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Abstract

with the aid of a small number of regular genotypes.

xor-haplotyping methods PPXH and XOR-HAPLOGEN.

Background: Xor-genotype is a cost-effective alternative to the genotype sequence of an individual. Recent
methods developed for haplotype inference have aimed at finding the solution based on xor-genotype data. Given
the xor-genotypes of a group of unrelated individuals, it is possible to infer the haplotype pairs for each individual

Results: We propose a framework of maximum parsimony inference of haplotypes based on the search of a sparse
dictionary, and we present a greedy method that can effectively infer the haplotype pairs given a set of xor-genotypes
augmented by a small number of regular genotypes. We test the performance of the proposed approach on synthetic
data sets with different number of individuals and SNPs, and compare the performances with the state-of-the-art

Conclusions: Experimental results show good inference qualities for the proposed method under all circumstances,
especially on large data sets. Results on a real database, CFTR, also demonstrate significantly better performance.
The proposed algorithm is also capable of finding accurate solutions with missing data and/or typing errors.

Background

A human genome is a sequence of nucleotides that can
differ from one individual to another (approximately
0.1% difference between any two individual) due to var-
ious reasons, such as insertions/deletions of fractions
of the sequence on the genome or mostly the sub-
stitution/mutation of single nucleotides on commonly
observed sites called single nucleotide polymorphism
(SNP) [1]. In most SNPs only two different nucleotides
are observed out of 4 nucleotides. The information of
nucleotide variations extracted from these SNP sites (loci)
is encoded as a sequence called “haplotype”. That is, for
a particular SNP site a notation is used for one of the
observed nucleotides (e.g., the most commonly observed
nucleotide variant - dominant/major allele) and another
notation is used for the other (e.g., the least observed
nucleotide variant - recessive/minor allele). Because of
its informative and heredity nature identifying the hap-
lotypes of individuals has been an important subject in

*Correspondence: wangx@ee.columbia.edu

1 Department of Electrical Engineering, Columbia University, 500 W 120th St,
New York, 10027 NY, USA

Full list of author information is available at the end of the article

( ) BiolVled Central

various medical and scientific studies, such as gene related
disease discovery and drug design [2,3], population his-
tory research [4], etc. Nonetheless, current experimen-
tal techniques are not low-cost and efficient enough for
directly sequencing haplotypes of an individual; thereby
identifying them is mostly based on indirect approaches,
e.g., using computational methods to infer haplotypes
from an alternative cost-effective data called “genotype”.
The entire human genome consists of 23 distinct chro-
mosomes each appearing in two copies (autosomes)
except for the chromosome-23 (allosome) which con-
sists of two copies of chromosome-X in females or
one chromosome-X and one chromosome-Y in males.
Each chromosome is a pair of two distinct sequences -
haplotypes- inherited from the parents, i.e., one is from
the maternal genome and the other is from the pater-
nal genome. The genotype is sequenced by identifying
the types of alleles -nucleotide variants- across the SNP
locations (locus) in chromosomes. In a particular locus
of a chromosome if both haplotypes have the same allele
we call this site in the genotype homozygous and denote
it with the type of alleles in both haplotypes as either
common-type or wild-type; otherwise, if both haplo-
types have different alleles —one common-type and one
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wild-type— we call this site heterozygous. When identify-
ing haplotypes for a given genotype, the ambiguity occurs
for the heterozygous sites since there is no informa-
tion about which haplotype has the common-type allele
and which haplotype has the wild-type allele. Clearly,
genotypes are less informative than haplotypes, as they
present an ambiguity on heterozygous sites due to pos-
sible permutations and computational methods can be
employed to identify which allele come from which hap-
lotype. Recently, more cost-effective alternative methods
have been used for genotype sequencing [5], e.g., widely
used denaturing high-performance liquid chromatography
(DHPLC) [6]. By certain applications of such methods one
can only determine whether an individual has homozy-
gous or heterozygous allele in a given SNP site, but cannot
distinguish the type of allele in homozygous sites. The
sequenced data is thereby less informative than the reg-
ular genotypes as it only represents the differing sites
(XOR operation) between the haplotypes. This less infor-
mative form of genotype is named xor-genotype. One can
solve the haplotype inference problem based on the xor-
genotypes, i.e., xor-haplotyping, with a reasonable extra
computational effort.

Methods for solving the haplotype inference problem
given the regular genotypes can be summarized in two
categories: combinatorial methods that usually state an
explicit objective function and propose methods for opti-
mizing it, and statistical methods that relies on the statis-
tical modeling of the problem. Various methods have been
published for the haplotype inference problem [7-13],
however the xor-haplotyping problem mostly remained
under-investigated. Two particular methods are suitable
for xor-haplotyping problems: parsimony haplotyping
that is based on the maximum parsimony principle, and
perfect phylogeny haplotyping that relies on a population
genetics assumption called the infinite sites/alleles model
[14], i.e., it assumes that allele sequences are long enough
so that a particular allele will have a mutation only once in
the phylogenetic tree. The perfect phylogeny (PP) model
utilizes the infinite sites assumption by building a tree
of individuals -haplotypes- where all individuals evolve,
with no recurrent mutation, from one common ances-
tor. An approximate solution to xor-haplotyping problem
in the case of PP model was introduced in [15] where
the xor-haplotype inference was cast as a graph real-
ization problem [16,17]. However, the proposed method
(GREAL) in [15] is not well-suited for the xor-genotypes
with large number of SNPs, i.e., usually limited by 30 SNPs
[18], and is not extended to missing data cases.

On the other hand, it is known that in a population of
individuals certain haplotypes are frequently found in cer-
tain genomic regions [19]. This fact leads to the parsimony
principle that states that the genotypes of a population of
individuals are generated by the least number of distinct
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haplotypes. Identifying such smallest set of haplotypes
is called Pure (Maximum) Parsimony Problem, which is
NP-hard [20]. An integer linear programing method was
introduced in [21] that finds a pure parsimony solution to
this problem, and in [22] a branch-and-bound method was
used to solve pure parsimony problem. In [23] a method
called XOR-HAPLOGEN was proposed for solving hap-
lotype inference problem in the case of xor-genotype
data. This method can find accurate solutions for xor-
genotypes with large number of SNPs. Another parsimony
method was introduced in [24] for xor-haplotype infer-
ence by representing it as a graph realization problem
called pure parsimony xor haplotyping (PPXH).

In [25] a novel framework for (regular) haplotyping was
proposed by interpreting the parsimony principle as a
sparse representation of the genotypes. Two approaches
are presented: maximizing a sparseness condition on the
haplotype frequency vector determined by the inferred
haplotypes, and casting the sparsity of this frequency
vector as a sparse dictionary selection problem. The lat-
ter approach is based on an efficient greedy method
SHSD where haplotypes explaining the given genotypes
are determined according to a sparse selection from the
set of compatible haplotypes. The method constructively
determines the solution of each individual while selecting
the haplotypes from this set, and it has the convergence
guarantee.

For the xor-haplotyping problem, there is an increased
ambiguity due to the XOR operation between haplo-
types, i.e., the process of xor-genotyping that determines
whether the type of alleles in both haplotypes differ in
a particular site (heterozygous) or they are the same
(homozygous). However this ambiguity can be resolved
with the assistance of regular genotypes. Regular geno-
types can either be used as post-processing inputs for
eliminating set-equivalent solutions of a particular infer-
ence, or they can be used to refine inference while con-
structing the solution.

Tractability of the maximum parsimony haplotyping
problem in the xor-genotype case is still open [24]. In
this paper, we propose a modified version of SHSD —
XHSD—, that can efficiently find a solution for maxi-
mum parsimony xor-haplotyping problem and resolve the
ambiguity with the help of a small number of regular
genotypes. For a given set of xor-genotypes the haplo-
type pairs for each individual are selected from the set
of compatible haplotypes by a sparse dictionary selection
method. The selection of dictionary columns from the set
of compatible haplotypes and the sparse representation of
xor-genotypes is formulated as a joint combinatorial opti-
mization problem. The objective function of this problem
maximizes a variance reduction metric over all individ-
uals. Our algorithm is a low-complexity greedy method
that terminates once the solution is fully determined. To
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resolve the ambiguity and to improve the inference accu-
racy, we employ a small number of regular genotypes as
constraints for the set of compatible haplotypes to help
resolve the type of homozygous alleles.

The remainder of the paper is organized as follows. In
Preliminaries, we introduce the xor-haplotype inference
problem. In Methods, we formulate the xor-haplotype
inference as a sparse dictionary selection problem and
present an efficient greedy method for solving this prob-
lem. We also discuss the use of regular genotypes to
resolve ambiguity. In Extensions section we discuss how
the algorithm deals with long sequences and data with
missing sites. In Results and discussion, we present the
experimental results on synthetic and real data sets under
various conditions. Finally, the Conclusions section is
given in the end.

Preliminaries

In an SNP locus only 2 nucleotides are observed, and a
single bit is sufficient for the representation of nucleotide
variants such that 0 encodes the major allele and 1 encodes
the minor allele. The haplotype of an individual can
thereby be represented with a binary vector that shows
the SNP variants across the individual’s chromosome. The
genotype can then be thought of as a ternary vector where
a 0 (2) indicates that the site is homozygous and both
haplotypes have major 0/0 (minor 1/1) alleles, and 1 indi-
cates that the site is heterozygous and the haplotypes have
different alleles 0/1 or 1/0. Notice that when encoding
homozygous and heterozygous sites we used a different
notation from the literature in order to express a genotype
vector as the sum of two haplotypes: a minor-homozygous
SNP is encoded with 2 and a heterozygous SNP is encoded
with 1, so that a 2 in the genotype is given by (the sum of)
two minor alleles, and a 1 in the genotype is given by (the
sum of) one major and one minor allele.

In general, given a length-L genotype vector, k < L of
the loci are heterozygous and thereby ambiguous, in each
of the k sites one haplotype can take two values —0 or
1- and the other haplotype takes the complement value.
Considering all k heterozygous sites, one haplotype can
then be one of the 2% binary sequences, and the other hap-
lotype will be the complement (inverted values) of that
sequence. Therefore, for solving a genotype with k het-
erozygous sites, the pair of haplotypes is drawn from a set
of 2k distinct binary vectors of length-L.

On the other hand, in xor-haplotyping problem the con-
flated data — xor-genotype — is less informative than
the regular genotype with respect to the information
loss about the type of allele in homozygous sites. The
xor-genotype is itself a binary vector, where for a given
site, 1 indicates heterozygous SNP where both haplotypes
have different alleles for this given site. The xor-genotype
can be represented by the XOR sum of two haplotypes,
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likewise, for a given site 0 indicates a homozygous SNP
where the haplotypes have the same allele but without
any distinction whether the type of the allele is major or
minor. That is, the xor-genotype contains the information
whether a particular SNP site has homozygous alleles, but
the type of alleles for those homozygous sites is not identi-
fied. Every site of an xor-genotype is ambiguous, and each
site of the corresponding haplotype can take two values.
Therefore, a length-L xor-genotype can be explained by
a pair of haplotypes that are drawn from a set of 2 dis-
tinct binary vectors of length-L. Hence, because of the
additional ambiguity on homozygous sites, the number of
possible solutions for an xor-genotype is significantly (in
fact, exponentially) larger than that of a regular genotype
of the same size.

Besides the xor-haplotyping problem is NP-hard, there
is also no unique solution to this problem. The nature of
the XOR operation results in a phenomenon called bit
flip degree of freedom [15], i.e., for a particular solution
set H consisting of length-L haplotypes, one can produce
equivalent solution sets by inverting a certain SNP i < L
(or a set of SNPs § € {1,...,L}) in all haplotypes of
H. Notice that inverting (complementing) an SNP across
all haplotypes has no effect on the xor-genotypes they
generated, because even the alleles explaining homozy-
gous sites of xor-genotypes are not distinguished (hidden).
More specifically, assume that h} ) € {0,1} and hi2 0) €
{0,1} represent the haplotypes of i-th individual in the
£-th SNP and they generate that individual’s xor-genotype
x;(£) such that x;(£) = h} @) ® hl.z(ﬁ). Then the comple-
mented SNPs of haplotypes also explain that SNP of the
same xor-genotype, i.e., x;({) = hi1 @ ® h%(ﬁ). It then
follows that for a particular set H of length-L haplotypes
that solves a given set of xor-genotypes, there are at most
yE (*) = 2" — 1 equivalent sets H}, i = 1,...2" — 1to
H where each equivalent set H; also solves that given set
of xor-genotypes.

Problem definition
For each SNP ¢ = 1,..., L, the xor-genotype is given by
the XOR-sum of two haplotypes such that,

x(0) =h@@h®, t=1,...,1L, 1)

where x;(¢) € {0,1} is the xor-genotype of the i-th indi-
vidual in SNP ¢, and hﬂ«(ﬁ) € {0,1} is the j-th haplotype
of the i-th individual in SNP £. Let &; = [x;(1) ... x;(L)]7
be the xor-genotype of the i-th individual, then (1) can be
written as

x;i=h & h )

where hi = [hé(l) .. .h]l:(L)]T is the j-th (j=1,2) haplo-

type of the i-th individual consisting of L SNPs. In this
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representation, we say that the xor-genotype of the i-th
individual &; is phased by the haplotype pair {hil, hiz}.

In regular haplotyping, a putative haplotype z € {0, 1}
is called compatible with a genotype g € {0,1,2} if
(g — 20 € {0,1}5, and such a haplotype is a possible
solution that can explain that genotype. That is, the hap-
lotype pair {z, (g — z)} is one of the possible solutions to
the genotype g. Therefore, for every given genotype g; it
is essential to determine a set of compatible haplotypes
‘H; when searching for possible solutions. The union of
the sets Hi,...,Hy for N individuals forms the matrix
Z e {0,1}"*M where M is the total number of distinct
compatible haplotypes.

In xor-haplotyping, on the other hand, it is trivial to see
that any haplotype z € {0, 1} is compatible (consistent)
with any xor-genotype «x, i.e, x = z @ z' since there
always exists a haplotype z' € {0, 1}F such thatz/ = x @ z.
Therefore, the set of compatible haplotypes #; for a given
length-L xor-genotype x; consists of all binary vectors of
length-L, i.e, Hy = Hy = --- = Hy = {0, 1}1*2 2 Z,

Because of this compatibility between the xor-genotypes
and candidate haplotypes an SNP site can always be
explained by either of the two alleles, and thus unambigu-
ous SNPs do not exist anymore. Notice that, in partic-
ular, an xor-genotype with all-homozygous SNPs is still
ambiguous and requires to be solved up to bit flipping.
However, we know that such an xor-genotype is always
explained by a pair of identical haplotypes which corre-
spond to the same column of Z. On the other hand, if there
is at least one heterozygous SNP in the xor-genotype then
its phasing haplotypes are not identical and correspond to
the different columns in Z.

The xor-genotype of i-th individual is expressed as

xi = (Z vi)2 3)

where (.)2 represents the component-wise modulo-2 oper-
ation, and v; € {0,1,2}", 17y; = 2, is the sparse
vector indicating the haplotype locations as the indices
of the matrix Z of consistent haplotypes. Notice that
the modulo-2 operation in (3) is equivalent to the XOR
operation between the two haplotypes selected by v;.
Given Z, finding the indicator vector v; for an individ-
ual is equivalent to inferring its haplotype pair {hil,h?}.
The maximum parsimony principle suggests that a given
set of xor-genotypes should be explained by the smallest
number of distinct haplotypes. Therefore, given the set
of xor-genotypes for N individuals {x;, i = 1,...,N},
one needs to infer the haplotype pairs for each individual
{hl-l, h?, i =1,...,N},so that the union of all inferred hap-
lotypes forms the smallest set as possible. In other words,
the xor-haplotyping problem is to infer v;, i = 1, ..., N,
given Z while selecting as few columns of Z as possible.

Page 4 of 16

Methods

Xor Haplotyping by Sparse Dictionary Selection (XHSD)

If an (all-homozygous) xor-genotype is explained by only
one haplotype, i.e., x; = h* @ h*, where the haplotype #* is
the s-th column of Z, then the indicator vector multiplies
that haplotype by 2, i.e,, v(s) = 2 and v(j) = 0 forj =
{1...2L)\(s}). Otherwise, if the xor-genotype is explained
by two different haplotypes x; = k" & h, m # n, then
they are indicated by the vector v such that v(m) = v(n) =
1and v(j) = O for j = {1...2L}\{m,n}. Hence, we can
rewrite (3) in the following more compact form

xi = (Z4; Vi)2 (4)

where A; is a set of indices corresponding to the nonzero
elements of v;, Z 4, is the submatrix of Z consisting of the
columns indexed by A;, and v; is the non-zero elements
of v;.

For each observed xor-genotype «;, the phasing haplo-
types are located in columns of Z indexed by A;. The
union of these column indices, i.e., D = U;A;, forms
the dictionary of the haplotypes that suffices to construct
all given xor-genotypes. The maximum parsimony prin-
ciple then dictates that the dictionary D should contain
the least possible number of elements that can reconstruct
all observed xor-genotypes. The set of haplotypes indi-
cated by such a sparse dictionary D is given by H = Zp,
where Zp is the submatrix of Z consisting of the columns
indexed by D. Then H is a solution set to the maxi-
mum parsimony haplotyping problem for the given set of
xor-genotypes (x; , i=1,...,N}.

To solve the xor-haplotyping problem, we choose the
sparse dictionary D to minimize the average distance
between the observed xor-genotypes and the closest
approximations constructed by the haplotypes in Zp.
Since there is no prior information about the dictionary
D and the indices A; for proper reconstruction of each
xor-genotype, determining D and A; leads to a combi-
natorial problem. This joint-optimization problem can be
efficiently solved by a greedy method that we will explain
next.

For an observed xor-genotype the reconstruction accu-
racy can be interpreted as the Euclidean distance between
the observation and its closest approximation, i.e.,

Li(A) = min la; = (Z %), II% (5)

where A represents the indices of haplotypes in Z used to
approximate x;. Notice that an exact solution will satisfy
L;(A) = 0. For a given dictionary D, the indices A; for
reconstructing each xor-genotype will be determined by
restricting .4; to be a subset of D such that

A; = arg Agg?g‘szi(A). (6)
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The individual cost function in (5) is then translated into a
fitness function associated with a given dictionary D, i.e.,

Ei(D) = x> — Li(A). (7)

min
ACD,|A|=2
Finally, the fitness value of D is averaged over all indi-

viduals to measure the overall reconstruction accuracy

1 N
F(D) = N ;Fi(l)).

For a given cardinality (sparsity) of n, the best dictionary
is therefore given by

* —_
D} = arg max E(D), (8)

and the sparsest dictionary that is sufficient to reconstruct
all observed xor-genotypes is determined by

N
1
D* = min D} : F(D;) = - > Il ¢ ()
i=1

Notice that determining both D for a given # in (8) and
A for agiven D in (7) is a combinatorial problem. In [26], it
is shown that such combinatorial problems can be approx-
imately solved efficiently by a simple greedy method if
the objective function satisfies a fundamental property
called submodularity. In [25], it is shown that the dictio-
nary selection problem for (regular) haplotype inference
has a cost function that is approximately submodular, and
when a greedy method is used to optimize this cost func-
tion it can efficiently find an approximate solution with a
theoretical guarantee [27].

For xor-haplotype inference, on the other hand, the
problem is fundamentally different. That is, the submod-
ularity property may not hold for the cost function in
(5) due to the XOR operation, and thereby the theoreti-
cal guarantee does not hold either for the greedy method.
Nonetheless, we still use the similar greedy heuristic as
SHSD in [25] in order to maximize the variance reduction
metric in (5) over the set of observations.

In our algorithm Xor Haplotyping by Sparse Dictionary
Selection (XHSD), we start with an empty dictionary set
D; = ¢. Then at each iteration ¢, among the consistent
haplotypes that are not already in dictionary D;_1, i.e., in
Z\D,_, we iteratively add the haplotype that contributes
to the dictionary D,;_; with the maximal marginal gain.
That is, at iteration £ the haplotype &’ € Z\D,_; is added
to Dy_1 if it satisfies

m = arg max F(Dy_1 U {k}). (10)

ke{l..2L\Dy_;
To compute (10) requires solving (5) and (6) for each k.
In (6) for each individual i, A; is found by computing the
Euclidean distance (5) between «; and the possible recon-
structions given by the pairwise xor-sum of all columns in
Zp, and picking the columns that minimize (6). Whenever
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indices A; yield zero in (5) we can explain that individ-
ual with the corresponding haplotypes in Z, i.e., x; =
(Z 4; Vi)2. The dictionary Dy keeps growing until all xor-
genotypes are explained, i.e., F(Dy) = % Zf\il F;(Dy) =
& 2N Nl

Notice that in XHSD algorithm the number of compat-
ible haplotypes |Z| exponentially increase in comparison
to regular haplotyping problem with SHSD. However,
—when available- we can reduce Z with respect to
regular genotype information via utilizing them in the
cost function (5). The necessary modifications are dis-
cussed in the next section XHSD with regular genotypes.
Another fundamental difference in xor-haplotyping is that
the xor-genotypes do not provide unambiguous geno-
type information which one can initialize the dictionary
with corresponding haplotypes and improve the recon-
struction accuracy. Nonetheless, with a bias weight, the
modified cost function can exploit the available regular
genotypes even when they are not unambiguous.

Summary of XHSD algorithm:
e [nitialization.
- Z={o, 12",
- n<1
- D=9
e [terate until all xor-genotypes are explained, i.e.,
F(D;) = 5 iy il

— Perform the greedy search.

x ForVje {1, . ..,2L} \ Dj;_,, compute
F(Di_yU{j}).
x Letj* = arg MaXje (1 oL)\DF_,

F(Di_jU{}).
Set D% = D7, U [j*).

* Check if any xor-genotype is
explained by the addition of the new
element 7', i.e., if (5) is zero. If so, the
inferred haplotype pair for the
individual with such an xor-genotype
is [hj*, x; D hj*].

- n<«<n+1.

Given the xor-genotypes of a set of individuals, this algo-
rithm finds the haplotypes of each individual based on the
maximum parsimony principle.

As an example, consider the following demonstration.
Let x1, x> and x3 be the xor-genotypes of three individuals
each corresponding to three SNPs, i.e.,

0 0 0
x1=[01, =11, a3=
1 0 1
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The set of compatible haplotypes for these individuals
will consist of all length-3 binary vectors, i.e.,

01010101
00110011
00001111

Z =

After initializing Z, and starting with empty dictionary
Dy, the algorithm performs the greedy search by adding
one haplotype from Z (with the maximal marginal gain)
at a time. At iteration # = 1, (10) calculates m =
arg max(0,0,0,0,0,0,0,0) and m is randomly picked as 5
among the equal maximum values, then the correspond-
ing haplotype Zs = [001]7 is added to the dictionary,

0
[5], and Zp, = | O
1
m = argmax(0.33,0,0.66,0,0,0.33,0) = 3 is calculated
and the haplotype Z3 = [010]7 is added to the dictionary,
00
i, Dy = [5,3], and Zp, = | 01
10
the addition of new haplotype, i.e., 3 = [001]7 @ [010]7,
yet the other xor-genotypes are not explained. At n = 3,
m = argmax(1.33,0.66,0.66,0.66,0.66,1.33,0.66) = 1
is calculated and the haplotype Z; =[000]7 is added to
000
010
100
Other two xor-genotypes are explained by the new addi-
tion, i.e., x1 =[001]7 @ [000]7, x; =[010]7 @ [000]7, and
the algorithm converges at # = 3 via calculating F(D3) =
P EDy) =3 =530 lwl’.

This simple example demonstrates how the proposed
greedy approach can efficiently construct sparse solu-
tions, where three xor-genotypes are explained by only
three haplotypes within three iterations. Nonetheless, the
solution set has the ambiguity of being one of the equiv-
alent sets of the true solution due to the bit flip degree of
freedom which should be resolved.

ie, D1 = . Similarly, at n = 2,

. a3 is explained by

the dictionary, i.e., D3 = [5,3,1], and Zp, =

Resolving bit flip degree of freedom

In [15] it is shown that the xor perfect phylogeny problem
can be solved up to bit flipping based on the charac-
teristics of the given xor-genotypes. Let X e {0, 1}/*N
be the xor-genotypes matrix of N individuals such that
X =|[x1 x2...xN]. Denote yx; as the set of heterozygous
loci for the i-th individual, ie., x; = {£ : x;(£) = 1},
where x;(£) is the £-th SNP in «x;. If there exists a set
of individuals Z € {1,..., N} whose xor-genotypes have
empty intersection, i.e., Nzxz = ¢, then with the knowl-
edge of regular genotypes Gz € {0,1,2}-*IZ of those
individuals one can remove all bit flip degrees of free-
dom. The empty intersection indicates that an SNP will
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have homozygous allele in at least one of those individ-
uals and therefore that SNP can be resolved by revealing
the type of allele at the corresponding regular genotype.
Following this, a post-processing method is suggested
in [15] that can remove the bit flip degree of freedom
across the loci where a set of xor-genotypes have empty
intersection.

By bit flipping on a given solution H, one attempts at
choosing among the set-equivalent solutions H}, i =
{1,...,2F — 1} and this choice is decided by the given
regular genotypes (Figure 1).

However, this post-processing method have certain lim-
itations. Notice that, for large L the set-equivalent solu-
tions are highly specific to the infererred H, e.g., for
a given set of xor-genotypes it is very likely that any
two different inferences H; and H, —which are not set-
equivalent— can have very different set-equivalent solu-
tions. Bit flipping on different inferences likely leads to
different results, and thereby the bit flipping accuracy
largely depends on the initial inference H which is made
by avoiding the prior knowledge on homozygous SNPs,
i.e., regular genotypes. Besides, —when available— utiliz-
ing more regular genotypes in post-processing does not
necessarily improve the bit flipping accuracy. Basically,
to decide among the appropriate bit flippings for a par-
ticular locus requires the knowledge of that homozygous
SNP from a regular genotype. Intuitively, to reveal a set
of homozygous SNPs by employing the least number of
regular genotypes, e.g., provided by the MTI method,
will be necessary and sufficient for removing the bit flip
degree of freedom across those SNPs. On the other hand,
a larger number of regular genotypes will not be any more
informative due to possible inconsistencies on the type of
homozygous allele for an SNP site across the given regular
genotypes.

Furthermore, notice that flipping the bits on some loci
across all the haplotypes in H does not affect the par-
simony of the solution. The final solution H" will have
the same parsimony with H regardless of the set of loci
that are flipped. From the maximum parsimony point
of view, refining an xor-haplotyping solution via bit flip-
ping method does not necessarily lead to global optimum

x 1 B Gz

MTI
R

<]
G

A

S S PPXH H Bit flipping

Figure 1 Ambiguity resolution for PPXH method. Informative
regular genotypes Gz are determined by the MTl algorithm,

and they are used as control inputs for bit flipping on the initial
inference result H.
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unless the initial inference is a set-equivalent of the global
optimal solution.

Therefore, instead of using regular genotypes to post-
process a solution, a more intuitive way could be to aim at
resolving the bit-flip degree of freedom while construct-
ing the solution. In particular, regular genotypes can be
used as constraints when solving the homozygous sites of
an xor-genotype. In this sense, given a set of individuals’
xor-genotypes we determine the individuals that have the
most informative regular genotypes and pre-process the
data set by replacing with the regular genotypes for those
individuals. The MTT algorithm [15] is useful for finding
the least number of such individuals that will be adequate
to reveal the homozygous alleles for each of the L SNPs.
In the proposed XHSD framework, we employ the MTI
method to find which individuals should be replaced with
regular genotypes and after replacing them the new data
set is presented to the XHSD algorithm (Figure 2).

In most cases the xor-genotypes in X has empty inter-
section and for each run MTI outputs 2 or 3 individuals,
i.e., |Z| < 3; then Gz has at most 3 regular genotypes.
One can obtain a larger Gz by performing multiple runs of
MTTI with X and collecting the distinct regular genotypes
given by MTL

Next we explain the necessary modifications to the
XHSD algorithm for utilizing the regular genotypes.

XHSD with regular genotypes

The information provided by regular genotypes is used to
reveal the type of allele in homozygous sites of an individ-
ual so that we can improve the reconstruction accuracy
in (5), and build the dictionary D with more reliable hap-
lotypes. That is, when a regular genotype g; is observed
in the i-th individual we employ the variance reduction
metric that is given for regular genotypes such that

Li(A) = min |lg; = Za #il1” (11)
where Z is the set of haplotypes that are compatible
with the i-th individual’s genotype g;, and A contains the
indices of the haplotypes in Z that are used to approximate
g;. In this representation the approximation accuracy is
potentially higher when compared to the xor-genotypes,

X [l {7} @ Gz
Gz

(X,Gz}

'
Augment data set XHSD /X HAP H

Figure 2 Ambiguity resolution in XHSD or in XOR-HAPLOGEN
(XHAP). Informative regular genotypes G are determined by the
MTI algorithm, and they are used as inputs to augment the initial data
set by replacing xor-genotypes of the individuals Z € {1,.. ., N}.
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since the homozygous SNPs in g; are unambiguous.
The haplotypes that are used to approximate those
SNPs will be more reliable candidates when building the
dictionary D.

To exploit this fact, we can introduce a weight b; in
the cost function L;(A) so that the algorithm will give a
higher priority on the variance reduction of those indi-
viduals that are given by regular genotypes, and the dic-
tionary will more likely grow with the haplotypes that are
compatible with the given regular genotypes. The biased
variance reduction metric for each individual is then
given by

bi minfll‘ ”gl - Z.A al'||2’
ming, [|lx; — (Z.4 Vi)2|%,

given g;
given x; .

Li(A) = {
(12)

The weight parameter b; could be set as proportional
to the average rate of homozygous SNPs per genotype,
assuming that the more homozygous sites the regular
genotype contains the more informative it will be. We
experimentally set b; = 4 as it yielded good performance
with both synthetic and real databases.

Extensions
Long xor-genotypes
Note that the size of Z grows exponentially with the
length-L due to the compatibility between haplotypes and
xor-genotypes. That is, finding the solution of a length-L
xor-genotype requires to perform the greedy search over
Z that consists of 2L haplotypes. To mitigate the com-
putational complexity we employ the partition-ligation
method [28] as in [25] where the block partitioning is
based on identifying the recombination hot spots [29]
existing between the haplotype blocks [30]. After parti-
tioning the SNP sequences will be divided into blocks
where within each block the haplotype diversity is as low
as possible.

The haplotype diversity of a given block is measured by
its Shannon entropy. The block partitioning by minimiz-
ing the total Shannon entropy proceeds as follows. Let

{itllm .. il%lm} be the Kj, haplotypes that explains all the

xor-genotypes &/, i = 1,..., N in the block that starts at

locus [ and ends at locus m,ie.,, 1 <[ <m <L, andlet
~Ilm

f = [Y’”, . f;{’" ] be the haplotype frequency vector
Im

for this block. Each fklm, k =1,...Ky, is represented by
the density of the nonzero values of the indicator vectors

{vl{”, . Vf\'[”} for the given block xﬁm, ie.,
FrEog2 v
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~]
The entropy of the haplotype block hkm is then given by

i(lm

Ed,m) == f"logfl"
k=1

and the total entropy of Q blocks, where each block
[[9:m1], g =1,...Q has an upper bound of length W,
ie,m?i—1141<W,is given by

Q
E=> EW1,m?).

q=1
To determine the initial and ending loci of each block
(1 : mi], q = 1,...Q that minimizes £ we use the
recursive method explained in [25], i.e., for each ending
locus 1 < m < L we determine the block [}, : m],
with m — [ + 1 < W, that contributes with the lowest
entropy and then backtrack the best initial points [}, for

each consecutive block by starting with the block [/}, L].

Missing data

Genotyping errors often occur when the observed geno-
type of an individual differs from the original sequence
for various reasons [31,32]. A particular type of geno-
typing error is the case when some loci are not
observed/missed during sequencing or other application
processes. Although methods dealing with some type of
errors were proposed, often erroneous genotypes are pro-
duced with significant missing/error rates [33]. Therefore,
it is of high importance for an xor-haplotyping technique
to be adaptive for resolving such databases with missing
sites. We next present a modification to XHSD in order
to perform xor-haplotyping for the individuals exposed to
missing data conditions.

Let g; be the incomplete genotype of the i-th individual
where the loci with missing information in g; are removed.
Similarly, let ¥; represent the xor-genotype of the i-th indi-
vidual where the missing loci are removed. As the rate of
missing loci increases the sequences become less infor-
mative. Following the suggestion in [25], we introduce
another weight w(.) to give less weight to the less informa-
tive individuals when evaluating (12) in order to improve
the reliability of haplotype inference, i.e.,

LiA) = | W@ bi ming, 18— Zy Wil given &
w(®) ming, |&% — (Z4 ¥)2l?,  given % .

(13)

where ZIA is the matrix Z with the rows corresponding
to the missing loci of the i-th individual removed. The
weight is selected as a nondecreasing function of the total

information content in the sequence such that
w(E;) = dim(®)”, (14)

where dim(x;) gives the dimension of ¥;.
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Different weight functions could be employed to exploit
the distribution of missing sites. Since, in our experi-
ments, the missing sites are uniformly distributed across
the SNPs and individuals the function in (14) gave a good
performance.

The proposed method does not account for the direct
inference of the missing sites, i.e., imputing missing geno-
types [34]. However, the missing values in each xor-
genotype can be recovered from the solution by simply
looking at the haplotype pairs which are specifically
inferred for each individual. Since the proposed method
has robust performance against missing data, as presented
in the next section, the inferred solution will be sufficient
to type missing genotype sites. An implementation of the
proposed method —with aforementioned extensions— is
provided in “Additional file 1”.

Results and discussion

We tested the performance of several xor-haplotyping
methods with a number of metrics. First we measured the
probability of error (P,), i.e., the percentage of individu-
als whose inferred pair of haplotypes are different from
the original pair. This measure is sensible for assessing
the inference quality in regular haplotyping problem since
the alleles corresponding to homozygous loci are known
and only the heterozygous loci are ambiguous thereby
performance depends on the inference accuracy on het-
erozygous loci. Nonetheless, in xor-haplotyping there are
a large number of equivalent solutions to original one
up to bit flipping and thereby it is very likely that a
solution set differs from the original phasing on at least
one SNP. In particular, for a given xor-genotype even if
there is a single SNP difference (namely bit flip) between
the pair of inferred haplotypes and the pair of haplo-
types that originally gave rise to that xor-genotype, it is
counted as mis-inference. A more sensible metric, there-
fore, would take into account the percentage of such SNPs
where the inference differs from the true phasing. In that
sense, the switch error rate (swr) [35] is a proper metric
that counts the minimum amount of required switches
for heterozygous loci to change to the correct alleles of
the original haplotypes. It gives a sense of how closely
the inference was made, i.e., as a ratio of total mis-
inferred heterozygous loci miss" in all individuals i =
{1...N} to the worst-case number of switches (half of
the number of heterozygous loci in each individual x;/2),
ie.,

N et
> i miss;
N xi :
=172

SWr =

Moreover, to assess the accuracy on homozygous sites,
we employ prediction error rate (erry) [23] computed as
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the fraction of incorrectly predicted hidden-homozygous
sites out of all hidden-homozygous sites, i.e.,

N o hom
> i miss;

err, = —0—————.

TN -

We performed xor-haplotyping on various data sets,
with and without missing information on loci: synthetic
data sets with different recombination rates simulated by
a coalescence based program of [36], a database consisting
of the SNPs in the CFTR gene that is associated with cystic
fibrosis (CF) disorder [37], and another database (ANRIL)
containing the SNPs that have relatively lower linkage
disequilibrium (high polymorphism). We tested differ-
ent xor-haplotyping methods that are based on different
assumptions including the parsimony graph realization
model PPXH [24], the parsimony genetic search model
XOR-HAPLOGEN (XHAP) [23], the graph representa-
tion model GREAL [15], and an integer programming
approach Poly-IP [38]. Among the four methods the last
two were ineffective for practical reasons. GREAL failed
at finding solutions for data sets with reasonably long
sequences (SNPs > 30), and Poly-IP method is often
computationally inefficient when solving even a simple
problem (e.g., it takes more than 24 hours to solve a set of
50 individuals with 30 SNPs).

Synthetic data

Based on different recombination rates three different
scenarios are considered in synthetic data sets: no recom-
bination (» = 0), and recombination with rates r = 4
and r 40, respectively. The recombination rate is
the rate that the haplotypes of an individual exchange
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the sequence fragments due to several reasons such as
crossing-over events. This fact is simulated by a model
given in Hudson’s software [36]. For each scenario we gen-
erated 100 different data sets by random pairing of a set
of simulated haplotypes of different lengths (5 < L < 46)
for a given population size. This is repeated for different
population sizes as well, N € {10, 20, 30, 40, 50}.

In Figure 3, the performances of different methods on
short data sets (L < 14) are displayed which is based only
on xor-genotypes. The quality of inference is exhaustively
determined after removing all bit flip degrees of freedom
by looking for the best equivalent set of a particular infer-
ence, i.e., performing an exhaustive search to find the best
bit flipping that gives a result closest to the true phasing of
xor-genotypes. Such evaluation shows the best inference
performance of different methods without the help of reg-
ular genotypes. Compared to other methods, XHSD can
potentially resolve a set of xor-genotypes with compara-
bly low error rates. Moreover, XHSD achieves the lowest
switch error rates, especially for large datasets, indicating
a better accuracy (i.e., similarity with the true haplotypes)
for the initial inference given only the xor-genotypes.

To evaluate the inference quality when regular geno-
type data are available, we first determined only a limited
number of regular genotypes by the MTI method, i.e.,
the smallest set of regular genotypes that have empty
intersection on the heterozygous SNPs, then resolved the
ambiguity by bit flipping on the initial inference according
to these regular genotypes (Figure 4). This test evaluates
how methods can deal with bit-flip degree of freedom
under very limited regular genotype data that —in theory—
suffice to resolve all SNPs. Given the long xor-genotype
data sets (5 < L < 46), block partitioning is applied in
XHSD by limiting the maximum block size to W = 8

20 30 40 50
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Figure 3 Potential inference quality on short (L < 14) synthetic data.
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Figure 4 Performance on long (5 < L < 46) synthetic data by bit flipping via 2 regular genotypes.

50

SNPs. From Figure 4, we can say that XHSD has the best
potential to make an inference with high accuracy when
the regular genotypes are introduced. We also applied
the proposed XHSD framework represented in Figure 2
to the same dataset where 2 xor-genotypes are replaced
with the regular genotypes. Note that the Proposed XHSD
achieves a significant decrease in P, rates despite the small
augmentation of data by only 2 regular genotypes, com-
pared to using them in the post-processing, i.e., XHSD
(bit flipping).

It is worthy of noting that the algorithms based on
segmentation may deteriorate when processing long xor-
genotype sequences, especially with increasing recombi-
nation rates where the detection of haplotype blocks is
complicated [39]. We used block partitioning (segmenta-
tion) in XHSD to reduce complexity when processing long
xor-genotype sequences. In Figure 4 the segmentation
effect is noticeable particularly in very high recombination
rates, i.e., ¥ = 40. However, in general scenario, i.e., r < 4,
we can say that the segmentation effect is not significant
for the proposed method’s performance, and it outper-
forms XOR-HAPLOGEN in most data sets containing
typical recombination rates.

For more practical results we added regular genotypes
in each method with different percentages of the popu-
lation and allowed the methods to remove ambiguity by
their own, except for PPXH. Since PPXH cannot make use
of regular genotypes directly, we applied bit flipping using
the MTI solver to remove ambiguity for this method. To
regularly genotype a given percentage of the population,
the regular genotypes are determined by running the MTI
method several times until the number of distinct regular
genotypes obtained achieves the given percentage of the
total number of individuals.

Figure 5 shows performances on the synthetic data of
a large population of 50 individuals with zero recom-
bination rate, where cases are considered from 10%
(5 individuals) to 100% (50 individuals) of the popula-
tion are given by regular genotypes. XHSD over-performs
other methods in almost all cases. Particularly after 20% of
the population is given by regular genotypes, XHSD can
immediately utilize regular genotypes and significantly
improve the accuracy on both homozygous (err,) and

—— PPXH

—&— XHAP

XHSD

0
10 20 30 40 50 60 70 80 90 100

| — ,

0.055—

0
10 20 30 40 50 60 70 80 90 100
Percentage of the individuals fully genotyped
Figure 5 Performance on long (5 < L < 46) synthetic data from
50 individuals by employing different numbers of regular
genotypes.
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heterozygous sites (swr). We can conclude that the par-
simony principle of XHSD method is well-suited for
inferring the heterozygous sites, and for predicting the
homozygous sites it usually suffices to have a small per-
centage of regular genotypes.

Missing data

We investigated capability for dealing with missing data
under different circumstances by various methods. Since
the methods performed similarly under zero recombina-
tion rate we used the same data sets with no recombina-
tion to generate the database with missing entries. An SNP
site of an individual is defined as “missing” with a proba-
bility of P,iss and the data sets for different percentages of
missing SNPs are generated accordingly. PPXH method is
excluded since it cannot handle missing data. In XHSD the
block partitioning is applied as before with a maximum
block size of W = 8 SNPs.

Figures 6 and 7 show the performances in different
scenarios of partial regular genotyping under different
rates of missing data. As in the previous plots, each
point represents the average value of the correspond-
ing metric over 100 realizations—100 different sets of
varying SNP sizes between 5 and 46. In most cases,
XOR-HAPLOGEN and XHSD are insensitive to the
increased number of missing sites. XOR-HAPLOGEN is
more accurate for small group of individuals. Nonethe-
less, when more individuals are available in the database
(N > 30) XHSD displays a better performance in all
circumstances.

We examined the dependency of methods on percent-
age of the missing data rate for a population with large
number of individuals. That is, we used the xor-genotypes
from 50 individuals and replaced 30% and 50% of the
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population with regular genotypes, and performed xor-
haplotype inference under different missing data rates
ranging from 0.5% to 5%. As seen in Figure 8 both
methods are robust against missing data. On the other
hand, XHSD is less dependent on regular genotypes and
it can achieve better error rates than XOR-HAPLOGEN
by employing even less number of regular genotypes.
XOR-HAPLOGEN needs approximately 20% more regu-
lar genotypes to reach the same P, level with XHSD, e.g.,
regular genotyping by 30% in XHSD is comparable to that
of 50% in XOR-HAPLOGEN.

CFTR gene database

Cystic fibrosis (CF) is an autosomal recessive disor-
der caused by mutations in the gene that encodes the
cystic fibrosis transmembrane conductance regulator pro-
tein (CFTR). In [37], various mutations on 23 polymor-
phic locations from the chromosome 7 are detected as
the disease loci for CE. We used this database corre-
sponding to 29 distinct haplotypes to generate random
xor-genotypes. By combining the haplotype pairs at ran-
dom we generated the xor-genotypes for a given number
of individuals N, and repeated the process for different
population sizes, i.e, N € {100,200,300,400}. In this
database, the data sets with small number of individu-
als present high haplotype diversities, i.e., many of the
distinct haplotypes are only used once in the generation
of individuals. Therefore, the larger data sets that have
low haplotype diversities are expected to be solved with
higher accuracy by biologically-oriented methods, such as
XOR-HAPLOGEN which obtains its inference according
to a multi-locus linkage disequilibrium (LD)-based block
identification model.
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Figure 6 Performance under low rates of missing data, long (5 < L < 46) synthetic data.
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Figure 7 Performance under high rates of missing data, long (5 < L <
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46) synthetic data.

We tested the performance of each method on
this database with/without missing sites {0,5%}. PPXH
method was excluded from the missing data analysis
since it cannot deal with missing data. XHSD is applied
with block partitioning and the maximum block length
of W = 8 SNPs as before. It is seen in Figure 9 that
XHSD out-performs for various population sizes with
significantly low error rates. As the xor-genotypes are
taken from more individuals, the inference accuracy is
immediately improved in XHSD and XOR-HAPLOGEN,

whereas PPXH do not have this ability to benefit from
the additional data.

Figure 10 shows the average running times of each
method performing on this database. It is observed
that XHSD has similar computational complexity as
the size of data set grows, and it shows compara-
ble running times with XOR-HAPLOGEN. Although
PPXH performs significantly faster, it cannot mitigate
the high error rates and is not able to provide accurate
inferences.
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Figure 8 Performance under different percentages of missing data.
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Figure 9 Performance on CFTR gene database with different population sizes with/without missing data.

Typing errors

Combinatorial optimization techniques are known with
their sensitivity to genotyping errors [40]. Thereby, we
tested the effect of typing errors on the proposed algo-
rithm using CFTR gene database. We defined a SNP site of
an individual as erroneous with a probability of P, and
typed the site as either homozygous or heterozygous with
equal probabilities. We then run the algorithms without
providing the knowledge of erroneous site positions. We
excluded PPXH method due to its low performance on the
CFTR database. Figure 11 illustrates the algorithms’ per-
formance on typing errors with P, = 2%. It is seen that
XOR-HAPLOGEN is a more robust method against typ-
ing errors because of its statical nature. Nonetheless, the
proposed XHSD algorithm can deal with erroneous data
containing ~2% typing errors, with a small increase in the
error rates compared to the results without typing errors.

ANRIL database

The performance of haplotyping methods can deteriorate
on databases with decreasing linkage disequilibrium (LD)
rates. A SNP database with low pairwise-LD scores are
investigated in an association study given in [41] for their
susceptibility to certain types of leukemia. This database

includes 16 SNPs from the chromosome 9p21 associ-
ated with several diseases and a SNP locus encoding for
anti-sense non-coding RNA in the INK4 locus (ANRIL)
[42]. We used the corresponding haplotype data from
HAPMAP database (http://hapmap.ncbi.nlm.nih.gov/)
collected from 90 European individuals. We generated the
xor-genotypes for the individuals by using their haplotype
pairs and tested the algorithms on this database. It is seen
from the Figure 12 that the algorithms deteriorate when
inferring the haplotypes with low-LD SNPs. XHSD shows
very similar performance with XOR-HAPLOGEN, and
both methods over-perform PPXH on this database.
Notice that the algorithms cannot mitigate the error
rates with increasing number of individuals. This can be
explained by the occurrence of very high haplotype diver-
sity in corresponding low-LD SNP regions. The num-
ber of distinct haplotypes explaining the given number
of individuals presumably remains at high diversity as
the number of individuals grows, whereas the methods
based on maximum parsimony principle fail to incor-
porate this fact. They are tend to find parsimonious
(low-diversity) solutions in all population sizes, with a
decreasing ratio (p) of “total number of distinct haplo-
types explaining the given set of individuals” to “total
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Figure 10 Running times on CFTR gene database with different population sizes with/without missing data.
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Figure 11 Performance on CFTR gene database for different population sizes, with P,,,=2%, with/without missing data.

number of given individuals” as the population size
grows. It is worthy of noticing that, in XHSD results in
Figure 12 (P,,;ss=0), we observed that such ratio decreases
as p =[1.3,0.95,0.83,0.72,0.66] in respect to the pop-
ulations with 10,20, 30,40,50 individuals; whereas the
same ratio for the true phasing (ground truth data) is
in fact much higher, ie., p = [1.7,1.48,1.34,1.27,1.24],
respectively, thereby causing the parsimony-based haplo-
typing methods to deteriorate on this database. On the
other hand, in high-LD CFTR database, the same ratio
for the true phasing is very low due to low haplotype
diversity, i.e., p = [0.29,0.14,0.1,0.07], in respect to the
populations with 100, 200, 300,400 individuals, and the
XHSD method is good at achieving very similar rates,
i.e.,, p =[0.43,0.15,0.1,0.07], respectively.

Conclusions

In this paper, we have presented a new xor-haplotyping
method XHSD based on the maximum parsimony prin-
ciple that infers the haplotype pairs for each member of
a group of unrelated individuals by observing their xor-
genotypes. A dictionary selection method is utilized to
find the smallest set of haplotypes selected from a candi-
date set that can explain the given set of xor-genotypes.
The proposed approach requires regular genotypes from
only a small percentage of individuals for the removal of
ambiguity across all SNPs of the inferred haplotypes. The
smallest subgroup of individuals having the most infor-
mative regular genotypes are efficiently determined by
the minimum tree intersection algorithm. Although the
inference accuracy was proportional to the percentage of
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Figure 12 Performance on ANRIL gene database with different population sizes with/without missing data.




Elmas et al. BMIC Genomics 2013, 14:645
http://www.biomedcentral.com/1471-2164/14/645

the individuals given by regular genotypes, XHSD shows
less dependency on regular genotypes compared to other
methods. Experimental results have demonstrated that
XHSD is a reliable method for xor-haplotyping under all
circumstances including missing data and typing error
cases. Low rates of missing values (< 10%) on the xor-
genotypes has often insignificant contribution to the error
rates, and the proposed method can deal with ~ 2% typing
errors. Particularly for large databases, XHSD produces
the most accurate solution with significantly low error
rates compared to other low-complexity xor-haplotyping
methods. Experiments with CFTR gene database also
proved that our approach can perform effectively on real
data sets with/without missing sites. Another database
with particularly lower LD rates indicates that the pro-
posed algorithm can achieve the best performance with
the state-of-the-art algorithms. We expect that XHSD
can serve as a practical tool for xor-haplotyping on
real-world large instances, as the large data collections
become more available in the era of next-generation DNA
sequencing.

Additional file

Additional file 1: Matlab implementation. This file includes the Matlab
code of the proposed algorithm, and an implementation with the example
database, CFTR.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions

XW and GJ conceived of the project. AE, GJ and XW participated in the design
of the method. AE performed the computer experiments and contributed in
the writing of the draft. All authors read and approved the final manuscript.

Author details

! Department of Electrical Engineering, Columbia University, 500 W 120th St,
New York, 10027 NY, USA. 2Department of Radiology, Icahn School of
Medicine at Mount Sinai, New York, 10029 NY, USA.

Received: 7 March 2013 Accepted: 2 September 2013
Published: 23 September 2013

References

1. Brookes A: The essence of SNPs. Gene 1999, 234:177-186.

2. Risch N, Merikangas K: The future of genetic studies of complex
human diseases. Science 1996, 273:1516-1517.

3. Kwok PY, Gu Z: Single nucleotide polymorphism libraries: why and
how are we building them? Mo/ Med Today 1999, 5:538-543.

4. Gray IC, Campbell DA, Spurr NK: Single nucleotide polymorphisms as
tools in human genetics. Human Mol Genet 2000, 9:2403-2408.

5. Peters T, Sedimeier R: Current methods for high-throughput
detection of novel DNA polymorphisms. Drug Discov Today: Technol
2006, 3(2):123-129.

6. Xiao W, Oefner PJ: Denaturing high-performance liquid
chromatography: a review. Human Mutat 2001, 17:439-474.

7. BansalV, Bafna V: HapCUT: An efficient and accurate algorithm for the
haplotype assembly problem. Bioinformatics 2008, 24(16):i1153-i159.

8. HeD, Choi A Pipatsrisawat K, Darwiche A, Eskin E: Optimal algorithms
for haplotype assembly from whole-genome sequence data.
Bioinformatics 2010, 26(12):1183-i190.

20.

21

22.

23.

24.

25.

26.

27.

28.

29.

30.

31

32.

Page 15 0of 16

Li'Y, Willer CJ, Ding J, Scheet P, Abecasis GR: MaCH: Using sequence and
genotype data to estimate haplotypes and unobserved genotypes.
Genet Epidemiol 2010, 34(8):816-834.

Gupta A, Manuch J, Stacho L, Zhao X: Algorithm for haplotype
inference via galled-tree networks with simple galls. J Comput Biol
2012, 19(4):439-454.

lliadis A, Anastassiou D, Wang X: A unified framework for haplotype
inference in nuclear families. Ann Hum Genet 2012, 76(4):312-325.
Lai E, Wang W, Jiang T, Wu K: A linear-time algorithm for
reconstructing zero-recombinant haplotype configuration on a
pedigree. BMC Bioinformatics 2012, 13(Suppl 17):S19.

He D, Han B, Eskin E: Hap-seq: An optimal algorithm for haplotype
phasing with imputation using sequencing data. / Comput Biol 2013,
20(2):80-92.

Kimura M, Crow JF: The number of alleles that can be maintained in a
finite population. Genet 1964, 49:725-738.

Barzuza T, Beckmann JS, Shamir R, Pe‘er I: Computational problems in
perfect phylogeny haplotyping: Typing without calling the allele.
IEEE/ACM Trans Comput Biol Bioinformatics 2008, 5:101-109.

Liberatore V: Matroid decomposition methods for the set maxima
problem. In Proceedings of the Ninth Annual ACM-SIAM Symposium on
Discrete Algorithms. Philadelphia: Society for Industrial and Applied
Mathematics; 1998:400-409.

Gusfield D: Haplotyping as perfect phylogeny: conceptual
framework and efficient solutions. In Proc. 6th Annual Conference on
Research in Computational Molecular Biology (RECOMB 2002). New York:
ACM; 2002:166-175.

Barzuza T, Beckmann J, Shamir R, Pe’er I: Computational problems in
perfect phylogeny haplotyping: Xor-Genotypes and tag SNPs. In
Combinatorial Pattern Matching, Volume 3109. Edited by Sahinalp S,
Muthukrishnan S, Dogrusoz U. Berlin, Heidelberg, New York:
Springer-Verlag; 2004:14-31.

Patil N, et al.: Blocks of limited haplotype diversity revealed by
high-resolution scanning of human chromosome 21. Science 2001,
294:1719-1723.

Lancia G, Pinotti MC, Rizzi R: Haplotyping populations by pure
parsimony: Complexity of exact and approximation algorithms.
INFORMS Jon Comput 2004, 16:348-359.

Gusfield D: Haplotype inference by pure parsimony. In Comb Pattern
Matching. Berlin, Heidelberg, New York: Springer-Verlag; 2003:144-155.
Wang L, Xu Y: Haplotype inference by maximum parsimony.
Bioinformatics 2003, 19:1773-1780.

Sazonova N, Sazonov E, Harner EJ: Algorithm for haplotype resolution
and block partitioning for partial XOR-genotype data. J of Biomed
Inform 2010, 43:51-59.

Bonizzoni P, Della Vedova G, Dondi R, Pirola Y, Rizzi R: Pure parsimony
xor haplotyping. IEEE/ACM Trans Comput Biol Bioinformatics 2010,
7:598-610.

Jajamovich GH, Wang X: Maximum-parsimony haplotype inference
based on sparse representations of genotypes. /EEE Trans Signal
Process 2012, 60:2013-2023.

Nemhauser GL, Wolsey LA, Fisher ML: An analysis of approximations
for maximizing submodular set functions—I. Math Program 1978,
14:265-294.

Krause A, Cevher V: Submodular dictionary selection for sparse
representation. In Proceedings of 27th International Conference on
Machine Learning (ICML 2010). Madison: Omnipress; 2010:567-574.
NiuT, Qin Z, Xu X, Liu J: Bayesian haplotype inference for multiple
linked single-nucleotide polymorphisms. Am J Hum Genet 2002,
70:157-169.

Liang K, Wang X: A deterministic sequential monte carlo method for
haplotype inference. IEEE J Selected Topics Signal Process 2008,
2:322-331.

Hey J: What's so hot about recombination hotspots? PLoS Biol 2004,
2:2190+.

Bonin A, Bellemain E, Bronken Eidesen P, Pompanon F, Brochmann C,
Taberlet P: How to track and assess genotyping errors in population
genetics studies. Mo/ Ecol 2004, 13:3261-3273.

Pompanon F, Bonin A, Bellemain E, Taberlet P: Genotyping errors:
causes, consequences and solutions. Nat Rev Genet 2005,

6:847-846.


http://www.biomedcentral.com/content/supplementary/1471-2164-14-645-S1.zip

Elmas et al. BMIC Genomics 2013, 14:645
http://www.biomedcentral.com/1471-2164/14/645

33

34.

35.

36.

37.

38.

39.

40.

41.

42.

Hackett CA, Broadfoot LB: Effects of genotyping errors, missing values
and segregation distortion in molecular marker data on the
construction of linkage maps. Heredity 2003, 90:33-38.

Marchini J, Howie B, Myers S, McVean G, Donnelly P: A new multipoint
method for genome-wide association studies by imputation of
genotypes. Nature Genet 2007, 39(7):906-913.

Tininini L, Bertolazzi P, Godi A, Lancia G: CollHaps: a heuristic approach
to haplotype inference by parsimony. IEEE/ACM Trans Comput Biol
Bioinformatics 2010, 7:511-523.

Hudson RR: Generating samples under a Wright-Fisher neutral
model of genetic variation. Bioinformatics 2002, 18:337-338.

Kerem B, Rommens J, Buchanan J, Markiewicz D, Cox T, Chakravarti A,
Buchwald M, Tsui L: Identification of the cystic fibrosis gene: genetic
analysis. Science 1989, 245:1073-1080.

Halldorsson BV, Bafna V, Edwards N, Yooseph S, Istrail S: A survey of
computational methods for determining haplotypes. In Lecture Notes
in Computer Science (2983): Computational Methods for SNPs and Haplotype
Inference. Berlin, Heidelberg, New York: Springer-Verlag; 2004:26-47.
Stephens M, Scheet P: Accounting for decay of linkage disequilibrium
in haplotype inference and missing-data imputation. Am J Human
Genet 2005, 76(3):449-462.

Excoffier L, Laval G, Balding D: Gametic phase estimation over large
genomic regions using an adaptive window approach. Human
Genomics 2003, 1:7-19.

lacobucci |, Sazzini M, Garagnani P, Ferrari A, Boattini A, Lonetti A,
Papayannidis C, Mantovani V, Marasco E, Ottaviani E, Soverini S, Girelli D,
Luiselli D, Vignetti M, Baccarani M, Martinelli G: A polymorphism in the
chromosome 9p21 ANRIL locus is associated to Philadelphia positive
acute lymphoblastic leukemia. Leukemia Res 2011, 35(8):1052-1059.
Pasmant E, Laurendeau |, Heron D, Vidaud M, Vidaud D, Bieche I:
Characterization of a germ-line deletion, including the entire
INK4/ARF locus, in a melanoma-neural system tumor family:
Identification of ANRIL, an Antisense Noncoding RNA whose
expression coclusters with ARF. Cancer Res 2007, 67(8):3963-3969.

doi:10.1186/1471-2164-14-645
Cite this article as: Elmas et al: Maximum parsimony xor haplotyping by
sparse dictionary selection. BMC Genomics 2013 14:645.

Page 16 of 16

Submit your next manuscript to BioMed Central
and take full advantage of:

e Convenient online submission

® Thorough peer review

¢ No space constraints or color figure charges

¢ Immediate publication on acceptance

¢ Inclusion in PubMed, CAS, Scopus and Google Scholar

¢ Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

( ) BiolMed Central




	Abstract
	Background
	Results
	Conclusions

	Background
	Preliminaries
	Problem definition

	Methods
	Xor Haplotyping by Sparse Dictionary Selection (XHSD)
	Resolving bit flip degree of freedom
	XHSD with regular genotypes

	Extensions
	Long xor-genotypes
	Missing data


	Results and discussion
	Synthetic data
	Missing data
	CFTR gene database
	Typing errors
	ANRIL database

	Conclusions
	Additional file
	Additional file 1

	Competing interests
	Authors' contributions
	Author details
	References

