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Abstract

Background: Buffalograss [Buchloé dactyloides (Nutt,) Engel. syn. Bouteloua dactyloides (Nutt,) Columbus] is a United
States native turfgrass species that requires less irrigation, fungicides and pesticides compared to more commonly
used turfgrass species. In areas where water is limited, interest in this grass species for lawns is increasing. While
several buffalograss cultivars have been developed through buffalograss breeding, the timeframe for new cultivar
development is long and is limited by a lack of useful genetic resources. Two high throughput next-generation
sequencing techniques were used to increase the genomic resources available for buffalograss.

Results: Total RNA was extracted and purified from leaf samples of two buffalograss cultivars. 378" and ‘Prestige’
cDNA libraries were subjected to high throughput sequencing on the lllumina GA and Roche 454 Titanium FLX
sequencing platforms. The 454 platform (3 samples) produced 1,300,885 reads and the lllumina platform (12
samples) generated approximately 332 million reads. The multiple k-mer technique for de novo assembly using

Velvet and Oases was applied. A total of 121,288 contigs were assembled that were similar to previously reported
Ensembl commelinid sequences. Original lllumina reads were also mapped to the high quality assembly to estimate
expression levels of buffalograss transcripts. There were a total of 325 differentially expressed genes between the
two buffalograss cultivars. A glycosyl transferase, serine threonine kinase, and nb-arc domain containing transcripts
were among those differentially expressed between the two cultivars. These genes have been previously implicated
in defense response pathways and may in part explain some of the performance differences between ‘Prestige’

and ‘378"

Conclusions: To date, this is the first high throughput sequencing experiment conducted on buffalograss. In total,
121,288 high quality transcripts were assembled, significantly expanding the limited genetic resources available for

buffalograss genetic studies. Additionally, 325 differentially expressed sequences were identified which may
contribute to performance or morphological differences between ‘Prestige’ and ‘378" buffalograss cultivars.
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Background

Buffalograss [Buchloé dactyloides (Nutt.) Engel. syn.
Bouteloua dactyloides (Nutt.) Columbus] is a turfgrass
species native to the Great Plains region of the United
States with exceptional drought, cold and heat tolerance.
Buffalograss is often considered an ideal low input turf-
grass species because it requires relatively less irrigation,
fertility, and pesticide inputs to maintain an acceptable
level of turfgrass quality compared to more commonly
used turfgrass species [1]. With the increased frequency
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and duration of drought over the past few growing sea-
sons, buffalograss demand by consumers is on the rise.
Buffalograss has a base haploid chromosome number of
10 and exists as a ploidy series ranging from diploid (2n =
20) to hexaploid (2n = 60). Diploids and tetraploids appear
to be more southerly adapted, while hexaploids are found
throughout the northern range of the Great Plains [2].
Buffalograss is a perennial species that is highly stolonifer-
ous, forms a dense sod, has fine leaf texture, and is greyish
green in color [1]. Buffalograss is also dioecious and thus is
an obligate outcrossing, highly heterogeneous species which
complicates cultivar development and genomic studies.
Some challenges associated with buffalograss management
are its intolerance of shade [3], short growing season in
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cooler climates [3], and susceptibility to certain pests [4,5].
Each of these traits is being addressed through breeding ef-
forts to reduce the impact of these stresses on future
buffalograss cultivars. Traditional buffalograss breeding
strategies rely on genetic diversity among germplasm and
the introgression of positive traits from one cultivar into
another with improved turfgrass performance. The devel-
opment of new buffalograss cultivars is a lengthy process
that could be accelerated through the use of expanded gen-
omic resources and molecular assisted breeding strategies.

Relative to the major agronomic food crops, there are few
genomic resources available for studying buffalograss; for
example, there are no buffalograss EST sequences published
in GenBank [6] (accessed on 8/28/2013). To date, most of
the genetic studies in buffalograss have been directed to-
wards genetic marker development, resolving the taxonomy
of buffalograss, and assessing genetic diversity of individuals
among germplasm collections. For example, RAPD and iso-
zyme markers were used to evaluate genetic relationships
among two diploid buffalograss populations originating
from central Mexico and two originating from Texas [7].
Sequence-related amplified polymorphic markers (SCAR)
were used to assess genetic diversity among naturally oc-
curring stands of buffalograss [8]. Both of these genetic
marker studies observed a significant amount of genetic di-
versity among accessions collected from different geo-
graphic regions. The matK, rbcL, and cob genes were
sequenced from 20 buffalograss accessions along with
zoysiagrass  (Zoysia  japomica Steud.), bermudagrass
[Cynodon dactylon (L.) Pers.], and blue grama [Bouteloua
gracilis (H.B.K.) Lag. Ex Steud.] accessions [9]. The mito-
chondrial cob gene showed close association of the
buffalograss cultivars ‘Bowie’ and ‘Density’ to the blue
grama entry, while the plastid genes matK and rbcL clearly
showed the buffalograss accessions were distinct from the
other species studied.

Transcriptome sequence data of non-model organisms,
such as buffalograss, is increasingly more accessible
through the use of next generation sequencing strategies.
Transcriptome sequencing is an ideal way of identifying
trait specific genes, efficiently developing genetic markers,
characterizing gene expression, and resolving gene net-
works, and is routinely applied to the study of organisms
with little prior genomic information [10]. Next generation
sequencing technologies are only just beginning to be ap-
plied to the study of turfgrass systems and have thus far fo-
cused primarily on improving our understanding of how
turfgrasses responds to biotic and abiotic stress. For ex-
ample, RNA-seq strategies were used to study the inter-
action between Sclerotinia homoeocarpa, the pathogen
causing dollar spot disease, and creeping bentgrass
(Agrostis stolonifera L.) whereby several genes were
identified from either the host or the pathogen that were
differentially expressed during infection [11]. Similarly, the
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S. homoeocarpa and creeping bentgrass disease interaction
was studied using RNA-seq and transcriptome changes
were identified [12]. A better understanding of genes in-
volved in the pathogen-host interactions would facilitate
the development of host resistance in future cultivars and
help direct cultural practices to reduce the impact of dis-
ease. The SOLiD-SAGE technology was used to identify
transcriptional changes in a red fescue (Festuca rubra) host
infected with the Epichloé festucae endophyte [13]. Endo-
phyte infection is often associated with improved stress tol-
erance of the host, and this study observed changes in host
gene expression resulting from the presence of the endo-
phyte. To the best of our knowledge, to date there have
been no high-throughput sequencing experiments done on
buffalograss; contributing to the limited genetic information
available for studying this species.

In the present study, the transcriptome was sequenced
of two buffalograss cultivars, ‘Prestige’ and ‘378, known
to differ in chinch bug resistance, ploidy level, and other
turfgrass performance traits. The cDNA libraries were
sequenced with both the Illumina GA and 454 Titanium
FLX sequencing platforms, expanding buffalograss gen-
etic resources. This is a valuable resource that turfgrass
breeders and others in the turfgrass research community
can use as a reference for comparative transcriptome
studies, as a platform for genetic marker development,
to characterize buffalograss variety differences, and to
implement marker assisted breeding strategies for future
cultivar development.

Results

In total, 1,300,885 sequencing reads were generated on
the 454 Titanium FLX sequencer, with 906,812 derived
from ‘Prestige’ and the remaining 394,073 from ‘378’
The 454 sequencing reads had an average read length of
281 bp with a maximum read length of 669 bp. More
than 159.3 M and 172.8 M Illumina GA 55 bp sequen-
cing reads were generated for ‘Prestige’ and ‘378] re-
spectively. An average of 27.7 M reads was sequenced
on the Illumina platform per sample. After strict quality
filtering, 73.1 M and 67.6 M reads from ‘Prestige’ and
‘378, respectively were used for sequence assembly. For
‘Prestige, the combined Velvet/Oases k-mer assemblies
with redundant sequences removed generated 265,590
transcripts with an average length of 899 bp and a max-
imum length of 18,330 bp. For ‘378; the combined Velvet/
Oases k-mer assemblies generated 241,129 transcripts
with an average length of 835 bp and a maximum length
of 11,681 bp (Table 1).

Of the 265,590 ‘Prestige’ transcripts, 64,040 had signifi-
cant BLASTx hits (e-value < 1E-10) to Ensembl commelinid
plant protein sequences. Similarly, of the 241,129 ‘378’ tran-
scripts, 57,248 had at least one BLASTx hit. The majority
of transcripts had a significant level of sequence identity to
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Table 1 Sequence statistics for transcripts with multiple k-mer assemblies combined and with BLAST matches to

Ensembl commelinid reference proteins

Assembly No. of Median N50 Mean Longest transcript
transcripts (bp) (bp) (bp) (bp)

Prestige multiple assemblies combined with Oases 265590 678 1353 899 18330

378 multiple assemblies combined with Oases 241,129 625 1253 835 11681

Prestige transcripts with BLAST match to Ensembl commelinid 64,040 972 1499 1145 12,236

proteins

378 transcripts with BLAST match to Ensembl commelinid proteins 57,248 919 1422 1090 11,681

foxtail millet (Setaria italica) proteins. The second closest
reference species was Sorghum bicolor. A total of 17,512
unigene clusters were created within ‘Prestige; and 16,743
clusters within the ‘378 assembly. The NCBI non-
redundant (nr) database lacks foxtail millet proteins, there
are only 515 deposited. Sorghum bicolor is the most closely
related species in the nr database based on BLASTp
searches (Figure 1).

While an average of 5,603 unigenes between the two
transcriptomes only contained one transcript, many
unigene clusters contained more than one sequence
(Figure 2). These multiple transcript unigene clusters
can represent transcription variants, allelic variants,
closely related paralogues, misassembled transcripts, or
transcripts that were fragmented due to low coverage.
The latter case would require scaffolding to resolve
based on alignments to reference transcripts, but was
not conducted in these assemblies. The unigene
containing the most transcripts, 170 transcripts in the
‘378 assembly, was similar to the Si027417m.g gene in
foxtail millet. This foxtail millet gene also represented
the largest unigene cluster in ‘Prestige’. NCBI BLAST re-
sults indicate that this foxtail millet gene contains an
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%
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Figure 1 Species distribution of the top BLAST hits for the
‘Prestige’ sequences. Transcripts were compared to the NCBI nr
database (A), and also to model Liliopsida plants from Ensembl (B).

nb-arc domain, which is common in plant disease resist-
ance genes [14].

‘Prestige’ transcripts shared sequence identity with
15,553 foxtail millet genes, which is 43.8% of the foxtail
millet coding genes [15]. There is a high degree of syn-
teny among the grasses and thus this percentage may be
an initial indicator of how much of the buffalograss
transcriptome was sequenced. The translated protein
sequence of 3,658 transcripts in ‘Prestige’ and 2,988
transcripts in ‘378’ aligned to 100% of a reference protein
via BLASTYX, indicating that these were complete coding
transcripts (Figure 3).

The predicted buffalograss proteins were searched
against the NCBI nr database using BLASTp. The
resulting BLASTp report was input to the BLAST2GO
software. Gene ontology terms were assigned to 58,524
transcripts in ‘Prestige’ and 52,472 transcripts in ‘378’
Of these annotated sequences, 17,560 and 15,982 tran-
scripts were assigned Enzyme Codes in ‘Prestige’ and
‘378, respectively.

Original Illumina reads, per sample, were aligned to
genotype specific assemblies. An average of 19.4 M reads
from each sequenced sample successfully aligned to its
corresponding transcriptome. Within each sample, an
average of 5.5 M of these reads were unique alignments,
while an average of 13.9 M mapped reads also aligned to
other transcripts.

A reciprocal BLASTp search was performed to identify
transcripts shared among the ‘Prestige’ and ‘378’ trans-
lated transcriptome libraries. A total of 19,861 reciprocal
hits were identified. Of these reciprocal hits, 6,942 se-
quences had alignments where 100% of the ‘Prestige’
transcript length aligned to the ‘378 transcript, or vice
versa; these transcripts share the same protein length
and sequencing reads covered the entire sequence
length.

Using read counts from the previously mentioned
[llumina read mapping, expression levels were generated
for the transcripts having a reciprocal hit between culti-
vars. As mentioned in the Methods section, the focus of
the gene expression analysis in this study was on tran-
scripts where the majority of reads were uniquely
aligned. Using the DESeq Bioconductor package, read
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Figure 2 Histogram of Unigene clusters in ‘Prestige’ and ‘378’ cultivars. X-axis lists how many transcripts are in a unigene, and Y-axis lists
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counts were normalized using the estimateSizeFactors
function, and the expression levels of the selected recip-
rocal hits were analyzed for statistical significance,
p-value < 0.05 adjusted for multiple testing. There were
325 differentially expressed genes between the two culti-
vars. Of these genes, 171 had higher expression in ‘Pres-
tige, and 154 genes had higher expression in 378’.
Expressed genes in which at least 75% of the length of
the ‘Prestige’ transcript aligned to at least 75% of the
reciprocal matched ‘378 transcript were further analyzed
(Figure 4; Table 2). During the process of finding reciprocal
sequences among the two genotypes, it was observed that

several transcripts had no significant BLAST match to any
transcript in the other genotype. This suggests that the gene
is not expressed in the other genotype in these samples, it
wasn't expressed enough to be assembled, or does not exist
in the other genome. Read counts for these transcripts were
analyzed, and any sequence where all of its matching reads
were unique alignments was considered valid (Table 3).

GO terms were assigned to all 325 differentially
expressed genes between the two cultivars, including
those having incomplete alignments to a reciprocal se-
quence. Quantification of Level 3 gene ontology terms
was collected for these transcripts (Figure 5).

12000

10000 -

Number of Transcripts

100 90 80 70 60

The C ge of BLAST Alig!

50 40 30 20 10
1ts to Subject Protein Sequences

Figure 3 The number of transcripts versus the coverage of blast alignments to subject protein sequences.
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Figure 4 Scatter plot displaying percent length of ‘Prestige’ transcripts aligning to percent length of ‘378’ transcripts. Transcripts shown

ge was detected.

Gene ontology terms were used to select sequences re-
lated to stress and immune response. The parental gene
ontology terms for “response to stress” (GO:0006950), “re-
sponse to other organism” (GO:0051707), and “immune

response” (GO:0006955) were found in 27 up-regulated
‘Prestige’ genes, and in 24 down-regulated ‘Prestige’ genes.
A number of these genes have previous research linking
them to defense and immune responses (Table 4).

Table 2 List of significantly expressed genes between Prestige and 378 cultivars

Prestige Transcript Prestige read 378 read Log2 fold P adjusted value Description

transcript length (bp) numbers numbers change (multiple testing FDR)

preC_72587 1987 2990.6 2116 -3.82 6.79E-20 transcription factor-like protein
dpb-like

preC_221736 1868 14569 1337 —345 1.32E-13 transferring glycosyl

preC_91046 1253 286.7 350 -3.04 540E-08 wd repeat-containing protein
76-like

preC_256602 374 294 38 -2.94 2.49E-02 protein kinase family protein

preC_230932 507 135.8 185 -2.88 7.85E-03 solute carrier family 25 member
44-like

preC_165762 589 60.9 94 -2.69 1.17E-03 transmembrane protein 97

preC_90290 713 43.1 6.8 —267 1.98E-02 peptidase c48 domain family
protein

preC_211115 714 386.1 61.9 -2.64 3.50E-05 potassium transporter

preC_81161 1860 1697.7 3014 —249 5.86E-03 1-acyl-sn-glycerol-3-phosphate
acyltransferase 4

preC_261585 1410 455.2 922 -2.30 3.51E-02 ankyrin-like protein

preC_231933 216 64.6 2753 2.09 1.51E-05 chalcone isomerase-like protein

preC_101008 1056 153.7 673.8 213 3.37E-03 ras-related protein raba3-like

preC_26965 294 1004 448.7 2.16 451E-06 tata-binding protein2

preC_127066 1068 414 206.6 2.32 743E-03 dna cross-link repair protein snm1

preC_134037 488 15.8 1208 293 4.87E-07 ent-kaurenoic acid partial

preC_41455 462 156 119.7 294 3.17E-06 dna helicase

preC_241217 352 19.7 1543 297 2.86E-07 f-box kelch-repeat protein
skip6-like

preC_217560 350 83 68.0 303 2.93E-02 sister of ramosa partial

preC_42285 748 573 10209 4.16 2.86E-04 cationic peroxidase 1-like

preC_226473 1365 173.6 4669.0 4.75 4.77E-25 pentatricopeptide repeat-

containing protein

Listed are top 10 up-and down-regulated genes with the removal of hypothetical-or uncharacterized-proteins.
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Table 3 Hypothetical cultivar-specific genes based upon
the reciprocal blast

Transcript Transcript  Average read Description
length (bp) numbers

Prestige

preC_247169 647 206.0 dna repair and
recombination protein

preC_214648 316 61.5 maize proteinase inhibitor

preC_236041 545 54.0 copper transporter 1

preC_262069 551 333 proteasome assembly
chaperone 2

preC_256520 237 282 e-cadherin binding
protein

preC_167144 650 23.7 cle family 306 protein

preC_256357 190 212 zinc finger family
expressed

preC_128843 234 152 pentatricopeptide repeat-
containing protein

preC_231580 353 14.8 s-receptor kinase

preC_169805 381 13.5 protein epidermal
patterning factor 2-like

378

378C_71451 258 2787 snare-like protein

378C_151851 237 108.5 tubulin-specific chaperone
d-like

378C_238144 303 84.2 subtilisin-like protease

378C_152448 174 70.7 lin1 protein

378C_199252 175 518 craniofacial development
protein 1-like

378C_223520 325 47.0 pollen-specific protein like

378C_24916 192 185 trab domain-containing

378C_235655 173 16.8 nicotinate-nucleotide
pyrophosphorylase

378C_202598 275 153 growth-regulating factor 2

378C_135613 214 10.2 serine threonine-protein

kinase ctr1-like

Listed are the top 10 most highly expressed from each cultivar with the
removal of sequences of vague descriptions. Average expression is a measure
of reads mapped per sample.

Discussion

There are limited genetic resources available for studying
buffalograss, however with current next generation se-
quencing and de novo assembly strategies, high through-
put sequencing can help bridge this buffalograss
knowledge gap. In the present study, 121,288 high qual-
ity transcripts were reconstituted from 7Prestige’ and
‘378 buffalograss cultivars, utilizing a combination of
[llumina GA and Roche 454 Titanium FLX sequencing.
Transcripts were found to be differentially expressed be-
tween samples of the same genotype collected at differ-
ent times. Physiological differences are expected to
occur between the two sampling times for a given geno-
type. Since the scope of this research was to expand
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buffalograss genetic resources and characterize differ-
ences between ‘378 and ‘Prestige; differences occurring
within a genotype between the two time points were not
examined.

When compared to the NCBI nr database, approxi-
mately 50% of the transcripts had BLASTp hits to Sor-
ghum bicolor proteins, while only 5% of the transcripts
had hits to Brachypodium (Brachypodium distachyon).
Brachypodium is often considered a model for the study
of grasses, but in this instance was the least informative
when compared to the buffalograss transcripts (Figure 1).
There are approximately three times as many S. bicolor
sequences in the nr database compared to
Brachypodium which may help explain why more S. bi-
color hits were returned. Additionally, both S. bicolor
and buffalograss are warm season, C4, grasses while
Brachypodium is a cool season, C3, grass and therefore
it is not surprising that buffalograss sequences were
more similar to S. bicolor.

The two buffalograss genotypes used in this study,
‘Prestige’ and ‘378, are known to differ in terms of their
resistance to chinch bugs, an important insect pest on
buffalograss [36] [37]. Previous data suggests that oxida-
tive enzymes play a role in chinch bug resistance in
buffalograss [38]. For example, the chinch bug resistant
cultivar ‘Prestige’ had higher peroxidase activity under
both uninfested and chinch bug-infested conditions
compared to the susceptible ‘378 [36]. In the present
study, 325 differentially expressed genes between these
two genotypes were identified (Table 2). If ‘Prestige’ is
predisposed for chinch bug resistance, genes expressed
higher in ‘Prestige’ compared to susceptible genotypes
may be involved in the resistance mechanism. Similarly,
genes more highly expressed in the susceptible cultivar
may confer susceptibility.

The differences in gene expression between genotypes
may account for some of the performance differences
among these cultivars. Selecting expressed genes based
on gene ontology terms for stress and immune response
highlights a potential starting point for understanding
these mechanisms. Several of these genes have been
researched in regards to stress tolerance. For example,
the nb-arc domain-containing and the nbs-Irr class of
proteins are known to be involved in a plant’s defense
response. The nucleotide binding and amino-terminal
domains contain a nucleotide-binding site and may act
as a molecular switch, regulating specific downstream
pathways. Large unigene clusters from both ‘378 and
‘Prestige’ were similar to the nb-arc gene, Si027417m.g,
from foxtail millet. The preC_246578 transcript has
higher average read counts in ‘Prestige’ (177.09 average
reads) compared to ‘378 (7.79 average reads),
representing a-4.51 log2 fold difference in expression
(p-value = 3.1E-02) between the two cultivars (Table 4).
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The transcript, preC_224469, also had higher expression  leucine-rich repeat (Irr) domain may act as the signaling
in ‘Prestige’ than ‘378’ (log2 fold change = -3.32; p-value=  molecule and be involved in recognizing early signs of a
8.85e-03). The preC_224469 transcript is predicted to  pathogen attack [16]. The predicted coding sequences
be a member of the nbs-lrr family of genes. The from these transcripts contain nb-arc domains. The



Table 4 Significantly expressed genes that have previous research evidence of stress response

Prestige transcript Transcript length (bp) Prestige read numbers 378 read numbers Log2 fold change p-value Description References
preC_246578 2200 177.09 7.79 —4.51 3.10E-02 nb-arc domain-containing protein [16-18]
preC_139482 693 31.78 273 -354 1.27E-03 serine threonine kinase (U-box domain) [19-22]
preC_221736 1868 1456.86 133.67 —345 1.32E-13 transferring glycosyl [23-25]
preC_224469 1554 162.26 16.25 -332 8.85E-03 nbs-Irr class disease resistance protein [16-18]
preC_86410 2051 36242 60.17 -2.59 1.15E-05 dna repair protein xrcc2-like protein [26,27]
preC_231454 1257 52356 1972.11 1.91 2.99E-05 uracil phosphoribosyltransferase [28]
preC_143034 881 111.18 44967 202 2.32E-05 chloroplast processing peptidase [29]
preC_249539 576 30.03 132,51 2.14 2.26E-04 gamma-glutamyl transpeptidase 1 [30-32]
preC_127066 1068 4138 206.6 232 743E-03 dna cross-link repair protein snm1 [33]
preC_42285 748 57.27 102091 416 2.86E-04 cationic peroxidase 1-like [34,35]

w o

Genes containing GO terms “response to stress”, “immune response” and “response to other organism” were selected.
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nb-arc containing proteins are most often associated
with disease resistance. There has been limited research
characterizing differences in disease resistance of ‘Pres-
tige” and ‘378; so it would be interesting to test if ‘Pres-
tige’ is more resistant to disease relative to ‘378" and
monitor expression of these genes during host-
pathogen interactions.

Receptor like kinases also contain an lrr domain and
may be involved in early pathogen attack recognition
and regulate the level of response to pathogen attack,
playing a role in triggering early defense response signal-
ing mechanisms [19]. The transcript, preC_231580, is a
serine threonine kinase and had higher expression in
‘Prestige’ relative to ‘378 (log2 fold change =-3.54,
p-value = 1.27e-03).

Glycosyl transferases are also involved in stress-
induced plant response and show elevated expression in
response to several signaling molecules including hydro-
gen peroxide [23]. For example, expression of two
glycosyltransferases, UGT73B and UGT73B5, were im-
portant for Arabidopsis resistance to Pseudomonas [23].
The relative higher expression of a transferring glycosyl,
preC_221736 (Table 4), in ‘Prestige’ compared to ‘378
(log2 fold change = —3.45, p-value = 1.32e-13) is of par-
ticular interest since response to oxidative stress may be
one mechanism conferring resistance to chinch bugs in
‘Prestige’ [38].

The majority of the defense response genes identified
in this study are not directly linked to insect resistance,
however this study characterizes differences between
‘Prestige’ and ‘378’ which may facilitate a better under-
standing of host pest interactions in future studies. The
majority of the previously mentioned defense response
genes are associated with disease resistance. Buffalograss
is most commonly grown throughout the Great Plains
region of the United States [1] and since buffalograss
grows in this relatively arid region of the country, there
is less disease pressure than in more humid regions. As
a result, limited research has been done to evaluate dis-
ease resistance of ‘Prestige’ and ‘378’.

Since two distinct buffalograss genotypes were sequenced
here, genotypic differences such as single nucleotide poly-
morphisms, copy numbers of simple sequence repeats, in-
sertion/deletions, and transposable element insertion
polymorphisms [39] could be exploited to develop genetic
markers for cultivar discrimination or associated with a trait
of interest that differs between the two genotypes. In
addition, since the sequences presented here are based on
expressed transcripts, any genetic markers developed from
these sequences are, by nature of the study, gene-based and
ultimately more valuable for future molecular-based culti-
var development strategies. Since for example, ‘378 and
‘Prestige’ are known to differ in chinch bug resistance, the
identification of polymorphic homologous sequences in
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these plants is a first step at developing markers to use in a
marker assisted breeding scheme to improve chinch bug re-
sistance. This research would need further investigation to
characterize the markers in a broader germplasm base that
has been evaluated for chinch bug resistance.

Conclusions

This is the first report of transcriptome sequencing of
Buffalograss [Buchloé dactyloides (Nutt) Engel. syn.
Bouteloua dactyloides (Nutt.) Columbus], the most widely
used native turfgrass species in the United States.
Transcriptomes of buffalograss cultivars ‘378 and ‘Prestige’
were sequenced by Illumina GA and Roche 454 Titanium
FLX sequencing platforms and 121,288 high quality tran-
scripts were assembled. There were 15,553 ‘Prestige’ tran-
scripts that had significant BLAST hits to foxtail millet
(Setaria italica) which could be useful for future compara-
tive genetic studies between these species. Transcriptional
profiling revealed 325 differentially expressed genes be-
tween ‘378 and ‘Prestige’ and may in part help explain culti-
var differences. At the time of this study, there were no
reported buffalograss EST sequences in NCBI and only 34
nucleotide sequences (accessed August 28th, 2013), so this
study significantly expands on the limited genetic resources
available for studying buffalograss. The data presented here
will act as a platform for genetic marker development, a
basis for marker assisted breeding strategies, and a refer-
ence for future transcript expression studies.

Methods

Sample preparation and sequencing

Vegetative plugs (10.6 cm diameter x 8 cm deep) of
‘378" and ‘Prestige’ were collected from the University of
Nebraska Agricultural Research and Development Cen-
ter, near Mead, NE. Individual stolons from a single
plant of each cultivar were planted in SC-10 Super Cell
single cell 3.8 cm diameter x 21 ¢cm deep cone-tainers
(Stuewe & Sons, Inc. Corvallis, OR). The clonal ramets
were used for the sequencing studies. The soil mixture
was a ratio of 2:1:3:3 sand, soil, peat, and perlite.
Buffalograss plants were watered and fertilized (20 N-
10P-20 K soluble) as needed. Plants were maintained at
a temperature of 24 + 3°C and a 16 h photoperiod under
400-watt high-intensity discharge lamps.

The experiment was designed as a 2 x 2 factorial with
two buffalograss genotypes (‘Prestige’ and ‘378’) and two
distinct time points seven days apart. The study was ar-
ranged as a randomized complete block design with six
replications. Buffalograss leaf samples were collected
from three replicates of ‘Prestige’ and three replicates of
378. A similar set of leaf samples were collected seven
days later. For each cultivar, two separate time points
were used to minimize transcriptional variation intro-
duced by changes in the environment, growth stage, or
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physiological differences of the plants. Total RNA was
isolated from the leaf samples and all 12 were prepared
for sequencing on the Illumina GA sequencing platform.
A single leaf sample of ‘Prestige’ and a single leaf sample
of 378 collected on the first sampling date, along with a
single sample of ‘Prestige’ collected on the second sam-
pling date were prepared for sequencing on the Roche
454 Titanium FLX sequencer. Leaf tissue was collected
for RNA extraction and immediately frozen in liquid ni-
trogen and stored at —-80°C. Four 100 mg leaf tissue
samples for each of the 12 buffalograss samples were
used as starting material in the RNA extraction proced-
ure and later merged such that there was one composite
RNA sample per buffalograss sample. In short, mRNA
was then extracted using the FastTrackMAG maxi kit
(Invitrogen #K158002) and cDNA was created using the
QuantiTect Whole Transcriptome kit (Qiagen #207043).
The ¢cDNA was cleaned up using the QiAamp DNA
Blood mini kit (Qiagen #51104) before submitting the
samples for sequencing.

The leaf tissue mRNA samples were sequenced on the
454 Titanium FLX platform and each sample used one
half picotiter plate. A total of twelve samples were se-
quenced on an Illumina GA Sequencer; these samples
consisted of 3 replications of each genotype collected at
the first and second time points. One Illumina flowcell
lane was used for each sample.

Data filtering and de novo assembly

A strict quality filtering pipeline was used to select reads
for assembly. 454 reads were quality filtered and polyA
tail trimmed using Newbler 2.6 software with the
“-cdna—tr” options [40]. Redundant reads sharing 100%
identity were removed using CD-HIT-454 [41]. Reads
longer than 75 bp were selected as “long” reads for the
Velvet/Oases assembly process. These reads were used
as reference sequences in the Velvet assembler.

[llumina reads containing at least one base with a
quality score below 10 were removed, as well as dupli-
cate reads using FastQ program. PolyA tail trimming
was performed by removing reads with at least half of
the read length containing all adenines or thymines.
Reads containing adapter sequences were identified and
removed with Tagdust [42].

Separate transcriptomes were assembled for each
genotype. Due to the polyploid nature of these plants
and a potential high level of intra-organism and inter-
organism variation, such as genome rearrangements or
paralogue genes unique to one genotype, we decided to
not combine genotype reads. Combining reads from
both genotypes could potentially complicate the assem-
bly process and create inaccurate transcripts. Assembly
was performed using Velvet/Oases software [43]. Mul-
tiple assemblies were created per genotype, using odd
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k-mer values 27-51. Previous studies have shown that
using multiple assemblies, at varying k-mer values, cap-
tures more lowly expressed transcripts when compared
with a single k-mer assembly [44]. Combined transcripts
from the multiple k-mer assemblies were run through
the CD-HIT-EST program to remove redundant tran-
scripts sharing 100% identity [41].

Functional annotation

Transcripts from the two genotype specific assemblies
were aligned to a database containing all Ensembl pro-
teins from Brachypodium distachyon, Oryza sativa,
Setaria italica, Sorghum bicolor, and Zea mays using
BLASTYX, e-value threshold of 10e-10. Initial BLASTx re-
sults showed that Setaria italica produced the majority
of best BLASTx hits, so this reference species was
chosen as a beginning reference for annotation. BLASTx
was again used to compare assembled transcripts to only
Setaria italica proteins. Transcripts were assigned to
unigene clusters based on their best gene hit within a
reference species. Any transcripts without a BLASTx hit
to Setaria italica were compared to a database of
Brachypodium distachyon, Oryza sativa, Sorghum bi-
color, and Zea mays proteins. These transcripts were also
assigned to unigene clusters based on their best BLASTx
hit to this secondary reference protein database. The
Ensembl gene accession names were used to label the
unigene clusters. Any remaining transcripts not having a
significant BLASTx hit to Ensembl plant proteins were
removed from the transcriptome and not used in down-
stream analysis.

Using the BLASTx reports from the previous Ensembl
protein search, translated open reading frames were
extracted from the transcripts using the OrfPredictor
software [45]. These extracted protein sequences were
input to CD-HIT with 100% identity threshold to re-
move transcripts with identical protein translations. The
remaining buffalograss protein sequences were com-
pared to the NCBI nr database using BLASTp (e-value
threshold of 10E-10). The BLASTp results were input
into the BLAST2GO program to assign sequence de-
scriptions, gene ontology terms, and enzyme commis-
sion numbers [46].

Extracted ORF sequences from the ‘Prestige’ assembly
were compared to ‘378" sequences via BLASTp (e-value
10E-10), and vice versa. If two transcripts from both ge-
notypes had a reciprocal best BLASTp hit to each other,
these two transcripts were assigned the same reciprocal
hit ID number and considered to be the same gene in
the two genotypes. If a reciprocal hit transcript of one
genotype only aligns to a portion of the reciprocal hit in
the other genotype (<75% of the length of either tran-
script) it was discarded. These shorter alignments can
occur because of sequence variation, low expression, and
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incomplete assembly. The 75% cutoff was chosen to
limit the occurrence of false positives and to return lon-
ger reciprocal hits which could be useful in future com-
parative genetic studies between these cultivars.

Expression analysis

All genotype specific Illumina reads, including reads not
used in the assembly process, were aligned to the geno-
type specific transcriptome using Bowtie alignment soft-
ware [47]. Read counts for transcripts with a reciprocal
match to the other transcriptome were counted and
extracted for gene expression analysis, per replicate and
time point of sample. Due to the polyploidy of the ge-
nomes, and a high number of closely related paralogues
within plants, a portion of aligned reads will align to
more than one transcript. These “multi-mapped” reads
can lead to false read counts for many transcripts. For
gene expression analysis, we only examined transcripts
with a reciprocal hit in the other genotype where >75%
of the aligned reads were unique alignments, not
aligning to any other transcripts. Per replicate and time
point, the sum of uniquely aligned reads was output to a
matrix. The two time points were used to minimize
transcriptional variation for each genotype introduced
by environmental changes at the time the samples were
taken and physiological differences. Therefore all six
samples within a genotype were treated as replicates for
the statistical analysis. Relative expression based on read
counts was used instead of RPKM values because the
transcriptomes varied by sequence number and se-
quence lengths. The matrix of read counts was input
into DESeq R Statistical package to identify transcripts
with significant expression between genotypes (FDR <
0.05) [48]. The read counts of transcripts having no sig-
nificant BLAST hit to the other genotype were also ex-
amined, as these may represent transcripts not
assembled or expressed in the other transcriptome. Dif-
ferentially expressed sequences were examined via
BLAST and the NCBI nr database to determine if they
are plant proteins or results of metatranscriptome con-
tamination (e.g. bacteria or fungi).
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