19

Overlap # is the number of overlapping genes. PCC is Pearson’s correlation coefficient of log2 fold-changes of overlapping genes. P-value is calculated based on
Pearson's product moment correlation coefficient to test the null hypothesis (PCC = 0). TP: torpor vs. post-reproduction; AP: arousal episodes vs. post-reproduction.
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Table 4 TP signatures and TA signatures compared with sleep deprivation and cold exposure

TP signatures (916 genes)

TA signatures (383 genes) Consistent TP-TA (144 genes)

Sleep deprivation (1156 genes) Overlap # 82

PCC 0.19

p-value 0.08

Cold exposure (1675 genes) Overlap # 106
PCC -0.002

p-value 0.98

37 /

—0.66 /

76x10° /
4 19
002 049
09 003

Overlap # is the number of overlapping genes. PCC is Pearson’s correlation coefficient of log2 fold-changes of overlapping genes. P-value is calculated based on
Pearson's product moment correlation coefficient to test the null hypothesis (PCC = 0). Consistent TP-TA is the consistent part of TP and TA signatures
(hypothermia signatures). TP: torpor vs. post-reproduction; TA: torpor vs. arousal episodes.

and TA signatures were significantly positively correlated
with cold exposure (PCC=0.49, p=0.03, Table 4).
Nineteen genes were significant both in cold exposure and
the consistent signatures of TP and TA (Additional file 3).
Of them, CIRBP displayed the most significant change. The
heat shock protein HSPHI and the HSPH90 co-chaperone,
CHORDC1 [38], both decreased during cold exposure and
torpor. Therefore, gene expression changes common to TP
and TA signatures are also common to cold-induced
gene expression changes and are defined as hypothermia
signatures.

Comparison of the circadian and hibernation datasets
We collected 2,276 circadian oscillating genes from
multiple microarray studies in mouse livers, and inte-
grated their circadian peak and trough information [39].
Eighty-three circadian genes were differentially expressed
in TA signatures (Additional file 3). Interestingly, the
circadian peaks of 65 genes over-expressed during torpor
appeared mostly during the light phase (Zeitgeber Time,
ZT0-ZT12), when the mice were asleep. The circadian
peaks of 18 genes under-expressed during torpor appeared
mostly during the dark phase (ZT12-ZT24) when the mice
were awake (Figure 2). Fisher’s exact test (p = 107°, odds
ratio = 10.4) shows a strong association between genes
over-expressed during torpor and those over-expressed
during sleep. This is consistent with the results of
our comparison between sleep deprivation and hiberna-
tion. The daily sleep-wake cycle in mice shares significant
molecular signatures with the AGS torpor-arousal cycle
during hibernation, with torpor being similar to sleep.
CIRBP emerges as one of the most significant genes com-
mon to TA signatures and circadian genes that peak during
the light phase. CIRBD also over-expressed during cold
exposure and under-expressed during sleep deprivation, is
a major cold shock protein in mammals involved in the
modulation of transcription and translation [40]. A recent
study reported that CIRBP plays an important role in
post-transcriptional regulation of the circadian clock
[28]. To examine its role in torpor, we collected 201
CIRBP target genes determined by CLIP-Seq and their

differential expression upon CIRBP knockdown (q < 0.05)
[28]. Hypothermia signatures were enriched within
the CIRBP target genes (Fisher’s exact test p=0.01,
odds ratio =3.5). These target genes include DERL2,
FUBPI, NNT, SMADS, TARDBP, and THRA, consisting
mainly of transcription factors and RNA-binding proteins.
Notably, TARDBP [41], under-expressed in both TP
and TA signatures, was over-expressed during sleep
deprivation and showed a circadian oscillation peak in
the dark phase (ZT17).

Comparison of the ischemia-reperfusion and

hibernation datasets

We obtained a mouse liver ischemia-reperfusion dataset
[GSE10657] [42] including five states (control, ischemia
30 min, ischemia 60 min, ischemia 90 min, and reperfusion
1 h) in young and old mice. Old mice experienced more
severe injuries than young mice. Ischemia 60 min showed
the smallest correlation with the control in gene expression.
Thus, we chose ischemia 60 min in old mice to represent
ischemia (IS), combined with the control (CN) and
reperfusion (RP). For comparisons, we considered T, with
its conditions of low blood pressure and hypoperfusion, as
the counterpart of ischemia, A as the counterpart of
reperfusion, and P as the counterpart of the control
during hibernation.

To compare the overall trend of gene expression in
ischemia-reperfusion and hibernation, self-organizing
mapping was performed for 4,408 overlapping genes
(Figure 3). One of the major patterns shared between
ischemia-reperfusion and hibernation is the high-low-low
pattern in CN-IS-RP (Figure 3A, top left) and P-T-A
(Figure 3B, top left) comparisons. For the>70% of
genes exhibiting these patterns, the expression trends
were very similar between ischemia-reperfusion and
hibernation, as indicated by the positive correlation
(PCC>0.9) of log2 fold-changes between pair-wise
comparisons in CN-IS-RP and P-T-A.

The under-expression of genes in the protein-
ubiquitination pathway leads to severe ischemia-reperfusion
injury [42]. These genes decreased in expression during
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ischemia-reperfusion in old mice (Figure 4A). How-
ever, they were not affected during hibernation (Figure 4B),
indicating protective functions against ischemia-reperfusion
during hibernation. One major difference between ischemia-
reperfusion and hibernation in the self-organizing map is
that hibernation displays a pattern of low-high-high
in P-T-A of hibernation (Figure 3B, bottom right). In this
pattern unique to hibernation, expression levels of these

genes are elevated during the hibernation season in both T
and A when compared with P. They are enriched in fatty
acid B-oxidation and PPAR signaling pathways. We further
examined the expression of the 13 genes (EHHADH,
ACADS, HADH, HADHB, ACAT1, ALDH9A1, ALDH?2,
ACAA2, ACOX1, ACSL3, ACADL, and ADH4) involved in
fatty acid metabolism. They had lower expression in IS and
RP compared with CN in the ischemia-reperfusion dataset
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Figure 3 Patterns of gene expression in ischemia-reperfusion (CN-IS-RP) and hibernation (P-T-A). The expression values were normalized
to (-1,1) in the ischemia-reperfusion (A) and hibernation datasets (B). Gene expression trends were clustered into nine patterns by self-organizing
mapping. The numbers of genes in each pattern are shown on the top of the grids. The patterns that contain the most genes are in the top left
and bottom right of each map. One of the major patterns shared between ischemia-reperfusion and hibernation is the high-low-low pattern

(A and B, top left). One major difference between ischemia-reperfusion and hibernation is that hibernation exhibits a low-high-high pattern

(B, right bottom). CN: control; IS: ischemia; RP: reperfusion; T: torpor; A: arousal episodes; P: post-reproduction.




Xu et al. BMC Genomics 2013, 14:567
http://www.biomedcentral.com/1471-2164/14/567

Page 9 of 13

A Color Key
-2 2
Row Z-Score
HSPY0AAT
PSMA1
PSMA2
PSMA4
PSMAS
PSMA7
PSMC1
PSMC2
PSMC4
PSMC5
PSMC6
PSMD11
PSMD12
PSMD14
PSMD2
PSMD4
PSMD6
PSMD7
TCEB1
UBE2E1
UBE2V2
UBE3A
UCHL5
USP1
USP14
USP33

Color Key

2 _0
Row Z-Score

EHHADH

ACADS

HADH

HADHB

ACAT1

ALDH9A1

ALDH2

ACAA2

ACOX1

ACSL3

ACADVL

ACADL

ADH4

Figure 4 Heat maps of genes in the protein-ubiquitination pathway and fatty acid metabolism during ischemia-reperfusion and
hibernation. Genes involved in the protein-ubiquitination pathway decrease in expression during ischemia-reperfusion (A) but not during hibernation
(B). Genes involved in fatty acid metabolism displayed lower expressions in ischemia-reperfusion (C) but greater expressions in torpor than in either
arousal episodes or post-reproduction (D). CN: control; IS: ischemia; RP: reperfusion; T: torpor; A: arousal episodes; P: post-reproduction.

B

Color Key

-4 _0 2
Row Z-Score

HSP90AA1
PSMA1
PSMA2
PSMA4
PSMA5
PSMA7
PSMC1
PSMC2
PSMC4
PSMC5
PSMCé
PSMD11
PSMD12
PSMD14
PSMD2
PSMD4
PSMDé
PSMD7
TCEB1
UBE2E1
UBE2V2
UBE3A
UCHLS
USP1
USP14
USP33

PPPPPPPTTTTTTTTTAAAAAAAA

D

Color Key

2.0 2
Row Z-Score

EHHADH

ACADS

HADH

HADHB

ACAT1

ALDHO9A1

ALDH2

ACAA2

ACOX1

ACSL3

ACADVL

ACADL

ADH4

PPPPPPPTTTTTTTTTAAAAAAAA

but greater expression in T compared with A and P
in the hibernation dataset (Figure 4C, 4D). Therefore,
the protective functions of hibernation against ischemia-
reperfusion might be derived from the increase in fatty
acid metabolism.

Summary

The most significant molecular signatures of hibernation
when compared with non-hibernating physiological pheno-
types are shown in Figure 5A. These include comparisons
of PPARa knockout to TP signatures, sleep deprivation to

TA signatures, calorie restriction to hibernation signatures,
and cold exposure to hypothermia signatures. The genes
involved in these comparisons are shown in Figure 5B.

Discussion

Metabolic shifts during hibernation

On the physiological level, similarities between fasting
during hibernation and calorie restriction are manifested in
several ways, for instance, blood glucose and blood insulin
[43]. Fasting mice are prone to lower body temperatures
and enter a torpor-like state. Calorie restriction in mice and
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hibernation in the AGS shared many molecular signatures
involved in shifts in metabolic fuel use, e.g. high expression
of gluconeogenesis and low expression of fatty acid
biosynthesis, together with regulatory changes to suppress
cell growth. The results from the PPARa knockout and
ChIP-Seq experiments in combination provide further
support that PPARa is a key regulator that mediates
the switch in metabolism from carbohydrates to fatty
acids during torpor.

Sleep-wake and torpor-arousal cycles

In the circadian cycle the Tb of most animals, including
mice, oscillates. Tb is high when mice are awake and
lower when they are sleeping. During hibernation, core
AGS Tb remains close to 0°C for over 3 weeks during
torpor and returns to euthermic levels for less than 16 h
during arousal episodes. Such similarities have led to the
hypothesis that the torpor-arousal cycle is the result of
the expression of peripheral clocks, but not the central
circadian clock, that persists in a non-temperature
compensated manner during hibernation [44]. Our
results support this hypothesis based on the expression
changes of temperature-responsive genes, e.g. heat shock
protein genes and CIRBP. Therefore, these temperature-
responsive genes may be components of a non-temperature
compensated peripheral clock. Recently, the circadian
oscillation of Tb controlled by the SCN was proposed to
serve as a global entrainment cue to synchronize peripheral
clocks, in which the heat shock pathway was shown to play
a critical role [45/46]. CIRBP modulates circadian gene
expression post-transcriptionally [28]. Our analysis suggests
that CIRBP directly regulates several other transcription
factors and RNA-binding proteins that are potentially
important during hibernation. In combination, heat shock
proteins and CIRBP may be important links between the
torpor-arousal cycle during hibernation and sleep-wake and
activity cycles in circadian rhythms.

Ischemia-reperfusion and hibernation

Whether cycles of torpor and arousal and ischemia-
reperfusion represent similar physiological conditions is
controversial. Blood flow, though vastly reduced, continues
during steady-state torpor and meets a reduced metabolic
demand. During arousal, however, blood pressure and flow
quickly rise with evidence of oxidative stress [47]. We iden-
tified a large set of genes with strong low-high-high patterns
comparing torpor, arousal, and post-hibernation that oc-
curred during hibernation but was absent in mouse
ischemia-reperfusion, in which fatty acid B-oxidation and
PPAR signaling associated genes are over-represented. The
protective effects of long-chain polyunsaturated fatty acids
on ischemia-reperfusion injury have been shown in
the rat heart [48] and liver [49]. Our study implies
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that the increase in fatty acid metabolism might protect
against ischemia-reperfusion injury.

Conclusions

This is the first genome-wide gene expression study to
systematically compare stages in the hibernation phenotype
with gene expression patterns in calorie restriction, sleep
deprivation, cold exposure, circadian cycles, and ischemia-
reperfusion in mice. Two important regulators, PPARa and
CIRBP, have been examined for their roles in metabolic shift
and hypothermia during hibernation. Undoubtedly, hiber-
nation as an integrated and complex phenotype differs from
each of the physiological conditions that we compared.
There is only limited overlap of molecular signatures
between hibernation and the physiological conditions that
we examined in mice. Some of the differences we observed
may be due to species differences between the AGS and
mice. Another major difference between hibernation in the
AGS and the conditions in mice is Tb. Transcription and
translation are greatly decreased in the near zero AGS Tb
during hibernation but not in any of the physiological
conditions we examined in mice. The over-expressed
mRNA transcripts in torpor may have been elevated prior
to entry or re-entry into torpor. These transcripts may be
translated into proteins during arousal episodes to fulfill
their functions during torpor. Nevertheless, the shared
molecular signatures identified in our study will further our
understanding of the relationship between hibernation and
alternative phenomena in non-hibernating animals and
promote its application in human medicine.

Additional files

Additional file 1: Table S1. ANOVA results of differentially expressed
genes during hibernation. Probe ID indicates the probe ID on the microarray.
Gene indicates the annotation of probes in the human gene symbol. ANOVA
p indicates p-values of ANOVA between post-reproduction (P), torpor (T), and
arousal episodes (A). The 4th column showes g-values of ANOVA p-values
after multiple test correction. The 5th-7th columns show log2 transformed
signals in A, P, and T states, respectively. The 8-10th columns show log2
fold-changes (LFC) between each pair of states. The 11-13th columns show
Tukey's honestly significant difference test p-value between each pair of
states. The rows were ranked in the order of the g-value.

Additional file 2: Table S2. Meta-analysis results of differentially
expressed genes during calorie restriction. The calorie restriction column
is the mean of log2 fold-changes between calorie restriction and control
in the meta-analysis.

Additional file 3: Table S3. Genes overlapping between certain parts
of the hibernation signatures and corresponding physiological
conditions. The 2-4th columns show the log2 fold-changes of gene
expression in TP, AP, and TA signatures. The 5-8th columns show the
log2 fold-changes of gene expression during calorie restriction, PPARa
knockout, sleep deprivation, and cold exposure, when compared with
hibernation, TP, TA, and hypothermia signatures, respectively. The 9th
column shows the phases of circadian genes in TA signatures. The T in
the 10th column indicates the PPARa target gene in TP signatures. The
symbol - indicates the gene is not available or significant to the
corresponding condition. TP: torpor vs. post-reproduction; AP: arousal
episodes vs. post-reproduction; TA: torpor vs. arousal episodes.
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