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An expression atlas of human primary cells:
inference of gene function from coexpression
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Abstract

Background: The specialisation of mammalian cells in time and space requires genes associated with specific
pathways and functions to be co-ordinately expressed. Here we have combined a large number of publically
available microarray datasets derived from human primary cells and analysed large correlation graphs of these data.

Results: Using the network analysis tool BioLayout Express3D we identify robust co-associations of genes expressed
in a wide variety of cell lineages. We discuss the biological significance of a number of these associations, in
particular the coexpression of key transcription factors with the genes that they are likely to control.

Conclusions: We consider the regulation of genes in human primary cells and specifically in the human mononuclear
phagocyte system. Of particular note is the fact that these data do not support the identity of putative markers of
antigen-presenting dendritic cells, nor classification of M1 and M2 activation states, a current subject of debate within
immunological field. We have provided this data resource on the BioGPS web site (http://biogps.org/dataset/2429/
primary-cell-atlas/) and on macrophages.com (http://www.macrophages.com/hu-cell-atlas).
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Background
Living systems depend upon the concerted actions of
numerous genes in pathways and macromolecular com-
plexes. Underpinning these systems are complex tran-
scriptional networks that drive the expression of subsets
of the coding capacity of the genome to achieve a
specialised function. The set of genes required for any
cellular function must share transcriptional regulation,
so that their products are available in the correct place
at the right time. The potential utility of this informa-
tion for the identification of candidate genes in human
genetics has been emphasised previously [1-5]. The
completion of genome sequences, the advent of micro-
array technologies, and advances in bioinformatic tools
have revolutionised the ability to generate and analyse
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coexpression matrices. When translated into coexpression
networks the information content of such networks
depends to large extent upon the size and diversity of
biological states sampled; the more states that are
sampled, the more stringently one can state that a pair
of genes share strict coexpression. Since, the pioneering
efforts of Su et al. [6,7] to generate the Symatlas (now
BioGPS, http://www.biogps.org) from data sets of
microarray data from mouse and human tissues, there
has been an explosion of gene expression “atlases”
across multiple tissues and within tissues across cell
types and developmental time ([8-16]; http://www.
immgen.org; http://www.brain-map.org; http://www.
gudmap.org). These resources were recently extended
by us to the domestic pig [17], a species of commercial
importance for food production and a model in medical
research [18].
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Most major journals now require that array data is
deposited in public depositories such as NCBI Gene
Expression Omnibus and ArrayExpress. The availability
of the primary data as well as the stabilisation of analysis
platforms and methodology, permits meta-analysis of
data produced in different laboratories [19]. The chal-
lenge then is to generate useful information from the
microarray data deluge. The online meta-analysis dataset
at EBI (http://www.ebi.ac.uk/gxa/) is a useful index for
finding state-specific expression patterns, but does not
readily provide a mechanism for finding genes with simi-
lar pattern. There are numerous different methods avai-
lable for identifying clusters or modules of coexpressed
genes within expression data [20-25]. Each could be ar-
gued to have its own advantages and a detailed review of
these methods will not be included here. The method
used in this study employed the network tool BioLayout
Express3D which was specifically developed to allow the
visualisation and analysis of coexpression relationships
in large datasets [26,27]. The tool identifies coregulated
genes based on the construction of correlation networks,
where genes (probesets) are represented as nodes, and
edges represent the similarity (above a given threshold)
between the expression profiles. Modules or clusters are
then defined using the Markov Clustering algorithm
(MCL) and both the network and clusters visualised
using a powerful 3D network rendering engine. We have
used this tool to identify coregulated genes in the mouse
BioGPS dataset [2], and subsequently carried out a meta-
analysis of available mouse data relating to hematopoietic
differentiation [19]. Benita et al. [28] carried out a similar
meta-analysis of human microarray data, with intention of
identifying genes that were enriched in T cells relative to
other cell types. Their rationale was that such enrichment
would emerge from reference to a large number of im-
mune and non-immune cells and tissues relative to T cells.
The difficulty with including whole tissues in co-
expression networks is that they are mixtures of cell types,
including cells of the immune system. Conversely, the
exclusion of tissues removes genes that are only expressed
in mature, fully-differentiated cells in vivo. Furthermore,
as noted by Benita et al. [28] static networks fail to sample
inducible genes and the function of such genes may
emerge from coexpression over time and in response to
many different environments. An additional complication
in human data, by contrast to inbred mice, is the impact
of genetic variation. For example, Goring et al. [29]
demonstrated that there was significant heritable vari-
ation in expression of a large proportion of transcripts
detected using microarrays of peripheral blood. Robust
coexpression analysis depends upon sampling many diffe-
rent datasets. In the present study, we present a meta-
analysis of a large collection of microarray profiles of
human primary cells available in the public domain.
Results and discussion
Source of expression data and method of analysis and
quality control
A large and diverse set of human primary cell gene ex-
pression data was collected, with a particular emphasis on
datasets that divided immune cells into sub-populations
based upon surface markers. Data sets were selected based
on the following criteria: (1) chip platform (only data from
Affymetrix Human Genome U133 Plus 2.0 expression
arrays was included); (2) primary cell; (3) cell-subset stu-
died; (4) availability of raw data (.cel) and sample descrip-
tion files. Quality control (QC) of these data using the
arrayQualityMetrics package in Bioconductor showed a
number of chips/data sets to be of poor quality or not
comparable based on the chip signal intensities. Further-
more, additional datasets were rejected from this analysis
following construction of initial network graphs, as these
data showed inexplicable differences in their global ex-
pression intensities when compared to data from sup-
posedly similar cells. Out of the 1,103 chips originally
selected from 105 separate studies meeting the above cri-
teria, 745 arrays passed the criteria for further analysis on
the basis of these QC arrays. Additional file 1: Table S1
shows the range of cell populations represented in the
remaining samples used for this analysis and their source.
This table also provides additional information on the
individual chip ID, cell class, stimulus or culture conditions;
data series ID, individual chip ID and the Pubmed ID of
the original study, if available. Samples were given a stan-
dard annotation (data series ID: cell class: chip description:
replicate no.; Additional file 1: Table S1) and ordered by cell
type (embryonic stem cells, induced pluripotent stem (iPS)
cells, epithelial cells, fibroblasts etc.). The data analysis
pipeline used in this study is shown in Figure 1 and the
quality controlled normalised data used for this study is
available from GEO: GSE49910.

Clustering of co-expressed genes in a large collection of
human primary cell types
In order to compare global gene expression profiles and
examine the relationships between these data as a whole
we calculated a sample-to-sample Pearson correlation
matrix on these normalised data. This matrix was then
used to draw a graph of the sample-to-sample correlations
using relationships r ≥ 0.9 to define edges (Figure 2). This
graph shows a remarkable and reassuring consistency in
the relationships between samples derived from similar cell
types regardless of the laboratory from which they were
generated. The different progenitor, myeloid, lymphoid and
non-haematopoietic profiles clearly clustered like-with-like.

Network analysis of the human cellular transcriptome
A full probeset-to-probeset Pearson correlation matrix
was then calculated using the tool Biolayout Express3D,

http://www.ebi.ac.uk/gxa/


Figure 1 Data analysis workflow. Data analysis pipeline, from the selection of microarray data, through to normalisation, annotation and
network analysis.
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whereby the similarity in the expression profile of each
gene (probe set) represented on the array was compared
across the 745 data sets. A network graph was constructed
using a correlation threshold of r ≥ 0.75, whereby nodes
represent individual Affymetrix probe sets and correla-
tions between profiles greater than the selected threshold
were represented by graph edges. The graph comprised
24,808 nodes connected by 1,476,632 edges and was sub-
sequently clustered using the Markov clustering algorithm
(MCL) at an inflation value (which controls the granula-
rity of clustering) of 2.2. This resulted in 378 clusters
containing more than 6 nodes. Transcripts in clusters
smaller than this number were not assigned a cluster
number. An image of the network graph is shown in
Figure 3 with annotation of clusters of interest highlighted
in distinct colours. The entire dataset is available on http://
www.macrophages.com/hu-cell-atlas, where a webstart ver-
sion of BioLayout Express3D enables visualisation of the
average expression of each cluster, and the specific expres-
sion of individual genes across the dataset. Additional file 2:
Table S2 provides details of the probe sets within the entire
set of 378 clusters as a Microsoft Excel worksheet. For
comparison to whole tissue expression profiles, the table
also includes a description of the clustering of the BioGPS
human atlas dataset. To enable a convenient, user-friendly
access to the data, we have also established a gene profile
viewer for the data, reduced to show averaged expression
levels for replicates on http://www.biogps.org. On this site,
it is also possible to carry out a simple correlation search
to identify genes with similar expression profiles to any
selected gene of interest across the dataset.
The network graph derived from these data is large

and its topology is complex. The graph’s obvious struc-
ture is derived from the grouping of genes which are
expressed in a specific manner i.e. a correlation in their
expression profiles of >0.75 and are therefore connected
by a large number of edges forming cliques within the
network. Some of these clusters represent genes
expressed in a cell-specific manner, others not. The
major structure of the graph is made up of a relatively
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Figure 2 Clustering of samples based upon their gene global expression profiles. A Pearson correlation matrix was prepared comparing
the data derived from all samples used in this study. A graph was then constructed using only those sample-to-sample relationships where
r≥ 0.9. Nodes represent samples and edges are coloured on a sliding scale according to the strength of the correlation (red, r = 1.0; blue, r = 0.9).
The graph was then clustered using an MCL inflation value of 2.2, each cluster of samples being assigned a different colour. It is quite striking
that almost without exception related cell types cluster together or are positioned within similar network neighbourhoods irrespective of the
source of the data. Full details of the sources of all data sets used in the analysis is provided in Additional file 1: Table S1. Additional abbreviations
used: CMP, common myeloid progenitors; GMP, granulocyte monocyte progenitors; HSC, haematopoietic stem cell; mac., macrophage; MDDC,
monocyte-derived DC; MDM, monocyte-derived macrophage; MEP, megakaryocyte–erythroid progenitor cell; MSC, mesenchymal stem cells; NK,
natural killer; PB, peripheral blood; stim., stimulated; Treg, regulatory T cell.
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small number (n = 50) of large clusters (>50 nodes), how-
ever, the majority (n = 328) are smaller in size. Another
way of looking at such large transcriptional networks is
to generate a collapsed cluster diagram. Figure 4 shows
the relationship between cluster size and position of the
cluster within the network. As a consequence, clusters
comprising genes with a similar expression pattern tend
to be in similar network neighbourhoods.

Statistical assessment of the chances of these probeset-to
-probeset correlations occurring by chance
To assess whether the probeset-to-probeset Pearson cor-
relations we obtained using r ≥0.75 were important, one
million simulated correlations were calculated from
‘pseudo-probesets’ generated at random. These ‘pseudo-
probesets’ included 743 samples to match the number
used in the original dataset above. Each ‘pseudo-probeset’
was generated by randomly selecting one of the original
observed probeset values for each of the original 743
samples. Use of the original data to generate the
‘pseudo-probesets’ ensured that the underlying (non-
normal) distribution of these data was reflected. Our
analysis showed that only 0.0019% of the simulated corre-
lations in these randomly generated data were above 0.75
(Additional file 3: Figure S1). Furthermore, whereas 0.32%
of the observed correlations were above 0.75, only
0.000019% would be expected to have occurred by chance.
These data clearly indicate that the probability of the
probeset-to-probeset correlations at the level used in this
study (r ≥0.75) occurring by chance was very small.

Functional annotation of genes involved in generic
pathways and processes
The average expression profiles of the genes in the largest
50 clusters are available in Additional file 4: Figure S2. As
we noted previously in an analysis of the mouse BioGPS
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Figure 3 Network analysis of human primary cell transcriptomics data. (A) Main component of the network graph derived from 745
samples of human primary cell populations run on Affymetrix U133plus2.0 arrays. Nodes represent transcripts (probesets), edges represent
correlations between individual expression profiles above r ≥ 0.75 and the colour of the nodes represents the cluster to which they have been
assigned. The graph comprises of 24,808 nodes connected by 1,476,632 edges. (B) An image of the network graph showing edges only. Areas of
enrichment of genes expressed in particular cell lineages are indicated.
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data, many of the clusters are not cell lineage restricted,
but rather reflect variation in the activity of generic meta-
bolic functions amongst the cells. For example Cluster 20
is enriched in ribosomal genes (gene ontology (GO) term
0003735, structural constituent of ribosome, corrected
P value 2.01×10-130) which are expressed highly by almost
all cell populations. These genes form a distinct cluster be-
cause of the relative absence of expression from neutro-
phils, consistent with their known relative low rates of
active protein synthesis and the acute regulation of trans-
lation during myeloid differentiation [30]. Also situated in
the same neighbourhood of the graph and connected to
Cluster 20 by a number of edges is Cluster 78 which
contains a small set genes encoding proteins involved
with RNA splicing and the spliceosome (GO:0003723,
RNA binding, P < 8.28×10-12; GO:0005681, spliceosome,
P < 6.47×10-5). Almost all of the genes in cluster 78
have been implicated in alternative splicing, e.g. recent
studies of KHDRBS1, aka Sam68 [31]. By contrast, the
large majority of the other splicing factors are not part
of significant clusters. This suggests the existence of
specifically-regulated alternative splicing complexes
with idiosyncratic regulation [31]. Clusters 10 and 41
are highly enriched in genes associated with the cell-
cycle and mitosis and are expressed at high levels by
proliferating cell-types such as embryonic stem cells,
iPS cells and bone marrow (BM) progenitor cells
(cluster 10, GO:0007049, cell cycle, P = 0; cluster 41,
GO:0007049, cell cycle, P = 7.57×10-7). Almost all of the
genes in these clusters have known functions that are evi-
dent from their names, in cycle control, DNA synthesis,
DNA repair, mitotic spindle formation etc. Some genes
with uninformative names (according to Affymetrix anno-
tation) such as KIAA0101 actually have a known function
in S phase [32]. Others, such as FAM83B and HMMR are
amongst many genes identified via a high throughout
screen to identify proteins that control mitosis (http://
www.mitocheck.org). A recent study by Tipton et al. [33]
used data mining to identify 64 genes that are core com-
ponents of the kinetochore complex, and then sought evi-
dence of other members of the complex based upon
coexpression analysis and/or protein-protein interactions
in public domain data. Clusters 10 and 41 contain all of
the 64 core kinetochore genes identified by these authors,
as well as the novel gene, TRIP13, that they identified and
validated. These clusters also contain 41/50 of the top 50
candidate interacting genes, and around 100 additional
genes, the large majority of which are obviously involved
in the cell cycle. We therefore reannotated all of the
Affymetrix probes in these clusters. In keeping with the
concept of guilt-by-association, there is published evidence
(PMID citations included in Additional file 5: Table S3) of
likely cell cycle roles for the large majority of genes with
uninformative annotations and no associated GO terms

http://www.mitocheck.org
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Figure 4 Collapsed cluster diagram showing the relationship between cluster size and position within the network graph. All the
clusters derived from the network graph (Figure 3) with >10 nodes were “collapsed” such that each cluster is presented as a single node with
size of the node proportional to the number of probe sets in the cluster. Edges represent instances where nodes in one cluster share correlations
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(Additional file 5: Table S3). The interesting feature of the
two clusters is that Cluster 10 contains the well-known
transcriptional driver of mitosis, FOXM1 [34] as well as
the E2F family repressors, E2F7 and E2F8. Other members
of the proliferation-associated E2F family, including E2F1,
are not within the cluster despite the fact that many of the
genes are known E2F1 targets. Indeed E2F1 and E2F4 are
not themselves within the annotated cell cycle clusters but
are within the neighbourhood (not shown). E2F1 is
clearly regulated during the cell cycle, driving the entry
into S phase, but its expression level declines, as its tar-
get genes increase in expression. E2F1 functions are
also regulated post-transcriptionally via interactions with
Rb [35]. Cluster 41 does not contain an obvious tran-
scriptional regulator, but could contain downstream tar-
gets of Cluster 10.
Identification of clusters containing cell-specific
transcriptomes
Cells of mesenchymal origin all expressed genes in Clusters
22, 25, 27, 36, 42 and 70 at high levels; these were highly
enriched in genes encoding components of the extra-
cellular matrix shared by the different mesenchymal line-
ages (GO:0005578, proteinaceous extracellular matrix,
Additional file 2: Table S2), as previously identified in
mouse data [2,5]. The clusters are segregated because of
relative enrichment in the different mesenchymal cell types;
the expression of genes in Cluster 22 is relatively higher in
osteoblasts and contains many genes with “osteoblast” in
their name, but clearly not entirely osteoblast-restricted.
The genes within this cluster are also expressed in other
mesenchymal cell types (fibroblasts, tissue stem cells,
chondrocytes), but notably not endothelial cells and overlap
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the extracellular matrix clusters we have described previ-
ously in mouse datasets [2,5,19].
Genes in Cluster 91 were widely expressed in sam-

ples other than embryonic stem (ES) cells, iPS cells and
gametocytes, and almost exclusively encoded proteins
associated with the major histocompatibility complex
(MHC) class I (GO:0002474, antigen processing and
presentation via MHC class I, P < 1.06×10-16). In con-
trast, Cluster 89 contained genes encoding MHC class
II proteins, expression of which was mostly restricted
to BM progenitors, monocytes, mononuclear phago-
cytes and B cells (GO:0042613, MHC class II protein
complex, P < 8.72×10-16). Apart from the MHC (human
leukocyte antigen, HLA) genes, the cluster contains the
invariant chain CD74, LY86 and CST3 (cystatin C) all
known to be involved in antigen presentation. Unex-
pectedly, it also contains adenosine deaminase II gene,
CECR2, and the signalling molecule CARD9, which
could have a role in antigen presentation [36].
In addition to the identification of a number of clus-

ters shared by groups of cells that appeared to be related
to specific functions or processes, a large number of
clusters had expression restricted to, or greatly enriched
in, individual cell populations. The largest of all, Cluster 1,
is expressed almost exclusively in spermatocytes, contains
obvious index genes such as acrosomal vesicle protein 1
(AVCR1) and is enriched in genes involved in spermato-
genesis (GO:0007283, spermatogenesis, P < 2.9×10-59).

Identification of putative cell-specific transcription factors
A full description of the expression profile of the top
100 clusters is provided in Additional file 2: Table S2. A
highlight of each of these clusters is the presence within
them of likely lineage-restricted transcription factors. A
good example is the second largest cell-type enriched
cluster, Cluster 4, which contains genes expressed spe-
cifically in ES cells and iPS cells. There is a substantial
overlap with the ES cell-specific cluster identified previ-
ous from the mouse BioGPS data [2]. The cluster in-
cludes the known ES cell-associated transcription factors
and pluripotency markers; LIN28A, NANOG, GLI2,
POU5F1 (Oct4), ROR1, SALL2, SALL3, SALL4, SOX2,
TCF7L1, ZIC2, ZIC3 and ZIC5. Surprisingly, it also con-
tains the germ cell-associated genes SRY and PRDM14,
and transcription factors associated with lineage com-
mitment such as FOXA3 and FOXH1 suggesting that
many of the cultures included in the data set are partly-
differentiated. The GO term analysis confirmed this
cluster was significantly enriched with genes involved
with transcription (GO:0005634, nucleus, P < 3.53×10-29;
GO:0006350, transcription, P < 5.26×10-9).
Cluster 30 contains the transcription factor FOXD3,

which is implicated in neural crest lineage determination
[37], desert hedgehog (DHH) and its target SOX10,
which are implicated in Schwann cell formation [38] and
RXRG, which is implicated in control of remyelination
[39]. Expression of this cluster was restricted to Schwann
cells and contained many genes related to myelin forma-
tion and neuronal transmission (GO:0007278, synaptic
transmission, P < 0.00793; GO:0007399, nervous system
development, P < 0.00793) including myelin basic protein
(MBP), myelin protein zero (MPZ), dystroglycan 1 (DAG1)
and proteolipid protein 1 (PLP1). The cluster contains a
significant number of unannotated probes and hypothetical
proteins. One of them, MGC45800, is amongst the genes
associated with susceptibility to multiple sclerosis [40].
The transcription factor ERG, implicated in endothelial

differentiation [41], and the related factors SOX7,
SOX17 and SOX18, which have partly redundant func-
tions in angiogenesis [42] are contained with Cluster 25
(GO:0001525, angiogenesis, P < 2.46×10-5). The genes
within this cluster are expressed at highest levels by endo-
thelial cells and contained many encoding endothelial
growth factor receptors (ACVRL1, KDR, TEK, TIE1,
PROCR), adhesion molecules (ESAM, ICAM2, MCAM) or
components of the extracellular matrix such as heparan
sulphate proteoglycans (GLCE, HSPG2, ST6GALNAC3).
Interestingly, a much smaller cluster, Cluster 196, also
enriched in endothelial cells, contains ANGPT2, HOXD1,
FLT4 and SPRY1, each with known endothelial-specific
biologies. This implies that these genes interact specifically
in some aspect of endothelial differentiation, and also
strongly implicate the poorly-annotated gene TM4SF18.
Cluster 42 (GO:0005578, proteinaceous extracellular
matrix, P < 6.04×10-18; GO:0001501, skeletal development,
P < 1.58×10-17) contains the chondrocyte differentiation
factor, SP7 [43], as well as NKX3-2 and its regulator Indian
Hedgehog (IHH) [44] and the many known chondrocyte-
specific markers (e.g.: CLIP2, CHAD) and cartilage colla-
gens which distinguish these cells from osteoblasts, which
express genes especially enriched in Cluster 22.
Cluster 12 contains the erythropoietin receptor, EPOR,

and the key red cell transcription factors, KLF1, TAL1,
GATA1, GFI1B and SOX6 [45]. Genes within this cluster
were expressed at high levels by erythroblasts and include
the globins, many red cell structural proteins and key
members of the heme biosynthesis pathway ALAS2,
ALAD, HMBS, UROS, UROD, CPOX, PPOX and FECH
(GO:0006783, heme biosynthetic process, P < 9.92×10-13).
Cluster 7 contains the liver-specific transcription factors
FOXA2, NROB2, NR1H4 (the bile acid receptor), NR1I2,
NR1I3, HNF4A and HNF4G, and most of the genes within
it are related to liver function and expressed at highest
levels by hepatocytes. These included albumin (ALB),
members of the cytochrome P450 family, transferrin (TF),
most blood coagulation cascade components, complement
components and related factors (eg: C3P1, C4BPA,
C4BPB, C5, C6, C8A, C8B, C8G, C9, CFHR2, CFHR3,
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CFHR4, CFHR5, CFI, MASP2 and MBL2), coagulation
factors (eg: F2, F7, F9, F10, F11, F12 and F13B), and many
genes involved in alcohol (ADH1A, ADH1C, ADH4,
ADH6), carbohydrate and lipid metabolism (GO:0006629,
lipid metabolic process, P < 2.36×10-36; GO:0016491, oxi-
doreductase activity, P < 4.24×10-34).

Comparison of the transcriptomes of specific human
immune cell subsets
As seen in our previous meta-analysis of mouse micro-
array data, the different leukocyte lineages can be defined
by sets of coregulated genes. The largest leukocyte-
enriched cluster is Cluster 2, a set of genes almost exclu-
sively expressed in neutrophils purified using a novel
isolation methodology [46]. This involved an affinity
capture of the cells using anti-CD66B antibodies, and
stimulation with either bacterial lipopolysaccharide
(LPS), or granulocyte-macrophage colony-stimulating
factor (GM-CSF) plus interferon (IFNγ). Curiously, this
cluster does not contain many of the known granulo-
cyte markers, but instead overlaps significantly with
genes identified as “housekeeping” in our previous analyses
in mice [2] (GO:0006350, transcription, P < 3.77×10-13;
GO:0019222, regulation of metabolic process, P < 4.14×10-13;
GO:0005634, nucleus, P < 4.99×10-12). It contains a
number of transcription factors generally regarded as
ubiquitous and/or involved in cytoprotective pathways,
notably ATF5 and ATF7 and SP1, 2 and 3, but also con-
tains some evidence of JAK-STAT pathway activation
evidenced by the presence of STAT5A and the feedback
regulators SOCS1 and SOCS4. The cluster also includes
the RNA polymerases, RNApol II and RNAPol III and
subunits TAF13 and TAF15. Neutrophils are known to
have relatively low levels of RNA and protein synthesis.
We suggest that being placed in culture has initiated a
relatively synchronous induction of generic biosynthetic
pathways in these isolated neutrophils. Within the cluster,
there are also lineage-related transcription factors, notably
E2F3 (which has a role in myeloid differentiation; [47])
and RUNX1, CEPD, and ETS family proteins ETS2, ETS3,
ETS5 and ETS7. Although the inclusion of these neutro-
phil datasets in some measure distorts the analysis, for the
purpose of genome annotation and guilt-by-association it
clearly associates many genes with associated functions
and it contains many genes with uninformative gene
names or lacking annotation. A separate, much smaller,
Cluster 19, is enriched in uncultured neutrophils and
BM, and contains the granulocyte colony-stimulating fac-
tor (G-CSF) receptor (CSF3R) and the transcription factor
STAT5B. Other leukocyte clusters tend to be rather
smaller than one might anticipate from stereotypical views
of “lineages”, and are more associated with known func-
tional pathways. Cluster 16 contains the CD3 compo-
nents, the T cell receptors, and the signalling factors
ZAP70, LCK, JAK3 and PKCQ and is enriched in T cells
(GO:0042110, T cell activation, P < 2.14×10-8; GO:0042101,
T cell receptor complex, P < 4.16×10-7). The cluster also
contains the gene encoding FLT3-ligand (FLT3LG), the
major inducer of antigen-presenting cell differentiation
[48]. The transcription factor within this cluster is LEF1,
also known as T cell factor [49]. Cluster 29 is the corre-
sponding plasma cell/ B cell-specific cluster (GO:0003823,
antigen binding, P < 2.04×10-5), containing the immuno-
globulin genes, and B cell maturation antigen, TNFRSF17.
The presence of the little studied transcription factor,
PRDM15, in this cluster may infer a function in B cell
differentiation.
Clusters 31 (GO:0005764, lysosome, P < 1.63x10-10)

and related Cluster 123 (GO:0006812, cation transport,
P < 0.00205) contain the genes previously identified in
mice and humans as being associated with phagocyte
function including LAMP1, vacuolar ATPase subunits
and lysosomal hydrolases, and the transcription factors
that regulate them, notably CEBPA and MITF [2].
Cluster 33 is enriched in plasmacytoid dendritic cells
(pDC) and contains TLR9, known to be pDC-restricted
in humans, and the pDC transcription factors IRF4 and
SPIB [50], again consistent with previous mouse data
[2]. It is not our purpose to annotate all of the clusters
processively. As we progress to smaller regulons we see
rather tight associations of genes that have obviously-
related functions. For example, Cluster 62 is enriched
in monocyte-derived macrophages and dendritic cells
(DC) and contains a set of genes that may have a func-
tion in internalisation of apoptotic cells. Cluster 66
contains many genes involved in cytotoxic T cell and
NK cell cytotoxic activity, including perforins and
granzymes (GO:0001906, cell killing, P < 0.000178). The
neighbouring Clusters 88 and 99 (GO:0009615, re-
sponse to virus; P < 2.58×10-8 & P < 0.00978, respect-
ively) contain distinct sets of the known antiviral
effectors amongst type 1 IFN target genes including:
DDX60, MX1, MX2, OAS1, OAS2, OAS3; and DDX58,
IFIT1, IFIT2, IFIT3, IFIT5, respectively. This suggests
that there is subtle discordance in the regulation of the
IFN response. Cluster 93 contains a small subset of the
known Toll-like receptor (TLR)-inducible cytokines
and chemokines including CXCL’s 1,2,3 and IL1B and
IL8 (GO:0008009, chemokine activity, P < 5.4×10-10).
As noted in our previous meta-analysis of large mouse

microarray datasets [19], the maturity of cDNA micro-
array technologies has made it possible to compare pro-
files based upon their biology and not according to the
laboratory that generated them, a particular problem in
the early days of microarray analyses [51]. As demon-
strated in our meta-analysis (Figure 2), with modern
microarrays, datasets from the same cell type but gene-
rated in different laboratories can be remarkably similar.
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For example, although endothelial cells from five inde-
pendent sources were included in this analysis (Additional
file 1: Table S1) each data set was contained within the
same cluster of the sample-to-sample correlation graph
(Figure 2, cluster 4).
Part of the purpose of the current analysis was to ge-

nerate a microarray resource to be displayed on the web-
site http://www.biogps.org, to complement the current
tissue data set that was assembled in 2004, and which is
still shown as a resource on several genome browsers.
The current human dataset on BioGPS has very limited
representation of primary cells, especially those of the
immune system. In our previous analysis of the mouse
BioGPS data, we demonstrated the greater information
content that could be derived from a focus on purified
cells, as opposed to tissues [2,19]. To demonstrate the
utility of the human cell metadata, we have carried out a
clustering analysis using the network tool BioLayout
Express3D. The detailed analysis of the genes involved in
the cell cycle, which clearly differ across this very large
data set depending upon the proportion of cells actively
involved in cell proliferation, provides a further clear
indication of the power of “guilt-by-association” in the
annotation of the likely function of genes with unin-
formative gene names. In the same manner, from a
gene expression atlas for the domestic pig, we extracted
very clear coexpression of the genes involved in oxida-
tive phosphorylation [17]. The recent assertion by Gillis
and Pavlidis [52] that guilt-by-association is the excep-
tion rather than the rule in gene networks is clearly in-
correct in mammalian systems. Their argument is
based in part upon the nature of networks; gene prod-
ucts that have numerous interaction partners (high
node-degree) tend to be involved in any process you
care to look at. The example that they use is TP53, the
well-studied tumour suppressor gene encoding p53.
Perhaps because it has so many functions and partners,
TP53 is actually idiosyncratic in its regulation and the
two probes designed to this gene lie in an small isolated
graph component consisting of 3 transcripts (together
with YWHAE a protein known to associated with P53).
By contrast, the related TP73 gene is strongly enriched
in bronchial epithelium (Cluster 11) and has been as-
cribed roles as a tumour suppressor in the lung [53].
More importantly, their analysis is based largely upon
the limited perspective of yeast and/or the still limited
information content of GO terms. As we have also
shown previously in studies of the mouse, the principle
of guilt-by-association works well when one analyses
very large datasets of different cell types from a mam-
mal. Because individual cells have specialised functions,
the gene products required for those functions must be
present in the same cell at the same time, and the
underlying regulation is predominantly via control of
transcription. Furthermore, the importance of such
coexpression information is evident in analysis of ge-
netic data. In simple terms, one can infer the likely
phenotype of a mutation in any specific gene from its
pattern of expression [1,4]. For the purpose of the
current analysis we chose a threshold for the network
graph of 0.75. Less stringent correlations may still be
informative. Using the “correlation” tool on the BioGPS
website, one can find the closest “friends” of any gene
on the arrays. For example, IFITM2 and IFITM3, which
are neighbouring IFN-induced genes involved in intrin-
sic antiviral defence, probably arose from gene duplica-
tion and which have highly-conserved promoters, are
correlated at around 0.7 across this large data set. An
even higher correlation is seen using this tool on the
mouse BioGPS data, which may partly reflect the fact
that these are inbred animals. Conversely, large clusters
such as Cluster 2, which contains a mixture of known
myeloid/granulocyte-enriched genes and general ana-
bolic genes, may reveal greater information content if a
higher threshold is chosen. The function of genes
within Cluster 2 would also be more thoroughly dis-
sected if granulocyte lineage cells were more tho-
roughly polled, but quality datasets for this purpose
were not available. The datasets chosen for this analysis
were also focussed in part on strong datasets from cells
of the monocyte-macrophage lineage. As observed pre-
viously in analyses of mouse data, macrophages and DC
(other than lymph node-derived and pDC) cluster to-
gether in terms of their overall profiles. Surface markers
that have commonly been used to separate the cells
show no evidence of association with other functions
and many of them form no cluster at all. The two sub-
units CD11B (ITGAM) and ITGB2, are correlated with
the focal adhesion protein FERMT3 and LSP1, in the
very small Cluster 169, which further validates the ap-
proach. Class I MHC genes are within a single cluster,
Cluster 91 (GO:0002474, antigen processing and pres-
entation via MHC class I, P < 1.06×10-16), and as one
might expect, coregulated with beta2-microglobulin,
but not with the antigen-processing genes TAP1 and
TAP2 which appear independently-regulated. Rather
less obvious is the association of the lysosome protein
transmembrane 5 (LPTM5) with this cluster, which
could suggest a function in antigen presentation. The
Class II MHC genes are mainly within a single cluster,
Cluster 89 (GO:0042613, MHC class II protein com-
plex, P < 8.72×10-16), and all of the unannotated probes
within this cluster also map to MHCII but there is no
association with any other marker or putative antigen
uptake receptors such as LY75 (DEC205, CLEC13B).
Hence, as in mouse, there is no surface marker that can
be used to define antigen-presenting cells, or to distin-
guish macrophages from DC other than class II MHC

http://www.biogps.org
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per se. The costimulators, CD83 and CD86 also show
no association with each other or with class II MHC
(HLADR, HLADP and HLADQ).
We also chose to include multiple macrophage

datasets in this analysis in part because they are amongst
the most complex sources of mRNA, and can respond
to numerous distinct stimuli with massive changes in
gene expression [54]. We also aimed to determine
whether there was a robust set of genes that can define
the polarisation of macrophages towards M1 or M2 acti-
vation states [55]. Across this very large data set, there are
sets of inducible genes that are robustly co-regulated, no-
tably the two distinct sets of IFN target genes (Clusters
88 and 99) and the immediate early inflammatory genes
including IL1B and IL8 (Cluster 93). None of the genes
proposed to distinguish the M1/M2 polarisation states
in human monocyte-derived macrophages [56], inclu-
ding the surface markers such as MSR1, MRC1, CD36,
DCL1 and CD209, show any evidence of coregulation
within a cluster. Furthermore, two of the most-studied
proinflammatory cytokines, IL6 and TNF, are also not
included within any coexpression clusters. There are
several reasons why genes that have been considered as
markers for particular activation states in myeloid cells
do not correlate well with each other if one examines
much larger data sets. Firstly, the data we are exami-
ning come from many different outbred humans, rather
than limited numbers of donors or inbred mice, and
involves many different stimuli. There are well-studied
promoter polymorphisms affecting the proinflammatory
cytokines and their receptors. Indeed, the expression of as
many as half of the genes detectable in leukocytes may be
affected by cis-acting variation [29]. So, genetic variation
amongst donors probably reduces the apparent corre-
lation amongst induced genes, and such variation prob-
ably contributes to infectious and inflammatory disease
susceptibility [57]. Secondly, the simple concept of dicho-
tomy of polarisation states is probably wrong. Each gene
has its own promoter and its own idiosyncratic response
to a common transcription milieu [58,59], and each ago-
nist acts upon different classes of receptors and therefore
acts differently on the available inducible genes. So, the
number of polarisation states is essentially infinite and the
divisions are arbitrary and artificial. The other interesting
feature highlighted by the network analysis is that many of
the cell lineage-restricted clusters contain only one, or a
very small number of, transcription factors. In all cases we
have examined, those factors are well known to have non-
redundant roles in lineage-restricted transcription and de-
termination. Of course, no cell lineage is determined, nor a
gene cluster regulated solely, by a single transcription factor.
When we consider macrophage differentiation, there are
multiple genes involved. PU.1 (SPI1) has been ascribed a
central role, but most recent evidence indicates that its
function is permissive, establishing a chromatin state that is
subsequently available to other regulators [54]. The SPI1
gene is actually not contained with the phagocyte cluster,
because it is also expressed in neutrophils and B cells and
has a unique pattern of regulation upon activation. There is
an unexpected set of coregulated genes (Cluster 72), in-
cluding AIF1, LST1, LILRA1 and LILRA2 that we might
consider as candidate direct PU.1 targets. Phagocyte-
specific genes have purine-rich promoters that bind PU.1
but based upon the co-expression analysis, we would sug-
gest that PU.1 is necessary, but not sufficient, and CEBPA
and MITF (or other MIT family members, TFEC, TFE3
and TFEB) are the absolute determinants of expression.
These two regulators probably regulate each other. The
CEBPA promoter itself contains a conserved MITF recog-
nition motif (CCAGCTG, E-Box) immediately upstream
of the transcription start site (http://www.ensembl.org).
MITF is expressed in both humans and mice from mul-
tiple promoters [60,61].

Conclusions
In summary, we have generated a resource for functional
annotation based upon the meta-analysis of gene expression
data from human primary cells. All these data have been
uploaded to the BioGPS website to provide a user-friendly
resource enabling the identification of transcriptional
friends of human genes. Our conclusions based upon the
unbiased clustering of gene expression with BioLayout
Express3D contrast with recent studies on the mouse by the
ImmGen consortium [62,63], in which the authors have
sought to identify marker genes based upon a preconcep-
tion of the separate identity of macrophages and DC.
One of these studies reported a small set of genes
which distinguished mouse cDC from four prototy-
pical tissue macrophage populations [57]. Additional file
6: Figure S3 shows the average expression profiles of
these proposed mouse core cDC signature genes [57]
across all of the human myeloid cell data sets used in
the current study. These data show that in humans such
markers do not define either cell culture-derived or
lymphoid tissue “DC” in an unbiased analysis of gene
expression profiles. This conclusion is consistent with
our own independent studies of the mouse [2,19] and
reanalysis of the ImmGen data (http://www.macro-
phages.com/HumeNI2013, [64]). Antigen presentation
and phagocytic activity are functions that require coor-
dinated gene expression, they do not define cell types
or lineages.

Methods
Selection of gene expression data sets
The NCBI Gene Expression Omnibus database (http://
www.ncbi.nlm.nih.gov) was searched for human primary
cell expression datasets. Data sets were selected based on

http://www.ensembl.org
http://www.macrophages.com/HumeNI2013
http://www.macrophages.com/HumeNI2013
http://www.ncbi.nlm.nih.gov
http://www.ncbi.nlm.nih.gov
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the following three criteria: (1) chip platform (Affymetrix
human genome U133 plus 2.0 expression arrays); (2) cell
type studied; (3) availability of raw data (.cel) files. Ac-
cordingly, a diverse set of human leukocyte gene expres-
sion data was collected comprising a total of 1,103 chips
from 105 separate studies. All raw data (.cel) files were
downloaded and the quality of the raw data from each
dataset was reanalysed using the arrayQualityMetrics
package in Bioconductor (http://www.bioconductor.org)
and scored on the basis of 5 metrics, namely maplot,
spatial, boxplot, heatmap and rle. Any array failing on
more than one QC metric was removed from the dataset.
Normalisation of all data was performed independently
using the robust multi-array average (RMA) expression
measure [51]. Probesets were then annotated using latest
annotation available in Bioconductor (26 June 2009) and
samples ordered according to cell-type grouping to ease
interpretation of the data (iPS cells, ES cells, BM, BM
progenitors, macrophages, lymphocytes etc.).
Network analysis
All normalised data passing the QC was saved as an
‘.expression’ file. This file contains a unique identifier for
each row of data (Gene symbol concatenated to probeset
ID), followed by columns of gene annotations which can
be used as class-sets for the overlay and analysis of infor-
mation with respect to the graph and finally natural scale
normalised data values for each sample (each column of
data being derived from a different sample). This file was
first used to prepare a sample-to-sample correlation
matrix using the ‘cor’ package with Bioconductor. This
was imported into the tool BioLayout Express3D [26] and
a graph plotted using all sample-to-sample relationships
>0.9. Next, using BioLayout Express3D a pairwise Pearson
correlation matrix was calculated thereby performing an
all vs. all comparison of the expression profile of each
probeset on the array. All Pearson correlations where
r ≥ 0.7 were saved to a ‘.pearson’ file. Based on the analysis
of the initial network graphs additional datasets were
rejected as they showed global differences in their expres-
sion profiles when compared to data from supposedly simi-
lar cell types. Out of the 1,103 chips originally selected, 745
arrays were selected for further analysis on the basis of
these QC measures. Based on a user defined threshold
of r = 0.75, an undirected network graph of the data was
generated. In this context nodes represent individual
probesets (genes/transcripts) and the edges between
them Pearson correlation coefficients above the selected
threshold. The resulting graph was large and highly
structured. The network was then clustered into groups
of genes sharing similar profiles using the MCL algo-
rithm with an MCL inflation value (which controls the
granularity of clustering) set to 2.2.
The graph of the combined datasets was explored ex-
tensively in order to understand the significance of the
gene clusterings and the functional activity of the cell po-
pulations investigated. Genes in the clusters of interest
were assessed for cellular function using a combination of
literature review and bioinformatics. Significantly over-
represented gene ontologies within clusters of interest
were identified using GOstat (http://gostat.wehi.edu.au).
For each GO term, the probability was calculated that the
observed counts occurred by the random distribution of
this GO term between the cluster of interest and the refe-
rence group (genes on the microarray). The Benjamini
and Hochberg correction was used to control the false
discovery rate of errors expected from multiple testing.
Over-represented gene ontologies with P values < 0.05
were accepted as significant (Additional file 2: Table S2).
Groups of genes often shared several GO terms that were
indicative of the same biological process, molecular func-
tion or cellular compartment. In these instances the most
informative GO terms within the top 10 identified are
presented.
Availability of supporting data
The entire dataset is available on http://www.macro-
phages.com/hu-cell-atlas, where a webstart version of
BioLayout Express3D enables visualisation of the average
expression of each cluster, and the specific expression of
individual genes across the dataset. All these data have
also been uploaded to the BioGPS website (http://biogps.
org/dataset/2429/primary-cell-atlas) to provide a user-
friendly resource enabling the identification of transcrip-
tional friends of human genes.
Additional files

Additional file 1: Table S1. A full description of the cellular identities
and treatment conditions of each dataset included in the analysis and
their order of presentation. The source of the data (GEO identifier) is also
provided.

Additional file 2: Table S2. An Microsoft Excel file detailing all of the
coexpression clusters derived from this analysis including the gene/
probeIDs within the cluster and cluster description annotation.

Additional file 3: Figure S1. The probability of the probeset-to
-probeset correlations at the level used in the current study (r≥ 0.75)
occurring by chance is very low. Histogram shows the distribution of the
actual (blue bars, %) and randomly simulated probeset (red bars, %)
chance correlations for a range of Pearson correlation values. The boxed
area on the x-axis of the main histogram is shown in detail in the inset
panel.

Additional file 4: Figure S2. Average expression profile of all transcripts
present in the 50 largest clusters from these analyses. x-axis displays the
grouping of the different primary 590 cells analysed and the y-axis the
average normalised expression signal of all transcripts in cluster. The cluster
number is shown (C_00N), together with the annotated cluster name and
the number of transcripts it contains (in brackets).

Additional file 5: Table S3. An annotated description of the cell cycle-
associated clusters 10 and 41.
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Additional file 6: Figure S3. Expression of mouse dendritic cell ‘marker’
genes across human myeloid cell types analysed in these studies. The list
of genes shown here was recently published by Miller et al. (2012) as
defining mouse dendritic cells based on the analysis of a subset of the
ImmGen data [62,63]. We have suggested that this is not really the case
in mice and this figure would suggest that this does not hold true in
humans either. Horizontal colour bars represent the myeloid sub-types
analysed, the histogram bars the mean 600 expression value for the
replicates of an individual sample type from a study, number of samples
averaged is shown in brackets.
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