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Background: It was long assumed that proteins are at least 100 amino acids (AAs) long. Moreover, the detection of
short translation products (e.g. coded from small Open Reading Frames, sORFs) is very difficult as the short length
makes it hard to distinguish true coding ORFs from ORFs occurring by chance. Nevertheless, over the past few
years many such non-canonical genes (with ORFs < 100 AAs) have been discovered in different organisms like
Arabidopsis thaliana, Saccharomyces cerevisiae, and Drosophila melanogaster. Thanks to advances in sequencing,
bioinformatics and computing power, it is now possible to scan the genome in unprecedented scrutiny, for

Results: Using bioinformatics methods, we performed a systematic search for putatively functional sORFs in the
Mus musculus genome. A genome-wide scan detected all SORFs which were subsequently analyzed for their coding
potential, based on evolutionary conservation at the AA level, and ranked using a Support Vector Machine (SVM)
learning model. The ranked sORFs are finally overlapped with ribosome profiling data, hinting to sORF translation.
All candidates are visually inspected using an in-house developed genome browser. In this way dozens of highly
conserved sORFs, targeted by ribosomes were identified in the mouse genome, putatively encoding micropeptides.

Conclusion: Our combined genome-wide approach leads to the prediction of a comprehensive but manageable
set of putatively coding sORFs, a very important first step towards the identification of a new class of bioactive

Keywords: Micropeptide, Small open reading frame, Mus musculus, Genome-wide, Ribosome profiling, LincRNA,

Background

Classical bioactive peptides are cleaved from larger pre-
cursor proteins that have a signal sequence at their N-
terminus [1,2]. As a consequence they are targeted into
the secretory pathway and once extra-cellular play a —
autocrine, paracrine, or endocrine- signaling role for
example by activating G-protein coupled receptors of
neighboring or more distant cells. More recently new
concepts and different classes of bioactive peptides are
described. A first class consists of intracellular peptides
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having a regulatory effect on cell signaling [3]. Another
recent class (non-classical) consists of peptides that are
not processed in the secretory machinery. One type of this
latter class is immediately translated from small open
reading frames (sORFs; < 100 AA) [2,4,5]. Since they lack
an N-terminal signal sequence they are in principle set
free in the cytoplasm immediately after translation. From
hereon, these are denoted as micropeptides.

Although some members of this new category could
already be linked to important embryonic and mor-
phogenetic functions in plants as well as in animals [2],
micropeptide research is not yet widespread. Hundreds of
novel sORFs, supported by transcriptional evidence, could
be identified in the Saccharomyces cerevisiae genome,
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most of them with sequence similarity to ORFs in other
organisms. Comprehensive analysis of one specific SORF,
termed smORF2 even shows sequence conservation bet-
ween yeast and human [6,7]. In Arabidopsis thaliana the
POLARIS (PLS) polypeptide gene was identified in a
promoter trap transgenic line predominantly showing
expression in the embryonic basal region and affecting
root growth and leaf vascularization [8]. Next to this
already characterized PLS peptide, hundreds of other
novel possible coding sORFs were identified in intergenic
regions of the Arabidopsis thaliana genome [9]. Other
plant micropeptides have been examined: the recessive
mutation of Brickl in maize leads to several morpho-
logical defects of leaf epithelia, and Enod40 is a poly-
cistronic micropeptide translated in soybean playing a
distinct role in the control of sucrose use in nodules
[2,10,11].

In animals, a handful of functional micropeptides have
also been discovered. An evolutionary conserved micro-
peptide was identified in Drosophila and referred to as
polished rice (pri) or tarsal-less (tal), while the Tribolium
orthologue is called mille-pattes (mipt) [4,12,13]. These
tal (or pri) peptides (11 AAs long) control epidermal
differentiation by modifying the transcription factor
Shavenbaby (Svb) [5]. Increasing evidence suggests that
these so-called micropeptides are also present in higher
animals, including mammals. Analyzing the mouse gen-
ome using CRITICA [14] confirmed the existence of many
short ORFs, roughly accounting for 10% of the mouse
proteome [15]. Also, a recent paper by Ingolia et al
defines a new class of short polycistronic ribosome-
associated coding RNAs (sprcRNAs) encoding small
proteins [16]. In human cells, Slavoff et al. identified 90
sORF-encoded polypeptides (SEP) of which 86 were pre-
viously uncharacterized [17].

The past decade has seen considerable advances in
both sequencing technology and computing infrastruc-
ture, resulting in ever-more annotated genomes already
from over a hundred eukaryotic species [18]. Such
efforts are valuable to the discovery of sORFs putatively
encoding micropeptides for example by providing us
with a high-resolution view of the developmental tran-
scriptome, identifying thousands of newly transcribed
regions (NTRs) [19,20] or a conserved set of long inter-
vening non-coding RNAs (linRNAs) and other non-
coding RNAs (ncRNAs) [21,22] in different species.
Furthermore, new sequencing methodologies emerge.
Ribosome profiling, a recently described technique,
based on deep sequencing of ribosome-protected mRNA
fragments, enables the high-precision and genome-wide
monitoring of translation [16,23,24]. Such ribosome pro-
filing experiments performed on mouse embryonic stem
cells (mESCs) [16] and human embryonic kidney 293
(HEK293s) cells [24], further strengthen the theory that
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short un-annotated RNA sequences or ribosome foot-
prints can encode micropeptides, especially because the
length of ORFs in the NTRs is very frequently below
100 AAs in these studies. Of particular interest in recent
literature are sORFs within lincRNAs as research points
to the existence of such RNAs expressing different short
polypeptides [25]. However the debate on the extent of
their peptide coding capacities is ongoing [26,27].

Although huge numbers of novel transcripts are docu-
mented in every transcriptome sequencing project,
gene-prediction is still a challenge, especially when
looking for functional sORFs [28]. Until recently, most
gene-prediction tools arbitrarily applied a minimum
sequence length cutoff (e.g. 100 AAs), reducing the likeli-
hood of false positive predictions [29]. False negative ratios
also increase when trying to discover small coding
sequences as they lack splicing signals on either side of
the single exon and show a decreasing signal-to-noise
ratio as the size of the coding region decreases [30,31]. In
an attempt to circumvent these limitations sORFfinder, a
software package to identify specifically sORFs with high
coding potential [32] was devised. sORFfinder makes use
of the nucleotide composition bias between coding and
non-coding sequences to evaluate the coding potential of
those functional sORFs [9]. However, genome-wide
searches for sORFs in higher eukaryotes are still seen as a
computational burden: thus no such data exist for any
higher eukaryote [24,33].

To the best of our knowledge, a systematic genome-
wide study scanning for sORFs that encode small pep-
tides has not yet been performed for a mammalian. A
first genome-wide search for sORFs has been under-
taken for Saccharomyces cerevisiae. A combination of in
silico and experimental approaches proves the existence
of at least 299 sORFs in the yeast genome, accounting
for up to 5% of the protein-coding genes [7]. In Arabi-
dopsis thaliana, a systematic search for sORFs revealed
the potential existence of 3,241 coding sequences for
which evidence for transcription or purifying selection is
available [9]. A recent study describes a systematic
search for putatively functional sORFs in euchromatic
regions of Drosophila melanogaster, postulating the
existence of at least 401 sORFs coding for small peptides
[33]. In this report we combine a genome-wide in silico
search strategy and the specific characteristics of ribo-
some profiling data in a search for sORFs putatively
encoding functional micropeptides in the model orga-
nism Mus musculus.

Results

Genome-wide identification of SORFs

The genome-wide search for sORFs with sORFfinder
resulted in the prediction of 2,414,358 single-exon
sORFs with high coding potential, out of a total pool of
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40,704,347 sORFs (see Table 1). The strand-specific
genomic location, sequence, and coding potential score
(calculated by sORFfinder) were, like all subsequently
obtained data, stored in a MySQL relational database
(see Methods).

The number of sORFs with a specific length tends to
increase with decreasing length (Figure 1A). This comes
as no surprise since short nucleotide sequences with
ORF-like qualities may easily appear by chance. Includ-
ing sORFs with a length smaller than 10 AAs would thus
exponentially increase the pool of sORFs under investi-
gation and make further computational analysis much
more demanding or even impossible. If we look at the
total number of sORFs found by sORFfinder, and
assume a random and even distribution across the
genome, we see that SORFs are distributed evenly in the
different autosomes with circa 1 sORF every 130 bp
(Table 1). There is slightly more variation in distance
between adjacent sORFs (again assuming even distri-
bution) when looking only at those with high coding
potential, with on average 1 sORF every 2,200 bp. As
can be seen in Table 1, the sex chromosomes tend to

Table 1 Basic sORF characteristics
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deviate from these averages with sparser (high coding)
sORF appearances.

All resulting sORFs from sORFfinder were overlapped
with the genome-wide Ensembl annotation (NCBIM37,
annotation version 66). As can be seen in Figure 1B and
associated Table 2, most of the sORFs are located in
intergenic regions as these take up most of the genome.
Although many sORFs are located in intronic regions,
this is less then would be expected (assuming an even
distribution of sORFs throughout the genome) (Exact
binomial test p < 2.2e-16). In the same way, almost
double the number of sORFs were found in exonic
regions as would be expected under an even distribution
(Exact binomial test p < 2.2e-16) [34]. These observa-
tions indicate that sORFfinder succeeds in making a
good distinction between coding and non-coding sORFs.

Peptide conservation based on UCSC multiple species
alignment

To assess their peptide-coding potential, all sSORFs were
analyzed using a multi-species alignment of 8 vertebrate
species (See Methods). For each sORF a number of basic

Chromosome Length (bp) Total number One sORF per Number of sORFs with high One high coding sORF

of sORFs number of bps (bp) coding potential (sORFfinder) per number of bps (bp)
1 197,195,432 3,070,032 128 160,770 2453
2 181,748,087 2,830,394 128 176,654 2,058
3 159,599,783 2,507,691 127 124,217 2,570
4 155,630,120 2,385,489 130 155,419 2,003
5 152,537,259 2,335,678 131 158,789 1,921
6 149,517,037 2,342,614 128 130,505 2,291
7 152,524,553 2,235,697 136 146,314 2,085
8 131,738,871 1,990,727 132 134,093 1,965
9 124,076,172 1,910,809 130 126,743 1,958
10 129,993,255 2,024,292 128 121,848 2,134
" 121,843,856 1,845,184 132 142,610 1,709
12 121,257,530 1,875,766 129 109,403 2,217
13 120,284,312 1,867,333 129 108919 2,209
14 125,194,864 1,959,570 128 102,912 2433
15 103,494,974 1,599,415 129 101,315 2,043
16 98,319,150 1,528,958 129 81,787 2,404
17 95,272,651 1,441,669 132 102617 1,857
18 90,772,031 1,404,482 129 80,524 2,255
19 61,342,430 912412 134 65,280 1,879
X 166,650,296 2,594,439 128 82,073 4,061
Y 15,902,555 41,696 762 1,566 20,310
Total 2,654,895,218 40,704,347 130 2,414,358 2,199

Overview of putatively coding sORFs grouped by Mus musculus chromosomes, showing the total number and the distribution of sORFs for each chromosome, as
well as the number and distribution of sSORFs with high coding potential according to sORFfinder.
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Figure 1 Overview of the in silico coding sORF prediction. (A) Histogram of the total number of SORFs depicted by ORF length (in AA).

(B) Distribution of sORFs according to their genomic location. sORfs overlapping more than one different category are grouped as “others”.

(C) Evaluation of the sORF coding probability. The fractions of annotated and predicted coding and non-coding sORFs within the test dataset are
plotted. (D) Visual representation of the classification of all 9,612 test subjects, based upon both SVMs (SVMlight and libSVM). True coding sORFs
are depicted in green and true non-coding in red (see Additional file 1: Figure S2).

Table 2 Coding potential of sORFs in different genomic locations

Genomic location # of sORFs® Coding sORFs® Pcod > 0.9 Pcod > 0.99° Ribo sORFs® Coding Ribo sORFs®
NcRNA 20,810 9,922 6,443 1,100 528 401
Exonic 63,180 34,063 21,546 10,872
Other 155,633 80,891 37,730 9,894
Intronic 417,277 34,845 14,582 2,361
Intergenic 1,757,458 223,235 107,567 27,371 226 89

Number of sORFs divided per genomic region and for which certain in silico and/or expression evidence can be found. Included are total number of sOFs with
high coding potential (according to sORFfinder), number of sORFs having scores above certain thresholds (according to SVM analysis), number of SORFs which
show ribosome profiling expression and number of sORFs for which in silico coding as well as expression evidence is available.

@ Total number of SORFs with high coding potential according to sORFfinder.

P Total number of sORFs classified as coding by SVM9",

€ Pcod is the coding probability score as predicted by SYM",

4 SORFs with mapped ribosome profiles, attaining sequence read coverage > 75% of the total ORF (based on cycloheximide treatment), and ribosome profile hits
at the ORF start site (based on harringtonine treated samples).

© Ribo sORFs (see under @ for description) classified as coding by svm'ioht,
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peptide conservation characteristics were deduced and
gathered (see Additional file 1: Figure S1 for an ex-
ample). Each overview contains the DNA and AA sORF
alignment for all conserved species. Each pair-wise align-
ment for all conserved species is further analyzed to
obtain the specific coding potential characteristics. In
this way, we obtained the number of species in which
the ORF length as well as the start and stop codons
are conserved. Furthermore all mutations between
the alignments are analyzed for their synonymous or
non-synonymous nature, permitting the calculation of
synonymous and non-synonymous substitution rates
(Ks and Ka, respectively). In a last step, K,/K; values for
each pair-wise alignment were calculated. All obtained
characteristics and positional info regarding all the
sORFs are stored in a data matrix and are available via
Additional file 1.

Classification and ranking

We used an SVM approach to classify the sORFs into a
coding and non-coding group based on all aforemen-
tioned characteristics. After training the SVM on 4/5%
of the data and testing the SVM on the remainder, we
reached a correct classification for up to 93% of the test
subjects, with a false positive rate not exceeding 4%
(Figure 1C). Classification via SVMUM was also verified
by running the same analysis using a second SVM pack-
age (libSVM). The outcome of both SVM packages
shows a very good correlation (see Figure 1D and 1E),
proving the robustness of the SVM approach.

Cross-validation with mESC ribosome profiling data

Even with very stringent parameters this genome-wide
in silico prediction approach gives rise to hundreds, even
thousands of possibly interesting sequences (Table 2).
We reasoned that a combined approach incorporating
also biologically relevant data next to the in silico ana-
lysis should lead to a more meaningful set of sORFs, at
the same time overcoming several approach-specific
limitations (see Discussion). Therefore we reanalyzed
ribosome profiling data obtained from a mouse Embry-
onic Stem Cells (mESC) sample [16]. The sequencing
reads were uniquely mapped to sORFs located in
intergenic or ncRNA regions. Retaining only those
sORFs that overlap with ribosome profiles at their start
position in the harringtonine treated sample data and
that have a sequence read coverage of at least 75% rela-
tive to the untreated sample data, led to a set of 226
intergenic sORFs and 528 sORFs located in ncRNA
regions. Looking only at lincRNA sORFs, as data points
to their expression in these regions [16], further
decreases the sample size to 35 sORFs. An overlap of
the aforementioned intergenic and ncRNA sORFs with
the SVM training data can be seen in Figures 2C and 3B,
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respectively. In combination with the conservation
characteristics from the in silico prediction, this gives
rise to a set of sORFs that (A) show a high coding
probability score based on the aforementioned SVM
approach and (B) overlap with biologically relevant ribo-
somal profiles (see Table 2). The expression of the
ncRNA and intergenic SORFs with coverage > 75% and
harringtonine treated ribosome profile occupancy was
also compared with the CHX treated embryoid body
sample data [16] (see Additional file 2: Figure S3). Fur-
ther research on a case-by-case basis will be necessary
to evaluate and interpret the differential expression bet-
ween different developmental stages.

Visualization

All sORFs are mapped on the reference genome and
made accessible through an in-house developed H2G2
genome browser, (see Additional file 1 for login creden-
tials). Next to the sORF information, static visualization
tracks are added depicting genomic annotation from
Ensembl, phastCons conservation scores and other
relevant information. Experimental ribosomal profiling
data are incorporated using individual tracks for every
analysis on the different samples (with or without
harringtonine treatment). Together with the UCSC
multi-species alignment such visual representation of all
available information makes interpretation of the results
far easier. For example, Figures 2 and 3 depict some
newly discovered sORFs (from the intergenic and
ncRNA pool, respectively) within the H2G2 genome
browser.

Discussion

It is generally accepted that looking for conservation
across species is one of the best strategies for finding
functional sequences. In this study, the phastCons con-
servation score in combination with specific peptide
conservation characteristics derived from the UCSC
multi-species alignment [35] is used to predict the cod-
ing probability of sORFs. We reasoned that the in silico
method in combination with experimental translational
evidence would lead to an even more robust, stringent,
and more importantly, in vivo validated prediction. We
therefore combined the in silico approach with infor-
mation from a reanalyzed ribosome profiling study on
mESCs. Ribosome profiling is an experimental method
to monitor in vivo translation by deep sequencing of
ribosome-protected mRNA fragments [16] thus reflec-
ting ribosomal occupancy.

In this report, we show that the combination of both
the in silico prediction and the in vivo data leads to the
discovery of many new putatively coding sORFs in the
mouse genome (see Additional file 2). The identified
sORFs have a high AA conservation in multiple species,



Crappé et al. BMC Genomics 2013, 14:648
http://www.biomedcentral.com/1471-2164/14/648

Page 6 of 12

ENSMUSG00000018565

g 1=
o
3% _.‘ “J .
£ o= . j - VoY
£ -
g, I E
3
Bo- ‘
40 —
T20 - B
= 0 - Harringtonine .Lll.,, . mm9 ATGGCGCCTGTCAGAGTGGGAAGCCT-AGCTGCAGAGGCTGCAGCCCCGCTCCTCAGCGGCTAA
rnd ATGGCGCCTGTCAGAGTGGGAAGCCC-AGCTGCAGAGGCTGCAGCCCCGCTCCTCAGCGGCTAA
20 = hg18 ATGGCGCCTGTCAGAGTGGGAAACCC-AGCTGCAGAGGCTGCAGCCCCGGTCCCCAGCGGCTAA
8 0 — sorAral ATGGCGCCTGTCAGAATGGGAAATCC-AGCTGCAGAGGCTGCAGTCCCGCTCCCCAGAGGLTAA
& No Drug ol e b bosTau3 ATGGCGCCTGTCAGAGTGGGAAATCC-AGCTGCAGAGGCTGCAGCCCCGCTCCCCAGCGGTTGA
0= monDom4 ATGGCGCCTGTCAGGCTTGGGGATGT-GGCGGCAGAGGCAGCGGCCCTGCTTCCAAGCGGTTAA
100 bp
D o e\
4
2 1=
= i
' 0=
z v
2 L] -
4
£ 31 [
= °
2 : |
T a 1=
g . |
£ %4
g e 0 - J— J—
- Harringtonine
8 50
54
100 —
=
=]
T T T T T T |
0.0 0.2 0.4 0.6 0.8 1.0 . 0 - - - - == -
E 0 1 ﬁ No Drug
SVM-light coding probability 4

20 =

Figure 2 The combined approach identifies many putatively functional sORFs in intergenic regions. (A) Visual representation of the
intergenic sORF located on the forward strand of chromosome 11 (69,794,326-69,794,388) based on data from the H2G2 genome browser. (B)
DNA multiple alignments for the intergenic SORF presented in Figure 2A and based on the 8 species under investigation from the UCSC mm9
multi-species alignment. (C) Visual representation of the overlap between intergenic sORFs with ribosomal profiling evidence and the classified
test subjects. True coding sORFs are depicted in green and true non-coding in red (see Additional file 1: Figure S2), black dots represent the
intergenic sORFs. Classification and presentation are based on the coding probability scores from the 2 SVMs used during the analysis (See
Methods). (D) Visual representation of the intergenic sORF located on the reverse strand of chromosome X (71,212,050-71,212,082) based on data
from the H°G” genome browser. The SORF is located approximately 400 bp upstream of a known protein-coding gene (Hcfc1).

25 bp

show ORF translation (based on cycloheximide-treated
mESC line ribosome profiling experiments) and more-
over exhibit a ribosome profile peak at their start codon
(based on harringtonine-treated mESC line experi-
ments). When analyzing the overlapping data, we specif-
ically investigated sORFs within ncRNA and intergenic
regions. Although we are convinced that sORFs overlap-
ping other regions constitute interesting study objects,
we concentrated on the aforementioned regions in this
study for the following reasons.

The first eukaryotic micropeptide, tarsal-less or pri,
was discovered in a ncRNA-annotated region [5]. Since
OREFs shorter than 100 AAs have long been disregarded
in the past, it is possible that other ncRNAs are in fact
coding for small peptides, making this set of sORFs

especially interesting [36]. More recent studies also point
to the expression of specific small peptides encoded within
lincRNAs in mammals [16,24,25,27]. The described results
(see Table 2 and Additional file 2) strengthen the idea that
some ncRNA regions actually contain putatively coding
sOREFs. Investigating the sSORFs within annotated lincRNA
regions still yields very well-conserved and expressed
sORFs (see Figure 3A and 3C). Further analysis of the
conservation of the sORF presented in Figure 3, overlap-
ping a lincRNA (1500011K16Rik) was done by means of a
BLAST search against the human genome. This resulted
in the identification of 1 region within the second and big-
gest exon of lincRNA LINC00116, part of the GENCODE
annotation [37], further confirming the significance of our
findings (see Additional file 1: Figure S4). The fact that
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Figure 3 The combined approach identifies many putatively functional sORFs in ncRNA regions. (A) Visual representation of the lincRNA
overlapping sORF located on the reverse strand of chromosome 2 (127,618,033 — 127,618,203) based on data from the H2G2 genome browser.
(B) Visual representation of the overlap between ncRNA overlapping sORFs with ribosomal profiling evidence and the classified test subjects. True
coding sORFs are depicted in green and true non-coding in red (see Additional file 1: Figure S2), black dots represent the ncRNA overlapping
sORFs. Classification and presentation are based on the coding probability scores from the 2 SVMs used during the analysis (See Methods). (C) AA
multiple alignments for the lincRNA overlapping sORF presented in Figure 3A and based on the 8 species under investigation from the UCSC
mm9 multi-species alignment. Next to the AA sequences for each species, a synonymous (S) versus non-synonymous (N) annotated conservation
line is added for better interpretation (see Additional file 1: Figure S1 for the complete sORF overview file).

lincRNA expression in mESCs tend to be low [16],
lincRNA are rarely translated in different cell lines [27]
and that known micropeptides have a very narrow expres-
sion window in time as well as in space [5], suggests that
many putatively coding sORFs remain to be detected.
Next to the aforementioned ncRNA sORFs, the set of
sORFs located in intergenic regions was also investi-
gated, revealing dozens of highly conserved sORFs with

ribosome profiling experimental validation. One of the
more striking things we see in our results on intergenic
sOREFs is that a lot of the high-scoring and expressed
intergenic sORFs are located close to known protein-
coding genes (see Figure 2A and 2D). Most of these can
be found between 1 kb and 100 bp upstream of the 5’
untranslated region (UTR). Several explanations can be
formulated for this phenomenon, one of the more
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obvious ones of course being misannotation of the
known gene close to the sORF. First, one could argue
the existence of additional exons, upstream of the
already annotated ones, which have been overlooked so
far. This could give an explanation for some of the iden-
tified sSORFs, especially those showing low conservation
at, and around, the stop codon (translation would not
reach this stop triplet since a prior splicing event would
prevent this). Secondly, sORFs are sometimes located
within 1-200 bp from each other, mostly only measuring
10 — 20 AAs in length, but with high stop codon conser-
vation. The likeliness of multiple splice sites within these
very short, and highly conserved, sORFs seems at least
debatable. Misannotation is not unique to aforemen-
tioned exonic regions, as it could also have happened at
the level of the 5" UTR, giving rise to sORFs possible
being uORFs (described as regulators of the translation
of the downstream coding sequence [38]). However,
keeping in mind all characteristics of the identified
sORFs, it cannot be ruled out that some sORFs in the
proximity of known genes could give rise to a new class
of functional peptides playing a (regulatory) role that still
has to be explored. In plants, increasing data indicate
that sORFs play diverse roles in regulating expression
and in this way participate in various cellular processes
[39]. Also, research from [40] points to the existence of
thousands of previously unknown bovine ncRNAs in the
proximity of known genes, possibly encoding sORFs.
Their set-up specifically removed ncRNA sequences with
ORFs longer than 50 AAs; so small putatively translated
ORFs could still be present. They also performed a
correlation analysis on expression levels between these
intergenic ncRNAs and protein coding genes, revealing
significant correlation for many transcripts, supporting
the hypothesis that these ncRNA sORFs could have a
regulatory function.

The in silico generated prediction score, as outlined in
the results and methods sections, also has its limitations.
Using sORFfinder as a first filtering step introduces false
positive as well as false negative sORFs [32]. Although
we are working on ways to eliminate the use of this tool,
for the moment, this initial step is still indispensable
(because of a too high computational workload) to get
the total number of sORFs down in a sensible way,
based on the coding index. The prediction furthermore
greatly depends on the correctness of the multiple
species sequence alignments. In cases where a SORF has
no, or very few aligned sequences (within the set of 8
pair-wise alignments taken into account in this study),
the SVM assesses the coding probability mainly on the
phastCons conservation score. This score, reflecting
DNA conservation, already has a considerable impact on
the overall prediction as can be seen in Additional file 1:
Figure S5. Distinct peaks of prediction scores can be
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observed solely based on the phastCons score (see
Additional file 1: Figure S5A). These scoring peaks can
be filtered out by setting a threshold on the minimum
number of sequences present in the multi-species align-
ment (see Additional file 1: Figure S5B-D). This can be
explained by high DNA conservation in species not
included in our study (such as zebrafish) or just high
DNA conservation not preserved on the AA level
Another reason could be the incompleteness of the
multi-species alignment itself. Furthermore false nega-
tives due to highly divergent or quickly diverging sORFs
cannot be ruled out. Addressing these limitations ex-
tends well beyond the scope of this paper. For the time
being it merely limits the power of the in silico predic-
tion strategy leading to an underestimation of putatively
coding sORFs.

Ribosome profiling, an experimental approach to
monitor in vivo translation by estimating the rate of
protein synthesis from the density of ribosome footprints
cannot be proposed as a fool-proof method to distin-
guish between coding and non-coding transcripts. For
example, the ncRNA HI9 shows ribosomal occupancy
and hence also ribosome profiles, but is nonetheless a
non-coding sequence [41]. In addition, one has to keep
in mind that spurious association of ribosomes could
lead to translational noise and as such most of the tran-
scripts suggested to encode small peptides seem to lack
conservation of their proposed coding regions [25].
Recently, Guttmann et al. proposed a new metric to dis-
tinguish between protein-coding and all classes of non-
coding transcripts showing ribosome occupancy [42].
On the other hand, the ribosome profiling technique
greatly outperforms mass spectrometry, the commonly
applied technique for protein product identification,
with regard to dynamic range and comprehensiveness.
Presumably, coding sORFs are translated at low levels
[5], thus making these properties very important.

Our combinatorial pipeline, as outlined in the work-
flow (see Figure 4), overcomes most of these aforemen-
tioned shortcomings. We do not merely identify in silico
predicted sORFs with high conservation, prone to false
positives, or sORFs with translational evidence, for
which it is sometimes hard to differentiate between true
coding and non-coding. The identification is based on a
combination of both measures. Hence, the putative
micropeptide-encoding sORFs identified in this report
are very good candidates for further in vitro and in vivo
research as they show high conservation at both DNA
and (more importantly) AA level in different mammalian
species, as well as translation measured by ribosomal
occupancy.

Our analysis is certainly no endpoint. As already men-
tioned, known micropeptides have a very narrow expres-
sion window [2,5]. Also, the fact that we only used one
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Figure 4 General layout of the identification pipeline. The identification pipeline consists of different steps as outlined in the workflow.
Central in the analysis is the MySQL sORF database where all obtained and calculated data is stored. This overall SORF data matrix can be
downloaded via Additional file 1. (1) Genome-wide search for sSORFs (with high coding potential) with the sORFfinder package. (2) Calculation of
different peptide conservation measures based on the UCSC Mouse multiple alignments. (3) Coding capability assessment of the sORFs by
means of a Support Vector Machine (SVM) learning algorithm. (4) Inspection of the sORF locations for presence of ribosome profiling signals
obtained from mESC experiments. (5) Genome-wide visualization of all (experimental) data and all SORF information on our in-house developed

cell type (feeder-free cultured E14 mESC) in the overlap
with our in silico prediction, means that presumably
only a small segment of putatively coding sORFs has
been identified. This tissue and developmental stage
specific expression (that recently was shown to be very
notable within the ENCODE project [43]) leaves a lot of
sORFs yet to be identified. The more additional ribo-
some profiling data will be available in the future, the
more sORFs will be picked up as interesting starting
points for further analysis, after overlap with our predic-
tion information. Next to the advent of more experimen-
tal data, the in silico analysis can also further improve in
the future. Taking into account the computational load
to identify all SORFs with an initiator methionine in the
Mus musculus genome, it would be almost impossible
to perform a genome-wide in silico scan for all near-
cognate sORFs. Following another workflow, whereby

we first search for all sORFs showing translation
evidence in ribosome profiling studies, and afterwards
perform the in silico analysis on these candidates could
be an appropriate alternative.

Conclusions

Our combined genome-wide approach towards the
identification of sORFs in Mus musculus, leads to the
prediction of a comprehensive but manageable set of
putatively coding sORFs. In this respect, our study is a
very important first step towards the identification of a
new class of bioactive peptides, called micropeptides.
Starting from the described results, further in vivo
experiments (mass spectromic validation and genetic
experiments) should be carried out, testing activity and
functionality of the identified peptide products.
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Methods

General layout of the identification pipeline

The presented pipeline consists of different steps (see
Figure 4). First, the genomic sequence was scanned for
sORFs (with high coding potential) using the sORFfinder
package [32]. Secondly, the conservation pattern of those
detected sORFs was investigated by means of the UCSC
multiple alignment containing 29 vertebrate genomes
for Mus musculus [44]. For all sSORFs several measures
pointing to peptide sequence conservation were gath-
ered from this multiple alignment, leading to a compre-
hensive data matrix that formed the basis for further
mathematical analysis. In a third step, a machine learn-
ing technique (more specifically a SVM) was applied
assessing the coding capabilities of the sORFs [45]. As
such, we were able to classify and subsequently rank the
sORFs based on a set of relevant peptide sequence con-
servation measures. Afterwards, these sORF locations
were verified for the presence of ribosome profiling sig-
nals, obtained from experiments performed on mESCs.
As micropeptides seem to play their role during em-
bryogenesis and morphogenesis, these specific mESC
data resources are assumed to be extremely valuable.
The overlap of both the in silico prediction analysis
(resulting in sORFs with high coding potential) and
the ribosome profiling data (suggesting translation)
could potentially yield functional micropeptides. An
in-house developed genome browser (H2G2) was sub-
sequently used to visually inspect all aforementioned
(experimental) data on a genome-wide scale (http://h2g2.
ugent.be/biobix.html) (see Additional file 1 for login
credentials).

Genome-wide identification of SORFs

sORFfinder was used to search for sORFs in the Mus
musculus (NCBIM37.66) genome [32], checking for
the presence of potentially coding sORFs with a
length between 10 and 100 AA. Prior to genome-wide
scanning, the hidden Markov model (HMM) was
trained with exon (coding) and intron (non-coding)
data from the longest chromosome 1. The value for
D, reflecting the coding percentage in the mouse gen-
ome, was set to 0.025 [46]. The in-house developed
script (and all further computational scripting) was
run on a 16 core 128 Gb Ram Linux server, running
CentOS 5.2. sORFfinder took between 5-14 days ana-
lyzing one chromosome, depending on its size, using
up to 50 Gb of memory. All sORFs and further obtained
data were stored in an InnoDB MySQL (v 5.5.18) data-
base, making use of table partitioning (both List and
Hash) and indexing for efficient querying. The sORF data
matrix is also available as a downloadable CSV file via
Additional file 1.
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Peptide conservation based on UCSC multiple species
alignment

The multiple species alignment used in this analysis was
obtained from UCSC [44]. The Mus musculus mm9 mul-
tiple species alignment contains 29 species of which 8
(relevant for this study) were chosen: Rattus norvegicus,
Cavia porcellus, Oryctolagus cuniculus, Homo sapiens,
Sorex araneus, Bos taurus, Echinops telfairi, and Mono-
delphis domestica. Custom scripts (Perl v.5.8.8) were
applied to extract the alignment block for each sORF in
order to distill relevant peptide conservation characteris-
tics.These characteristics include the number of aligned
sequences, the number of alignments having a conserved
ORF length, the number of alignments with conserved
start and stop codon, and the total amount of syn-
onymous versus non-synonymous mutations between
the different species as compared to Mus musculus.
Using the BioPerl package Bio: Align: DNAStatistics
(available from CPAN, http://search.cpan.org/~cjfields/
BioPerl-1.6.901/Bio/Align/DNA Statistics.pm), pair-wise
K./Ks values were calculated using the function
“calc_kaks_pair” based upon the Nei-Gojobori sta-
tistics [47].

SVM trainings data, classification and ranking

SVM""* is an implementation of SVMs in C. SVM"s"*
[45] was used within the R-project (R v 2.12.2, [48])
package klaR (v 0.6-6, [49]) available via CRAN (http://
cran.r-project.org/web/packages/mixOmics/index.html).
LibSVM [50] is made available both as a C++ and Java
software package for support vector classification which
can be used through the R package kernlab (v 0.9-14)
[51] and is also available via CRAN (http://cran.r-pro-
ject.org/web/packages/kernlab/index.html). An R-script
was compiled to train the SVMs and subsequently
classify and rank all the obtained sORFs according to
coding probability. Both SVMs were run with a linear
kernel and standard parameters.

The negative, non-coding training data were cons-
tructed from predicted sORFs, located in annotated
intronic regions of known protein-coding genes. A set of
randomly constructed DNA-sequences was used as
positive coding training data, having the same length
distribution as the predicted sORFs. The sequences are
located within annotated exonic regions of known genes.
The positive training data had to be in frame with the
protein-coding part of a gene to mimic true conser-
vation at the AA level. Therefore, the predicted sORFs
located in known exonic regions could not be used, as
the greater majority of the SORFs were not in frame with
the protein coding part of the gene in which they are
located. The training data (48,196 sequences) consisted
of an equal amount of coding and non-coding sequen-
ces, randomly selected from all available training data.
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SVMs were trained on 4/5™ of the data, and tested on
the remaining sequences. Further cross-validation did
not improve nor change overall classification and
ranking.

mESC ribosome profiling data

Raw sequencing data of the mESC ribosome profiling data
[16] were downloaded from the Gene Expression Omnibus
(dataset GSE30839). All reads from the normal (cyclohe-
ximide-treated, sample GSM765292) and harringtonine-
treated (sample GSM765295) were remapped using bowtie
(v. 0.12.7) on the mouse genome (assembly version 37).
After removal of rRNA mapped reads, the remaining reads
were used to analyze intergenic and ncRNA sORFs. For
evaluation of the intergenic sORFs, reads were first
mapped on the mouse cDNA database (Ensembl version
66). Unmapped reads were subsequently mapped on a
custom database constructed from all intergenic sORF
sequences. At both the 5" and 3’ ends these intergenic
sORF sequences were extended with 20 bases, thus also
allowing ribosome profile mapping at both termini (an off-
set is generally applied for ribosome profile mapping [16]).
For ncRNA sORF evaluation, reads were uniquely mapped
to the mouse genome after removal of rRNA mapped
reads. All sORFs from both aforementioned sets were
first investigated for the presence of ribosome profile
peaks at the translation start position, based upon the
harringtonine-treated data. Secondly, the sequencing
data from the cycloheximide-treated sample were
used to calculate overall coverage (based on total read
length) and an RPKM value. The RPKM value is de-
fined as the total number of reads mapped to the
sORF per kb sORF exon sequence divided by the total
amount of non-rRNA reads (in million reads). Only
sORFs with a coverage > 75% where retained for further
analysis. The 75% threshold is based on the mean value of
the fraction-non-zero measures calculated by Ingolia et al.
2011 for all the 90 bp windows showing ribosome profile
coverage within lincRNAs.

Genome-wide visualization

Genome-wide visualization of publicly available and
experimental data was accomplished by using an in-
house developed genome browser (H2G2, http://h2g2.
ugent.be/biobix.html). Several information tracks are
available, including genomic information from a local
Ensembl instance (NCBIM37.66), sORF prediction
results, phastCons conservation scores, and different
experimental results [16,25,35]. The underlying data are
stored in a MySQL database (v 5.0.27) enabling genome-
wide specific querying and filtering through standard
query language (SQL) statements.
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Additional files

Additional file 1: Supplemental Information. Contains login
credentials to access the H2G2 Genome Browser, data access to the
complete sORFs database (690 mb) and Figures S1 to S5.

Additional file 2: ncRNA and intergenic sORFs with ribosome
profiling evidence. Contains all SORFs overlapping ncRNA or intergenic
regions for which ribosomal profiling evidence exists. Included are the
genomic locations, all peptide conservation characteristics and coding
potential score.
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