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Abstract

proliferation and maturation, and apoptosis.

Background: It has been demonstrated that the umbilical cord matrix, represented by the Wharton's Jelly (W),
contains a great number of mesenchymal stem cells (MSCs), characterized by the expression of specific MSCs
markers, shared by both human and animal models. The easy access to massive WJ amount makes it an attractive
source of MSCs for cell-based therapies. However, as in other stem cell models, a deeper investigation of WJ-
derived MSCs (WJ-MSCs) biological properties, probably modulated by their prolonged expansion and fast growth
abilities, is required before their use in clinical settings. In this context, in order to analyze specific gene expression
modifications occurring in WJ-MSCs, along with their culture prolongation, we investigated the transcriptomic
profiles of WJ-MSCs after 4 and 12 passages of in vitro expansion by microarray analysis.

Results: Hierarchical clustering analysis of the data set originated from a total of 6 experiments revealed that

in vitro expansion of WJ-MSCs up to 12 passages promote selective over-expression of 157 genes and down-
requlation of 440 genes compared to the 4'h passage. IPA software analysis of the biological functions related to
the identified sets of genes disclosed several transcripts related to inflammatory and cell stress response, cell

Conclusions: Taken together, these modifications may lead to an impairment of both cell expansion ability and
resistance to apoptosis, two hallmarks of aging cells. In conclusion, results provided by the present study suggest
the need to develop novel culture protocols able to preserve stem cell plasticity.
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Background

Mesenchymal stem cells (MSCs) are generally consid-
ered the main toolbox for cell-based therapies. Com-
pared to embryonic stem cells (ESCs), MSCs exhibit the
following advantages: accessibility with fewer ethical
controversies [1], no reports of teratoma formation after
transplantation, and versatile therapeutic applications
[2-7]. Based on literature data, the phenotype of MSCs
obtained from different sources is typically characterized
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by the expression of CD44, CD73, CD90 and CD105,
representing the best suited markers currently used to
characterize these cells, together with the lack of the ex-
pression of endothelial/hematopoietic markers (CD144,
CD34, CD45) [8,9]. The umbilical cord (UC) is an extra-
embryonic formation essential to provide feeding to the
fetus during the intrauterine development. It has been
shown that UC matrix, represented by the Wharton’s
Jelly (WJ]), surrounding umbilical vessels, contains a
great number of mesenchymal cells, which have been
characterized as expressing aforementioned markers,
shared by MSCs in both human and animal models
[10-12]. The abundant amount of W] makes it an
attractive source of MSCs for cell-based therapies
[13,14]. However, as in other stem cell models, a deep
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investigation of WJ-MSCs biological properties is required
before their use in clinical settings. In this context, a critical
point is represented by the analysis of functional modifica-
tions affecting WJ-MSCs along with their prolonged
in vitro cultures. In fact, a recent study highlighted the
changes in protein expression profiling, along with the
in vitro expansion of WJ-MSCs, probably related to the
gradual impairment of their stem cell plasticity and of the
biological mechanisms occurring in cellular aging [15]. In
order to provide a different investigation model of the bio-
logical modifications occurring during WJ-MSCs in vitro
growth, we analyzed the transcriptomic profile of the afore-
mentioned cells following prolonged culture times [12%
passage compared to an early (4™) passage] by microarray
analysis. The aim of the present study was to identify
possible novel markers related to their in vitro prolonged
expansion and to their fast growth abilities.

Methods

Cell isolation and culture

Institutional review board approval was obtained for all
cell culture procedures. Fresh human UC (N =5) were
obtained from full-term births, after written informed
consent was obtained from parents. UC were aseptically
stored in sterile saline solution and processed within
6 hours from the partum to obtain WJ-MSCs, as previ-
ously described [15]. Briefly, after the removal of blood
vessels, the extracellular matrix of W] was scraped off,
treated with 2 mg/ml collagenase IV (Sigma) for 16 hours
at 37°C and then with 2.5% trypsin for 30 minutes at 37°C,
under agitation. Finally, the obtained cell suspension
was seeded in complete Human mesenchymal stem cell
growth medium (hMSCGM, Lonza) and cultured in 5%
CO, in a 37°C incubator. When 80% of confluence was
reached, the adherent fraction of cells was detached
with 0.05% trypsin-EDTA, counted by Trypan Blue ex-
clusion test, and reseeded at 3000 cells/cm” to reach
the 90% of confluence after 3—4 population doublings.

Immunophenotype

WJ-MSCs were harvested at two experimental time
points (4™ and 12™ culture passages) and were immedi-
ately incubated with 1 pg/10° cells of fluorescein
isotiocynate (FITC)-conjugated or phycoerythryne (PE)-
conjugated antibody for 40 minutes at 4°C in the dark.
Anti-CD73, anti-CD13, anti-CD90, anti-CD117, anti-
CD14, anti-CD34, anti-CD105 and anti-CD45 (Becton
Dickinson, San Jose, CA, USA), anti-CD29, anti-CD44
and anti-CD166 (Ancell, Bayport, MN, USA) antibodies
were used. After a washing step, 10,000 events/sample
were acquired on a FACSCalibur flow cytometer (two-
lasers, four-color configuration) with CellQuest 3.2.1.f1
(BD) software; data were analysed using FlowJo™ soft-
ware (TreeStar, Ashland, OR) [16].

Page 2 of 15

Doubling time and cell cycle analyses by
bromodeoxyuridine incorporation assay

Exponentially growing WJ-MSCs were exposed to 10 uM
bromodeoxyuridine (BrdU) (Sigma, St. Louis, MO, USA)
for 1 h, then fixed in 70% ethanol and kept at 4°C before
labeling as previously described [17]. To detect BrdU in-
corporation, cells were washed with PBS and treated with
1 ml of a solution containing 2 N HCl/0.5% Triton X-100
(Sigma) for 30 min at room temperature. 1 ml per sample
of 0.1 M NayB,0, (pH 8.57) was added to stop the HCl
reaction. Cells were then washed with 1 ml of a solution
containing 0.5% Triton X-100/1% BSA, followed by an in-
cubation for 30 min at room temperature in the dark with
fluorescein isothiocyanate (FITC)-conjugated anti-BrdU
antibody (BD Biosciences, San Jose, CA; dilution: 1:5 in
0.5% v/v Triton X-100). Cells were washed and
resuspended in a solution containing 5 pg/ml Propidium
Iodide (PI, Sigma) and 200 pg/ml RNase (Sigma). After
30 min of incubation biparametric BrdU/DNA data were
acquired on a FACSCalibur flow cytometer (two-lasers,
four-color configuration) with CellQuest 3.2.1.f1 (BD)
software; data were analysed using FlowJo™ software
(TreeStar, Ashland, OR) or ModFit LT™ software (Verity
Software House, Toshan, ME, USA). Debris was excluded
from the analysis by gating a forward scatter versus side
scatter plot. Cell aggregates were excluded by gating FL2
area versus FL2 width [17].

Telomere length assay

Genomic DNA was extracted from WJ-MSC at different
passages using Wizard Genomic DNA Purification Kit
(Promega) following the manufacturer's instructions.
The length of telomere regions was assessed using
the Telo TAGGG kit (Roche) according to the
manufacturer's instructions. Appropriate controls, repre-
sented by DNA extracted from cells with long or short
telomere regions, were also provided with the kit [15].

Determination of cell senescence

The amount of senescent cells was evaluated in the dif-
ferent reported conditions by using the Senescence -
Galactosidase Staining Kit (Abcam, Cambridge, UK) in
accordance to the manufacturer's instructions, as previ-
ously described [15].

Adipogenic differentiation

To induce adipocyte differentiation, 10 x 10> cells/cm?
were cultured in DMEM high glucose (HG) (Sigma)
supplemented with 10% FBS (Gibco), 0.5 mM isobutyl-
methylxantine (Sigma), 200 pM indomethacin (Sigma),
1 pM dexamethasone (Sigma) and 10 pg/ml insulin
(Sigma). Cells were cultured, replacing the medium
every 2-3 days. After 2-3 weeks of culture, cells
contained neutral lipids in fat vacuoles; they were fixed
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in 10% formalin and stained with fresh oil red-O solu-
tion (Sigma) [15].

Osteogenic differentiation

To induce osteogenic differentiation, 3 x 10> cells/cm?
were cultured in MEM (Sigma) supplemented with
10% FBS (Gibco), 10 mM§f-glycerophosphate (Sigma),
0.2 mM ascorbic acid (Sigma), and 10 nM dexametha-
sone (Sigma), and cultured for 3—4 weeks, replacing the
medium every 2—-3 days. To demonstrate osteogenic dif-
ferentiation, cultures were fixed and induced to the alka-
line phosphatase reaction [15].

Expression profiling

Total RNA was extracted from about 10° cells/sample of
two different WJ-MSCs cultures after 4 and 12 passages
during their in vitro expansion, using the SVtotal RNA
Izolation System kit (Promega, Madison, WI, USA). The
purity and quantity of RNA was assessed using the
Agilent 8453 Spectrophotometer (Agilent, Santa Clara,
CA, USA). RNA quality was determined by both the
evaluation of the rRNA band integrity, using agarose
electrophoresis, and absorption readings at 260 and
280 nm. Extracted RNA was linearly amplified using the
Amino AllylMessageAmp™ II aRNA Amplification Kit
(Ambion, Austin, TX, USA). Five to ten pg of amplified
aRNA were fluorescently labeled with Cy3-Cy5 cyanins
and then hybridized on high-density array Human
Whole Genome OneArray™ Microarray V5 (30,968 total
probe; Biosense, Italy). Amplified aRNAs were used for
microarray experiments carried out by hybridization of
WJ-MSCs after 4 passages, compared to WJ-MSCs after
12 passages, for a total of 6 experiments (Table 1). The
same biological samples have been compared at 4th and
12th passage. After hybridization, Cy3-Cy5 fluorescent
signals were captured by a Confocal Laser Scanner
"ScanArray Express" (Packard BioScience) and analyzed
using the software "ScanArray Express-MicroArray Ana-
lysis System" version 3.0 (Perkin Elmer). Raw data of the
performed experiments were recorded in the GEO
public database (accession number: GSE34929). The
values of the median signal intensity from each spot
were subtracted from the local median background in-
tensity. For each slide, after local background subtrac-
tion, a LOWESS algorithm was used for row data
normalization, to evaluate signal to noise ratio and gen-
erate log ratios of sample vs reference signal. A gene was
considered to be differentially expressed when showing
an absolute value of log-ratio higher or equal to + 0.5, an
index that translates to a fold-change of 1.4 in transcript
quantity. Analysis of data obtained by microarray experi-
ments was carried out by means of hierarchical gene
clustering [18] using Cluster 3.0 (open source 2006) and
TreeView (Stanford University Labs) software. In order
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Table 1 Phenotype and markers expression levels in WJ-
MSC at 4'" and 12" passage

Antigens Phenotype 4th passage 12t passage p <
MFI ratio = S.D.

CcD13 + 116+08 77+08 0.002
CD14 - 13£0.1 1.1£0.1 0.222
CD29 +++ 1546+73 1419+24 0.036
CD34 - 1.3+0.1 1.1+£0.1 0.210
CD44 +++ 173.8 +£20.1 820+87 0.009
CD45 - 11+02 12+£02 0.308
CD73 ++ 495+27 199+ 1.1 0.001
CD90 ++ 784+26 81.0£32 0.226
CD105 + 87+0.7 79+05 0.218
CD117 - 18+02 15+02 0.152
CD133 - 1.5+0.1 12+0.1 0.094
CD144 - 1.2+£0.1 13£02 0.320
CD146 + 105+06 113£06 0.230
CD166 + 144409 68+12 0014
CD326 - 1.1£01 1.1£0.1 0420
HLA-ABC + 240+ 04 249+06 0.023
HLA-DR - 1.3 +0.1 1.1+0.1 0341

- negative expression; + moderate expression; ++ positive; +++ high
expression; MFI Ratio is the average of five different biological samples +
standard deviation; Bold values represent MFI Ratio With p < 0.01; Cut-off
positivity MFI Ratio > 2.

to include in clustering analysis only well measured tran-
scripts, we selected spots with a present call (identified
transcripts with measurable expression) in at least 80%
of experiments and being > 1.7 fold up- or down regu-
lated in at least 5 experiments. Identified clusters were
then analyzed by the Ingenuity Pathways Analysis (IPA)
software (Ingenuity Systems, Redwood City, CA), in
order to classify genes based on their biological func-
tions and disclose functional networks connecting spe-
cific genes. IPA infers and ranks networks by a score,
expressed as a numerical value, which is a probabilistic
fit between the amount of focus genes that are poten-
tially eligible for a network composition and present on
a given gene list, the size of the network, as well as all
the molecules present in the Ingenuity Knowledge Base
that can be part of such a network. To validate the
microarray results, qRT-PCR analysis was performed on
three down-regulated (p53, HSPE1 and HIST1H3C) and
three up-regulated genes (IL1B, CREBBP and LYN) as
evidenced by microarray experiments, using the house-
keeping gene GAPDH as internal control to normalize
the relative expressions of target genes. The quantitative
RT-PCR was carried out in a total volume of 50 pl
containing 1x TagMan Universal PCR Master mix, no
AmpErase UNG and 2 pl of ¢cDNA using the TagMan
assay on the Abi 7900HT Sequencing Detection System.
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Figure 1 WJCs characterization. Light microscopic micrographs of WJ-MSCs in monolayer at the 4™ (A) and the 12" (B) culture passages. In
monolayer culture, cells assumed a polymorphic, fibroblast-like morphology, which was maintained throughout the time of culture (scale bar
40 um). Growth characterization of WJ-MSCs during the in vitro expansion 4" and 121 passage) measured by cell count (C) and by the BrdU
incorporation assay, allowing the doubling time evaluation (D). The ability of WJ-MSCs to differentiate into the adipogenic lineage at the 4™ (E)
and the 12 (F) culture passages was evidenced by the intracellular accumulation of neutral lipid vacuoles (red oil staining) (scale bar 20 um).
Osteogenic differentiation at the 4™ (G) and the 12 (H) culture passages was indicated by the increase in alkaline phosphatase reaction (scale
bar 80 um). Light microscopic micrographs A, B, E, F, G and H are representative of five separate biological samples.

Genes primers and probe sets used were NM_000546
(p53), NM_002157 (HSPE1), NM_003531 (HIST1H3C),
NM_004380 (CREBBP), NM_000877 (IL1B), NM_002350
(LYN), NM_002046 (GAPDH) (Integrated DNA Technolo-
gies, Coralville, Iowa, USA). The real time amplifications
included 10 minutes at 95°C, followed by 48 cycles
of 15 seconds at 95°C and 1 minute at 60°C. Relative
expression levels were calculated for each sample after
normalization against the housekeeping gene GAPDH,
using the AACt method for comparing relative fold expres-
sion differences [19].

Results

Cells isolation, culturing and characterization

Cells isolated from the human W] displayed a consistent
spindle-shaped elongated fibroblast-like morphology at
the 4™ passage, a feature retained up to the 12™ passage
(Figure 1A, B). A representative immunophenotype of cells
used in our experiments is reported in Additional file 1:
Figure S1. A positive response pattern expression of CD13,
CD29, CD44, CD73, CD90, CD105, CD146, CD166, HLA-
ABC markers and a negative reactivity for CD14, CD34,
CD45, CD117, CD133, CD144, CD326, HLA-DR were
detected at both 4™ and 12™ passages (Table 1). Such a
high homogeneous marker expression suggests that non-
stem cell populations did not significantly contaminate
samples used in the present study. On the other hand, the
expression of CD13, CD44 and CD73 underwent a pro-
gressive and statistically significant reduction at the 12
passage (Table 1) while the variation of the adhesion mol-
ecule expression (CD14, CD44 and CD73) is in accordance
with a stem cell aging process, during in vitro expansion.
The steady ability of WJ-MSCs to differentiate into both
adipogenic and osteogenic lineages at the 4™ and the 12
passage was evidenced (Figure 1). After their expansion,
cells showed a homogeneous diploid content during the
G1 cell-cycle phase (Additional file 2: Figure S2). Further-
more, G1 and G2 cell-cycle checkpoints appeared intact.
This finding is consistent with actively cycling cells. The
long telomeric end of DNA extracted from WJ-MSCs at all
examined passages also confirms that these cells preserve
their capability to undergo a high number of cellular divi-
sions up to the 12t passage (data not shown) [15]. Accord-
ingly, a low frequency of cells staining positive for p-
galactosidase was found at both studied passages (4™ and

12™). On the other hand, long-term in vitro culture pas-
sages led to an impairment of cell expansion ability, as
demonstrated by different exponential curves of growth at
the 4™ and the 12™ passage, as demonstrated by cell
counts (Figure 1C). These data were confirmed by the ana-
lysis of the doubling time obtained through the BrdU in-
corporation assay, associated to the DNA staining
(Figure 1D): results evidenced that the doubling time pro-
gressively increased from 32 h at the 4™ passage to 74 h at
the 12 passage (p < 0.001).

Gene expression profile of WJ-MSCs at the 4™ passage vs
the 12" passage

To gain insights on the global changes in gene expression
of human WJ-MSCs, produced by 12 passages in vitro ex-
pansion as compared to 4 passages, we performed a hier-
archical clustering analysis of the data set originated from
a total of 6 experiments (3 biological and 3 technical repli-
cates). On a total of 30,968 transcripts investigated by the
array, the analysis revealed that 12 passages in vitro expan-
sion of WJ-MSCs promote the selective over-expression
of 157 genes (cluster 1), while 440 genes were down-
regulated (cluster 2) as compared to 4 passages expansion
cells (Figure 2; Additional file 3: Table S1; Additional file 4:
Table S2). Ingenuity Pathway Analysis (IPA) was carried
out to investigate the main functions played by the selected
clusters of genes. The up-regulated gene dataset (n =157)
was mainly composed by genes involved in functions re-
garding cellular development, cellular growth and prolifer-
ation, cellular movement, cell death, cellular assembly and
organization, gene expression, cancer, cellular compromise,
nervous system development and function, cell cycle, cell
morphology, post-translational modifications and RNA
post-transcriptional modification (Figure 3A). This analysis
also demonstrated that down-regulated genes (n=440)
were involved in functions regarding cell cycle, cancer, ner-
vous system development and function, cell morphology,
protein synthesis, cell death, cell signaling, cellular growth
and proliferation, cellular movement, post-translational
modification and free radical scavenging (Figure 4A).

Networks associated with transcripts selectively modified
at the 12 passage in vitro expansion

IPA software predicts functional networks based on
known protein-protein and functional interactions. We
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labels indicate the different experiments.

Figure 2 Hierarchical clustering analysis. The cluster analysis shows the presence of two different clusters composed respectively by 157 up-
regulated transcripts (cluster 1) and 440 down-regulated genes (cluster 2). In the figure, all the relevant genes are grouped according to their
expression values, shown as log ratios. Each row corresponds to one gene, each column to the different 6 microarray experiments. The
quantitative changes in gene expression across all the samples are represented in different colors: red indicates over-expressed genes, and green
indicates down-regulated genes. Black bars indicate no changes in gene expression. Missing data points are represented as gray bars. The top

therefore employed IPA to study how the genes select-
ively changing their expression at the 12" passage as
compared to the 4™ passage were interacting in specific
networks.

IPA analysis of the up-regulated genes indicated 8 net-
works with a score ranging from 46 to 16. The first top
network generated by IPA (score = 46) (Figure 3B) is com-
posed by: i) genes around the gene node IL1, namely IL1B,
IL1IR1, S100113 and TWIST2, that participate in the in-
flammatory response and apoptosis; ii) genes around AKT
gene node, namely RAC2 and PTPRE, involved in protein
phosphorylation, cell differentiation, proliferation and mat-
uration; iii) other genes not linked to any specific node,
whose function is related to the transcription regula-
tion (PARP1, HNRNPAB, NONO CREBBP), cytoskeletal
organization (ACTR3, NISCH), MSC differentiation
(EPHA4, MT2A, CDH2, RAC), cell stress response
(ERRFI1), inhibition of apoptosis (RNF7, TWIST2, IL1B),
cell proliferation and maturation (LYN) (Table 2). IPA ana-
lysis of the down-regulated genes showed 14 networks with
a score ranging from 45 to 11. The first top network gener-
ated by IPA (score =45) (Figure 4B) is composed by: i)
genes around p53 gene node, namely UBE2D3, MAP2K3,
ZHX1, XPO1, PIN1, CDC27, ANAPC?2; ii) other genes not
linked to any specific node, whose function was related to
cell proliferation and pluripotency (TYMS, FGFR3, MITF
and NCAPD2), oxidative stress (RPS3, NFE2L2, HSPI,
HAT1), NF-kB signaling (IKBKG, MYL5), apoptosis
(SLC6A4, TPH1) and histone modification (HATI,
HIST1H3C) (Table 3).

TaqMan Real Time quantitative PCR and western blot:
validation of the microarray data

qRT-PCR analysis, performed in order to validate micro-
array data by investigating three down-regulated (p53,
HSPE1 and HIST1H3C) and three up-regulated genes
(IL1B, CREBBP and LYN) present in the first top up and
down gene networks, respectively, (Figure 5) and west-
ern blot analysis of p53, HISTIH3C and IL1B protein
(Additional file 5: Figure S3; Additional file 6: Western
Blot Method), confirmed the results obtained by the
microarray analysis.

Discussion
It is well known that during cell culture different kind of
stem cells can undergo functional modifications related

to the number of culture passages [70,71]. The identifi-
cation of these modifications is of crucial relevance in
order to better understand the biology of stem cells and
the differences in their ability to proliferate and differen-
tiate, along with cell expansion. The study of the whole
stem cell transcriptome, carried out by microarray tech-
nology, allows to identify the global changes occurring
in the expression profiles of these cells, providing useful
information about their functional changes along with
culture progression. In the present study, we carried out
an analysis of gene expression profiles of WJ-MSCs at
4™ and 12™ passages, in order to evidence the modifica-
tions in the trascriptome induced by the culture time
prolongation. IPA gene analysis revealed that the top up-
regulated network was characterized by the presence of
2 independent functional nodes (IL1, AKT). IL1 node is
connected with IL1B, ILIR1, S100113 and TWIST2
genes, related to inflammation. The up regulation of
these genes in older cells could reflect the presence of
an inflammation cellular response acting as a defense
mechanism of damaged cells for preventing cell death.
AKT node, connected with RAC2 and PTPRF genes, is
involved in protein phosphorylation, regulating cellular
growth and differentiation, and their over expression ap-
pears to be mainly related to cell differentiation and
maturation [25]. Other up-regulated genes in this net-
work, although not related to any evident node, are any-
way worth of interest due to their specific functions.
Among these, four genes (CREBBP, PARP1, HNRNPAB,
NONO) are well known to be involved in the regulation
of transcription and play an important role in various
cellular processes such as differentiation and prolifera-
tion [30,32]. In particular, CREBBP gene is critical in
embryonic neural development [29] and HNRNPAB
gene, interacting with Oct4, is involved in embryonic
stem cells differentiation [31]. On the other hand, cyto-
skeleton organization is the main function played by the
other two genes present in the network, complex Arp2/
3 and Nischarin (ACTR3, NISCH). In the top up-
regulated network are also presents 3 genes (EPHAA4,
MT2A, CDH2) representing neural marker related to
MSC differentiation. Interestingly, the contemporary ac-
tivation of RAC2 and CDH2 has been reported as re-
lated to MSC differentiation [37]. The last three genes
with interesting function detected in this network are
ERRFI1, RNF7 and LYN. The up-regulation of these
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Figure 3 IPA functional analysis and first top network associated with the Cluster 1. (A) Bar chart shows key function associated with
genes found to be up-requlated (cluster 1) in WJ-MSCs after 12 passages of their in vitro expansion, as compared to WJ-MSCs at the 4™ passage.
(B) Network cluster 1: in grey are represented the genes up-regulated in WJ-MSCs after 12 passages of their in vitro expansion, as compared to
WJ-MSCs at the 4™ passage. Transcripts not modulated along with the different passages are represented in white. Arrows indicate that a
molecule acts on another molecule, while lines indicate a bind between two molecules.

genes is associated with cell growth and proliferation interesting node is centered around the TP53 gene, en-
[40] and ERRFI1 activity is induced during cell stress coding for the major suppressor protein that can
[38,72]. RNF7 has an antiapoptotic activity mediated by  recognize DNA damage and subsequently arrest the cell
the activation of the transcription factor JUN [39]. cycle and trigger the repair process. It has been reported
Among the down-regulated gene network, the most that TP53 functional activity is reduced during the aging
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Figure 4 IPA functional analysis and first top network associated with the Cluster 2. (A) Bar chart shows key function associated with
genes found to be down-regulated (cluster 2) at the 1t passage of WJ-MSCs as compared to cells at the 4t passage. (B) Network cluster 2: in
gray are represented the down-regulated genes at the 12™ passage of WJ-MSCs in vitro expanded, as compared to the same cells at the 4™
passage. Transcripts not modulated along with the different passages are represented in white. Arrows indicate that a molecule acts on another
molecule, while lines indicate a bind between two molecules.

process [41,42], probably due to a reduced transcrip- post-translational modifications, such as UBE2D3,

tional activity [73]. In the present study, the down-
regulation of the TP53 in older cells was associated to a
contemporary down regulation of genes encoding for
both transcriptional factors and proteins involved in

MAP2K3, ZHX1, XPO1, PIN1, CDC27, ANAPC2 [74].
In the same network are also present other genes related
to specific cell functions not linked to any evident node
gene. Some of these genes, listed in results section, are
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Table 2 Up-regulated gene functions in cell cultures at 12" passage as compared to cells at 4™ passage

Class Gene Description Functions Ref
IL1 NODE IL1 Pro-inflammatory cytokine Activation of NF-kappaB; Induction of acute and chronic inflammation [20]
involved in host defense

IL1B Cytokine activated by Caspase 1 Cell proliferation; Cell differentiation; Apoptosis [21]

ILTR1 Cytokine receptor 1 Immune and inflammatory response [20]

S100A13  Calcium binding protein induced Cell cycle progression; Cellular differentiation [22]

by inflammatory stress

TWIST2 MSCs marker Negative regulator of IL1B; Cell lineage determination; Cellular differentiation [23,24]

AKT NODE AKT Protein kinase B Cellular growth; Mitosis; Cellular differentiation [25]
RAC2 Member of Rho GTPase family Proliferation; Cellular differentiation; Cytoskeletal organization; Cellular [26,27]

adhesion; Membrane trafficking, Transcriptional regulation
PTPRF  LAR protein tyrosine phosphatase Neuronal differentiation; Cellular development [28]
sigma family

Transcription CREBBP CREB binding protein Histone acetyltransferase activity; Transcriptional regulation [29]

regulators PARP1 Poly (ADP-ribose) polymerase Cellular proliferation; Cellular differentiation [30]

HNRNPAB  Ribonucleoprotein associated RNA processing and trafficking; Cellular differentiation [31]

with pre-mRNAs

NONO RNA-binding protein Transcriptional regulation; RNA splicing; RNA retention in nucleus [32]

Cytoskeleton ACTR3 Actin-related protein Neuronal differentiation [33]

organization NISCH Nischarin Negative role in cell migration [34]

Neural markers ~ EPHA4 Ephrin recepotor of protein- Nervous system development [35]

tyrosine kinase family

MT2A Melatonin recepror 2 Expressed in neural progenitor [36]

CDH2 Cadherin Cellular differentiation via RAC [37]

ERRFI1 Cytoplasmic protein Induced by cellular stress; Cell signalling [38]

RNF7 Ring finger protein Part of protein degradation machinery; Antiapoptotic activity via JUN [39]

LYN v-yes-1 Yamaguchi sarcoma viral Tyrosine kinase activity; Cellular proliferation [40]

related oncogene

of particular interest for further discussion. The down
regulation of genes related to oxidative stress response
(RPS3, NFE2L2, HSP1 and HAT1), has been reported to
indicate the cell inability to react to oxidative and DNA
damage [59,60,75]. The reduced capacity in protein fold-
ing, related to HSP1 down-expression, causes incapacity
to react to stress and accelerates aging process [61-63].
The down-expression of IKBKG and MYL5, involved in
NE-«B signaling [65], can be related to abnormal growth
of cells while MITF down-regulation is associated with
loss of pluripotency [56]. In the down-expressed dataset
are present two genes (HISTIH3C and HAT1) involved
in histone modifications. The down expression of
HIST1H3C (encoding a member of the histone H3 fam-
ily) is related to loss of pluripotency and represents a
marker of differentiation in stem cells [76]. The highest
expression of HAT1 (encoding a protein involved in
rapid acetylation of newly synthesized cytoplasmic his-
tones) occurs during embryogenesis and its down ex-
pression is related to aging and differentiation processes
[68]. Taken together, all data obtained in this study indi-
cate that WJ-MSCs appear to undergo a process of aging

rather than senescence during the in vitro expansion
from the 4™ to the 12™ culture passage. In fact, cellular
aging can be defined as a progressive decline in the
physiological properties of tissues, characterized by a de-
creased replication capacity and an increase of cell-cycle
-arrested cells, while senescence is the state in which
cells have irreversibly lost their proliferation ability [41].
This is mainly demonstrated by the observed low fre-
quency of cells staining positive for [(-galactosidase
found in all different passages, indicating that even at
12™ passage cells cannot be considered as senescent. In
addition, further evidences are provided by the presence
of intact G1 and G2 cell-cycle checkpoints and by the
presence of long telomeric end at all examined passages,
which confirm that WJ-MSCs preserve their capability
to undergo a high number of cellular divisions up to the
12" passage. Cellular aging can be considered as an evo-
lutionary conserved defence representing an alternative
to cell death in the presence of chronic low stress condi-
tions increasing resistance to apoptosis and thus
allowing the survival of post-mitotic cells damaged in
their central functions. These figures reflects the cell



Gatta et al. BMC Genomics 2013, 14:635
http://www.biomedcentral.com/1471-2164/14/635

Page 11 of 15

Table 3 Down-regulated gene functions in cell cultures at 12'" passage as compared to cells at 4™ passage

Class Gene Description Functions Ref
TP53 NODE TP53 Major tumor protein suppressor Cell cycle; Apoptosis; Senescence [41,42]

UBE2D3  Member of E2 ubiquitin conjugating Protein degradation machinery [43]

enzyme family
MAP2K3 Protein kinase activated by Gene expression regulation; Mitosis; Cellular differentiation;  [44]
environmental stress Cellular proliferation; Apoptosis; Senescence
ZHX1 Zing finger and homeoboxes gene Maintenance of TP53 gene silencing [45]
family
XPO1 Exportin 1 Protein trafficking; Localization of cyclin b; Localization [46]
of MPAK; Nuclear export of TP53
PIN1 Phosphorylation-dependent prolyne Cellular differentiation; Cellular proliferation; Immune [47,48]
isomerase response; Mitosis
CDC27  Component of anaphase promoting Mitosis; Ubiquitination [49]
complex

ANAPC2 Anaphase promoting complex Cell cycle control; Ubiquitination [50]

Cell cycle regulation and TYMS Thymidylate syntase DNA replication and repair; Mitosis [51]
differentiation FGFR3 Fibroblast growth factor receptor 3 Mitosis; MSCs differentiation [52,53]
NCAPD2 Subunit of condensin | Mitosis; Proliferation [54,55]
MITF Transcription factor Cell cycle regulation; Gene expression; Differentiation [56-58]

Oxidative stress response RPS3 Ribosomal protein (40s subunit) DNA damage repair; Kinase activity on NFkB complex [59]

NFE2L2 Human basic leucine zipper Oxidative stress response [60]

transcription factor

HSP1 Heat-shock protein 1 Protein folding [61-63]

NFkB signalling IKBKG Regulatory subunit of IKK complex NFkB activation [64]
MYL5 Myosin light chain NFkB activation [65,66]

Apoptosis SLC6A4 Membrane serotonin transporter Apoptosis [67]

Histonic modification HAT1 Histone acetyltransferase B Histone acetylation; Aging; Cellular differentiation [68]

HISTTH3C Member of Histone H3 family Transcriptional regulation; Cellular differentiation [69]

biological condition and confirms previously reported
data about the presence of an aging phenotype of these
cells as evidenced by proteomic analysis [15]. Salminen
et al. [41], have recently described that the molecular
basis of increased resistance to apoptosis in aging cells
involves several mechanisms such as alterations in p53
and NF-kB networks and pathways, protein folding, and
increased presence of pro-inflammatory mediators. Our
results match with these mechanisms, demonstrating a
resistance to apoptosis related to the above described
down-expression of p53 and the over-expression of
TWIST2, RNF7 and ILB1 genes, present in the first top
network, as well as of SOD2, RPS27L and STAMBP
genes, included in the up-expressed gene cluster.
TWIST2 and ILB1 are able to induce the resistance to
apoptosis mediated by NF-«B [77], which activates anti-
apoptotic survival genes such as SOD2, the cytokine
STAMBP, and the caspase activator RPS27L, all positive
regulator of anti-apoptotic signaling acting on different
pathways. Feng et al. [74], convincingly demonstrated
that the functional activity of p53 declines in several
murine tissues during aging. Moreover, a reduced

capacity in protein folding is related to apoptosis and
cell death. Aging process and incapacity to react to
stress are also related to down expression of the
NFE2L2-NFE2-NFE2L gene complex [60]. The resist-
ance to apoptosis is also enhanced by persistent type of
stress, e.g. oxidative stress [41] and in this view, our data
show the over-expression of IL1B, LTBP1 AND RAC2
genes, related to the production of oxidative species.
The aging process denotes a reduced capacity to main-
tain intact cytoskeleton structures, affecting cellular pro-
cesses such as motility, interaction with neighbouring
cells and mitosis [34], and in the present study, we
demonstrated the over-expression in older cells of
NISCH gene. ACTR3 instead is demonstrated to be up-
regulated during stem cell differentiation [33], in par-
ticular the neural differentiation. Moreover, as confirmed
by data from cell cultures, the cells at the 12™ passage
show decreased proliferation likely related to the above
described down-expression of genes such as MAP2K3,
PIN1, CDC27, ANAPC2, TYMS, FGFR3, NCAPD2,
MYL5. The same cells also show altered modulation of
HIST1H3C, PTPRF, EPHA4, MT2A, CDK5R2, CDH2,
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Figure 5 Validation microarray gene expression data by qRT-PCR. Analysis of the selected genes IL1B, CREBBP, LYN, P53, HSPET, HISTTH3C
was carried on the RNA obtained by 4" and 121 passage of WJ-MSCs. Data are the means + SD of three independent experiments in triplicate
(*P <0.01, Student's t-test).

genes related to neuronal differentiation indicating a loss ~ demonstrate the impairment WJ-MSCs expansion abil-

in WJ-MSCs plasticity. ities and their resistance to apoptosis, two hallmarks of
cell aging. On the other hand, all these data show the
Conclusion need to develop novel culture protocols able to preserve

In conclusion, data provided by cell culture experiments  stem cell plasticity. Moreover, the genes identified as im-
and results obtained by profiling studies, all together paired in the present study, could be useful biomarkers
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to evaluate cell culture quality when comparing different
in vitro expansion methods.

Availability of supporting data

Raw data of the performed microarray experiments have
been recorded in the GEO public database (accession
number: GSE34929).
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Additional file 1: Figure S1. Flow cytometric analyses of surface
markers at 4" and 12" passage of WJ-MSC. Flow cytometric analysis of
WJ-MSCs surface antigen expression profile: CD13, CD14, CD29, CD34,
CD44, CD45, CD73, CD90, CD105, CD117 CD133, CD146, CD166, HLA-ABC
and HLA-DR Filled histograms represent cells stained with the expression
markers; empty histograms show the respective IgG isotype controls.
Data are representative of five separate biological samples.

Additional file 2: Figure S2. Flow cytometric analysis of WJ-MSC
doubling time and cell cycle. Representative flow cytometric analysis of
WJ-MSC doubling time, evaluated by the BrdU incorporation assay (A)
and WJ-MSC cell cycle profile obtained by the PI staining only (B). Data
are representative of five separate biological samples.

Additional file 3: Table S1. List of transcripts resulting up-expressed in
the cluster 1.

Additional file 4: Table S2. List of transcripts resulting down-expressed
in the cluster 2.

Additional file 5: Figure S3. Western blot analysis. The intensity of
immune-reactivity bands (10 ug of protein) of HISTTH3C, P53 and IL1(3
was measured by densitometry analysis, normalized respect to the
corresponding B-Actin bands and expressed as arbitrary units (A.U.)
(bottom histograms). Data are expressed as the averages + SD of three
independent experiments.

Additional file 6: Western Blot Method.
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