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Targets of light signalling in Trichoderma reesei
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Abstract

Background: The tropical ascomycete Trichoderma reesei (Hypocrea jecorina) represents one of the most efficient
plant cell wall degraders. Regulation of the enzymes required for this process is affected by nutritional signals as
well as other environmental signals including light.

Results: Our transcriptome analysis of strains lacking the photoreceptors BLR1 and BLR2 as well as ENV1 revealed a
considerable increase in the number of genes showing significantly different transcript levels in light and darkness
compared to wild-type. We show that members of all glycoside hydrolase families can be subject to light
dependent regulation, hence confirming nutrient utilization including plant cell wall degradation as a major output
pathway of light signalling. In contrast to N. crassa, photoreceptor mediated regulation of carbon metabolism in

T. reesei occurs primarily by BLRT and BLR2 via their positive effect on induction of env1 transcription, rather than by
a presumed negative effect of ENV1 on the function of the BLR complex. Nevertheless, genes consistently regulated
by photoreceptors in N. crassa and T. reesei are significantly enriched in carbon metabolic functions. Hence,
different regulatory mechanisms are operative in these two fungi, while the light dependent regulation of plant cell

wall degradation appears to be conserved.

showing consistent regulation in N. crassa.

postulated regulatory interrelationship.

ENVOY, BLR1, BLR2

Analysis of growth on different carbon sources revealed that the oxidoreductive D-galactose and pentose
catabolism is influenced by light and ENV1. Transcriptional regulation of the target enzymes in these pathways is
enhanced by light and influenced by ENV1, BLR1 and/or BLR2. Additionally we detected an ENV1-regulated
genomic cluster of 9 genes including the D-mannitol dehydrogenase gene Ixr1, with two genes of this cluster

Conclusions: We show that one major output pathway of light signalling in Trichoderma reesei is regulation of
glycoside hydrolase genes and the degradation of hemicellulose building blocks. Targets of ENV1 and BLR1/BLR2
are for the most part distinct and indicate individual functions for ENV1 and the BLR complex besides their
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Background

Trichoderma reesei (anamorph of Hypocrea jecorina) rep-
resents a model system for investigation of plant cell wall
degrading enzymes [1,2]. Especially with the current ef-
forts to increase the efficiency and production of cellulase
mixtures for economically competitive second generation
biofuels, research towards plant cell wall degrading en-
zymes has gained increased attention [3]. Genetic engin-
eering for strain improvement targets numerous pathways
in T. reesei and mainly aims at increased production
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of cellulolytic enzymes [4]. Nutrient availability and
utilization are crucial determinants for the survival of
T. reesei in a natural habitat. Glycoside hydrolases are the
main enzymes for this task as they have roles in degrad-
ation of biomass (including cellulose and hemicellulose),
but they also have functions in defence or pathogenesis
and in routine cellular functions such as cell wall remodel-
ling [5]. The genome analysis of T. reesei [6] revealed a
smaller enzyme set for plant cell wall degradation than
expected and recent re-annotation of CAZyme (carbon
hydrate active enzymes) genes updated the number of
glycoside hydrolases to 201 [7].

Nutrient degradation pathways are tightly regulated in
order to ensure maximum efficiency with a minimum of
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resources used. Therefore T. reesei integrates various en-
vironmental signals, which result in an adjusted response
to the current conditions in its surroundings [8]. In re-
cent years, light response emerged as an important reac-
tion to the environment, which is not only applied in the
natural habitats, but is still operative under artificial con-
ditions in the lab or in a fermenter [9]. In T. reesei, al-
most 3% of all genes are differentially regulated in light
and darkness and these genes are enriched in functions
of carbohydrate transport and metabolism [10]. T. reesei
possesses homologues of the two N. crassa photoreceptors
White Collar-1 (WC-1) and White Collar-2 (WC-2) - two
zinc-finger transcription factors, which usually act as a
complex [11,12]. The T. reesei homologues BLR1 and
BLR2 (blue light regulator 1 and 2) are involved in regula-
tion of cellulase gene expression [13,14] and to some ex-
tent in asexual and sexual development [13,15]. The third
N. crassa photoreceptor, VIVID (VVD) is responsible for
gating of light responses [16], acts negatively on the White
collar complex (WCC) and can act as a universal brake on
light response [17-21]. Its orthologue in T. reesei, ENV1,
was found to have a profound effect on light dependent
processes and signalling, including regulation of cellulase
gene expression [13,22-24]. However, despite a number of
similar functions of VVD and ENV1, also in cellulase
regulation [25], these factors are not functional homo-
logues [22]. In contrast to N. crassa strains lacking func-
tional VVD [16], deletion strains of ENV1 show a severe
growth defect in light [13,22,24]. Additionally, ENV1 is es-
sential for female fertility of T. reesei in light [15], is
assumed to influence cCAMP turnover by a negative effect
on phosphodiesterases and impacts regulation of the
heterotrimeric G-protein pathway [24].

Investigation of the influence of BLR1, BLR2 and ENV1
on efficiency of cellulose degradation under fermentation
conditions revealed an influence of all three photorecep-
tors [14]. The efficiency of the secreted enzyme mixture
was enhanced in Aenvl, while the higher cellulolytic activ-
ity in Ablr2 media was due to increased secretion capacity.
Strains lacking blr1 did show enhanced biomass accumu-
lation in the presence of cellulose, but production of
hydrolytic enzymes was nevertheless weakest in this strain.
However, comparison of transcript levels of cellulases with
cellulolytic activity in the culture filtrate or abundance of
the respective protein there, revealed discrepancies, espe-
cially in light [13,14,22,26]. Hence, an influence of compo-
nents involved in perception and transmission of the light
signal could also be responsible for posttranscriptional
and/or posttranslational regulation of enzyme production.

Utilization of plant cell walls not only involves the up-
take of the building blocks of cellulose, but also compo-
nents released from hemicellulose, such as galactose or
arabinose are encountered on this natural substrate and
channelled into catabolic pathways [27,28]. For catabolism
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of D-galactose, different pathways are used in fungi. In the
Leloir pathway conversion of D-galactose in several steps to
D-glucose-6-phosphate involves phosphorylation [28,29].
The alternative oxidoreductive D-galactose pathway has the
intermediates D-galactose, galactitol, L-xylo-3-hexulose, D-
sorbitol and D-fructose [27]. The enzymes involved in ca-
tabolism of D-galactose, aldose reductase XYL1, galactitol
dehydrogenase LADI1, L-xylo-3-hexulose reductase LXR4
and D-sorbitol dehydrogenase XDH1 also have functions in
degradation of L-arabinose, with additional contribution of
the L-xylulose reductase LXR3 [30].

In this study, we investigated genome wide transcrip-
tional regulation by BLR1, BLR2 and ENV1 and we aimed
to evaluate different regulatory patterns caused by these
factors. We show that the recently discovered imbalance
in light dependent gene regulation i. e. an increased num-
ber of genes regulated by light [10] is even more pro-
nounced in mutants lacking ENV1 and that around 75%
of all genes encoding glycoside hydrolases of T. reesei are
differentially regulated in light and darkness in wild-type
or mutant strains. We also found that catabolism of
hemicellulase building blocks is subject to regulation by
light, which is in part mediated by BLR1, BLR2 and ENV1
with one genomic cluster being regulated by light upon
growth on cellulose.

Results

Transcriptome analysis of gene regulation by ENV1, BLR1
and BLR2

We studied differential regulation by ENV1, BLR1 and
BLR2 by microarray analysis in light and darkness upon
growth on microcrystalline cellulose. Downregulation of
the transcription of envl and the photolyase gene phrl in
Ablrl and Ablr2 in light as well as the regulation pattern
of the cellobiohydrolase gene cbh2/cel6a in light and dark-
ness and in Aenvl are in accordance with earlier studies
[13,22,31]. Additionally, qRT-PCR analysis done for previ-
ously reported studies with the same experimental setup
[10] and data on evaluation of the genes encoding en-
zymes involved in degradation of pentoses (this study, see
below) was in agreement with microarray results and and
hence confirm the validity of our results.

In order to gain insight into the impact of components
of the light signalling machinery on light responsiveness
(here meant to describe differential transcription between
cultivation in constant light or constant darkness) of tran-
script abundance, we compared differential gene regula-
tion between light and darkness in Aenvi, Ablrl and
Ablr2. In the wildtype 2.8% of all genes are regulated in re-
sponse to light, but this percentage strongly increases
upon deletion of the phosducin like protein encoding
philpl, gnbl or gngl (genes encoding the G-protein beta
and gamma subunits) up to 23% [10]. Intriguingly, dele-
tion of blrl or blr2 also causes the number of light-
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dependently regulated genes to increase (up to 9.7% of
total genes), which indicates that strains lacking these
photoreceptors are defective in proper regulation of light
responsiveness or adaptation to constant light, but are not
blind (Figure 1). This finding suggests that photoreceptors
do not exclusively act as a complex as was already sug-
gested earlier [25] and that additional factors are present
in the genome which transmit light signals in the absence
of the photoreceptors BLR1, BLR2 and ENV1 as also
shown for their orthologues in N. crassa [18]. In AenvI
the number of light responsive genes strongly increases to
31.6% of all genes of T. reesei (2888 genes) (Figure 1). In
all three strains, differential transcription between light
and darkness was both positive and negative, which is in
agreement with data from T. atroviride [32], but in con-
trast to N. crassa for which only positive regulation by
photoreceptors was observed [18]. Additionally, we
found a remarkably high number of glycoside hydro-
lase encoding genes and signal transduction compo-
nents among those downregulated due to illumination,
but also numerous transcription factors — particularly
in Aenvli. (Additional file 1). Interestingly, the number
of light responsive genes is higher in the AenvI mutant
compared to the individual Ablr strains and also higher
than both Ablr strains together. This finding confirms
earlier results on individual functions of ENV1 [23]
and also functions independent of BLR1 and BLR2.

Functions of genes with differential regulation in Ablr1,
Ablr2 and Aenv1
Due to the considerably increased number of genes dif-
ferentially regulated between light and darkness in Ablr1,
Ablr2 and Aenvl, we were interested, which functions
were targeted by this regulation.

In Ablrl only 16 genes were upregulated by light and
most of them only around 2fold, among them a putative
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sulphate permease (TR_79741) and two putative 3-gluco-
sidases (TR_47268 and TR_124175). Also in Ablr2 only 14
genes are upregulated in light, including an NMT1-like
gene (TR_121620) putatively involved in thiamine biosyn-
thesis and the PTHI11 type G-protein coupled receptor
gene TR_69500. Only TR_108143 encoding an unknown
hypothetical protein is upregulated in Ablrl and Ablr2 in
light compared to darkness.

In both photoreceptor mutants the majority of genes
was downregulated in light (769 in Ablrl and 873 in
Ablr2) and exert diverse functions (Figure 2). Detailed
analysis revealed that genes significantly enriched in the
geneset down regulated in AblrI in light include metabol-
ism (p-value 2.27 e-05), particularly C-compound and
carbohydrate metabolism (p-value 5.90 e-04), secondary
metabolism (p-value 5.04 e-04), ABC-transporters (p-
value 1.22 e-04), oxygen and radical detoxification (p-value
1.81 e-05) including catalase reaction and superoxide
metabolism.

Genes down regulated in Ab/r2 in light are significantly
enriched for functions in transcription (p-value 3.02 e-08)
and protein synthesis (p-value 4.82 e-06), but although nu-
merous metabolic genes are regulated (Figure 2), no sig-
nificant enrichment in this function was observed. These
obviously different functions of BLR1 and BLR2 are in
agreement with earlier data in T. atroviride and N. crassa,
which indicated independent roles of the two photorecep-
tors besides their function as complexes [25,33].

For genes upregulated in light in Aenvl we observed a
significant enrichment in metabolic functions (p-value 3.87
e-21), especially in amino acid metabolism (p-value 5.72 e-
11), C-compound and carbohydrate metabolism (p-value
4.6 e-07) and lipid, fatty acid and isoprenoid metabolism
(p-value 9.85 e-17). Moreover, genes with functions in en-
ergy supply, oxidation of fatty acids and cellular transport,
particularly C-compound and carbohydrate transport were

~

AbIr1 AbIr2 Aenvi
8342 8240 6251
769 873 2194
16 14 682

Figure 1 Comparison of light dependent differential regulation in wild-type, Aenv1, Ablr1 and Ablr2. Genes upregulated in light are
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Figure 2 Functions of genes differentially regulated in light and darkness in Aenv1, Ablr1 and Ablr2.
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significantly enriched. With genes downregulated in
Aenvl again metabolic functions are significantly
enriched (p-value 9.92 e-23), with strongest enrichment
in C-compound and carbohydrate metabolism (p-value
7.79 e-17), but although metabolism of some amino
acids is still enriched, the strong enrichment in amino
acid metabolism in general as seen for upregulated
genes is not obvious in this gene set. Further enrich-
ment occurred with genes involved in sulphur metabol-
ism and sulphate assimilation (p-value 7.07 e-08), cell
cycle and DNA processing (p-value 1.07 e-13). From the
latter functional group, also genes involved in DNA re-
combination and repair, mitotic cell cycle and cell cycle
control, cell division and septum formation/hydrolysis
are significantly enriched among those downregulated
in Aenvi, which correlates with its strong growth and de-
velopmental defect in light [13,22]. Interestingly, also
genes involved in translation are significantly enriched
among the downregulated genes (p-value 143 e-03),
which hints at a function of ENV1 in modulation of post-
transcriptional regulation of gene expression as suggested
for several genes in light in T. reesei [14,26]. Additionally
also cellular transport, including C-compound and carbo-
hydrate transport, defence mechanisms, stress response,
DNA damage response, cellular sensing and response, de-
velopment are enriched in this gene set.

In order to put these results into context, we searched
in a hierarchical cluster analysis for genes upregulated in
light in the wild-type but not in the mutant strains in-
vestigated in this study. We found a cluster of 187 genes
which fulfilled this criterion. Genes in this cluster were
enriched in functions in metabolism (p-value 1.37 e-06)
including nitrogen and sugar metabolism and secondary
metabolism, which are also among the functions most
elaborately regulated in all three mutants.

The influence of light on transcription of glycoside
hydrolase encoding genes is in part mediated by ENV1,
BLR1 and BLR2

Previously we showed that in signalling mutant strains of
the heterotrimeric G-protein pathway, the number of
genes differentially regulated in light and darkness in-
creases and that this effect also concerns glycoside hydro-
lases [10]. Here, we found that deletion of envi, birl or
blr2 led to light dependent regulation of 129 glycoside
hydrolase genes (Additional file 2: Table S1; Figure 3), par-
tially overlapping with GH encoding genes already known
to be potentially light regulated [10]. Together with those
genes, which were shown to be regulated by light in mu-
tants in the heterotrimeric G-protein pathway, in total 148
out of 201 genes (75% of total GH encoding genes) were
found to be differentially regulated in light and darkness
in the wildtype and/or in mutant strains. Among these
148 genes, all GH families are represented except GH
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family 35, with its only member beta galactosidase
(TR_80240). However, inspection of transcript levels of
the respective gene also differed between light and dark-
ness up to 1.96fold, which is only slightly below our
threshold.

Functions of ENV1 in darkness

Previous studies showed that ENV1 not only has func-
tions in light, but also in darkness [23], which however
remained elusive until now. The transcriptome data con-
firmed this assumption and 35 genes were found to be
specifically regulated more than 2fold (p-value 0.01) in
darkness in Aenvl (Additional file 3). Only 6 genes were
found to be exclusively downregulated in AenvI in dark-
ness, including two putative FAD dependent oxidoreduc-
tases (TR_22915 and TR_111357), phosphoenolpyruvate
carboxykinase TR_124115 and one predicted oligopep-
tide transporter (TR_44278).

Those genes showing increased transcript abundance
specifically in Aenvl in darkness include 3 glycoside hy-
drolases (TR_5836, TR_111849 (xyn4) and TR_70845),
the class II hydrophobin encoding gene /fb3, one candi-
date non-ribosomal peptide synthase gene (TR_123786),
one catalase (TR_73818), birl and bir2. Moreover, three
genes involved in sulphur metabolism (TR_103012
and TR_112567, two predicted taurine dioxygenases, and
TR _69696) are upregulated. In summary, the functions
influenced by ENV1 in darkness correspond to a subset of
functions subject to light response in T. reesei. These re-
sults further reflect that ENV1 exerts individual functions
not only in light, but also in darkness.

Regulatory targets of BLR1 and BLR2 in darkness

In addition to differential regulation between growth in
light and growth in darkness, we also studied altered
gene regulation in the photoreceptor mutant strains
compared to wild-type in light and darkness, which re-
vealed light-dependent regulatory targets of these factors
(Additional files 4, 5 and 6).

Previous studies in 7. reesei indicated that BLR1 and
BLR2 not only have functions in light, but that they also
regulate gene expression and metabolic functions in dark-
ness [13,14]. q-RT PCR analysis of the cellobiohydrolase
cbhl/cel7a, for which the microarray reached the saturation
limit, confirmed a regulatory function of BLR1 and BLR2 in
darkness (Additional file 2: Figure S1). Moreover, individual
functions for the two photoreceptors homologues besides
their activity as a complex were suggested in N. crassa [25].
We therefore analyzed which functions these photorecep-
tors target in darkness. We found that in Ablrl 128 genes
are upregulated in darkness, among them 6 glycoside
hydrolases including two alpha-glycosidases (TR_60635
and TR _27395), two beta-glycosidases (TR _55886 and
TR_124175), one alpha galactosidase (TR_72704) and one
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chitinase (TR_80833). Moreover, seven genes involved in
sulphur metabolism and 5 transporters are among the
genes upregulated in Ablrl. 73 genes were downregulated
in Ablrl in darkness. Accordingly, functional category
analysis identified C-compound and carbohydrate metab-
olism in the gene set upregulated in Ablrl and metabolism
of several amino acids among the genes down regulated in
Ablrl in darkness as significantly enriched (p-values <
0.01). Genes exerting transport functions were signifi-
cantly enriched in both gene sets in Ablr1.

In Ablr2, 42 genes are upregulated in darkness including
7 glycoside hydrolases, among them two beta glucosidases
(TR_46816 and TR _76672) and one L-arabinofuranosidase
(TR_76120) and three transporters. Among the genes
down-regulated in Ablr2, 7 genes involved in sulphur me-
tabolism were found. Funcat analysis revealed significant
enrichment in genes involved in polysaccharide and carbo-
hydrate metabolism as well as transport functions among
the genes up- or down-regulated in Ablr2 in darkness.

Hence both photoreceptors play a role in alteration of
carbohydrate metabolic functions and transport of com-
pounds with distinct, both positive and negative targets
in darkness.

Shared regulatory targets of BLR1, BLR2 and ENV1

Light dependent induction of envI transcription requires
the presence of BLR1 and BLR2 [13]. In order to eluci-
date which target genes would be regulated by the com-
plex assumed to be formed by BLR1 and BLR2 and
transmitted involving the function of ENV1, we screened
for genes regulated similarly in AenvI, Ablrl and Ablr2
(Figure 4; Additional file 7). While in darkness no overlap
could be detected, we found 20 genes to be upregulated in
all three mutants in light, which are concluded to repre-
sent genes negatively influenced by the BLR1/BLR2 com-
plex via ENV1 in light. Among them were 2 glycoside
hydrolase family 16 genes (TR_121294 and TR_49274) as
well as one putative zinc binuclear cluster transcription
factor (TR_122523). However, in contrast to the only 20
genes negatively influenced by BLR1, BLR2 and ENV1, we
found the majority of common targets of these factors
(564 genes, Figure 4) to be positively regulated in light by
the light signalling machinery. Although most of the genes
in this group are of unknown function, major targets ap-
pear to be the glycoside hydrolases with 22 members of di-
verse families found in this group. Additionally, three
putative transcription factors (TR_107974, TR_110901
and TR_120365) and two G protein coupled receptors,
(TR_57101 and TR_63981) were downregulated in all
three mutants in light, suggesting altered signal perception
as well as output on regulatory targets. The finding of six
genes involved in sulphur metabolism (TR_103012,
TR_104081, TR_3823, TR_59876, TR_7625, TR_77795) in-
cluding the E3 ubiquitin ligase LIM1 [34] supports the
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parental strain QM9414 in light and darkness.

hypothesis of a role of this process in light-dependent
modulation of gene expression in 7. reesei. Additionally,
the finding of one hydrophobin gene in this group
(TR_105869) is also not without precedent [35].

Regulation by a potential negative effect of ENV1 on the
BLR complex

For N. crassa, 417 genes were found to be up-regulated in
Avvd and down-regulated in the white-collar mutants
upon growth on cellulose in light, which were significantly
enriched in C-compound and carbohydrate metabolism.
Hence, carbon metabolism was suggested to be subject to
photoadaptation in N. crassa [25]. In order to evaluate this
hypothesis for T. reesei, we also screened for genes down-
regulated due to the lack of a functional photoreceptor
complex (genes downregulated in Ablrl and Ablr2), but
upregulated in Aenvl. Lack of ENV1 is in this case as-
sumed to result in increased transcription of genes posi-
tively regulated by BLR1 and BLR2. We only found 72
genes of those downregulated in Ablrl and Ablr2 in light
(Figure 4; 337 in total) to be up-regulated in Aenvi. Inter-
estingly, these included 5 genes involved in pheromone
processing and sexual development, two photolyases as
well as two transcription factors (Additional file 8). How-
ever, no enrichment in carbon metabolic functions as seen
for N. crassa was observed. Consequently, in contrast to
N. crassa, carbon metabolism appears to be regulated by
the influence of BLR1 and BLR2 on induction of envi
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rather than the assumed negative effect of ENV1 on the
function of the BLR complex in light. Additionally, this dis-
crepancy may reflect the regulatory differences of ENV1
and VVD, which are no functional homologues [22].

Distinct targets of the BLR1/BLR2 complex versus ENV1
Despite considerable overlap in their major targets in
light with ENVI1, the common targets of BLR1 and
BLR2 (indicating their acting as a complex) are distinct
from those of ENVI to a certain extent (Figures 2 and 4;
Additional file 8). 67 genes were found to be upregulated
in light compared to the wildtype in both Ablrl and
ADblr2 but not in Aenvl, including one transcription fac-
tor (TR_105520), 3 genes involved in sulphur metabol-
ism (TR_22453, TR_62285, TR_79933), one PTH11-type
GPCR (TR_69500), one polyketide synthase (TR_73618)
and one glycoside hydrolase family 16 gene (TR_
122511). 337 genes represent positive targets of the
BLR1/BLR2-complex in light, among them were one
polyketide synthase from PKS orthologous group 3 [36]
(TR_105804) and one non-ribosomal peptide synthase
(TR_69946) as well as 4 glycoside hydrolases. Interestingly,
we also detected 8 transcription factors positively regu-
lated by BLR1 and BLR2 but not by ENV1 including one
transcription factor (TR_57735) reported to be responsive
to light in the absence of major photoreceptors [18].

ENV1 triggers gene regulation also independently of
BLR1/BLR2

The results described above led to the question, which
output pathways would be regulated by ENV1 independ-
ently of BLR1/BLR?2 in light. More than 55% (1108 genes)
of all genes downregulated and even 92% (592 genes) of
those upregulated in a mutant lacking ENV1 are not tar-
gets of either BLR1 or BLR2 (Figure 4; Additional file 9).
Moreover, the negative effect of ENV1 in light is much
more widespread than that of BLR1 or BLR2. Conse-
quently, a function for ENV1 distinct of that of BLR1 and
BLR2 in light can be assumed.

Analysis of negative targets of ENV1 in light revealed an
influence on 13 putative transcription factors, including
two transcription factors (TR_103230, TR_72057) de-
scribed to be light responsive in the absence of the major
photoreceptors in N. crassa [18]. Moreover, 3 photolyases
(phrl, TR_59726, TR_77473), 5 G protein coupled recep-
tors (TR_103694, TR_119819, TR _55561, TR56426,
TR_72627), 5 genes involved in secretion (TR_53254,
TR_55774, TR_105763, TR_122870, TR_123922), 3 genes
involved in secondary metabolism (TR_68204, TR_58285,
TR_106272) and 14 glycoside hydrolase genes were nega-
tively regulated by ENV1. Genes influenced positively by
ENV1, but not by BLR1 or BLR?2 in light include 17 puta-
tive transcription factors, among them /hap3, encoding an
important regulator of cellulase gene expression [37].
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Additionally, 13 genes involved in sulphur metabolism,
eight G protein coupled receptors (five of them be-
longing to the PTH11-type), nine genes involved in se-
cretion, two polyketide synthases (TR_59482 — PKS
orthologous group 5, TR_73621), three hydrophobin
genes (TR_73173, TR_119989, TR_123967) and most
intriguingly, nine glycoside transferase and 36 glyco-
side hydrolase genes are enhanced by ENV1 in light.
We conclude that ENVI1 represents a key factor in
light-dependent regulation of gene expression, the
major effect of which is not exerted concertedly with
the BLR1/BLR2 complex. The considerable number of
target genes with functions in carbon utilization and
nutrient signal perception suggests a crucial function
in interconnecting nutrient with light signalling.

Coregulation of genes with the major cellulases

Genes regulated consistently under different conditions
often participate in the same function. Therefore, inves-
tigation of co-regulated genes can help to assign a puta-
tive function to unknown genes or reveal processes
related to each other [38-40]. For identification of genes
and/or processes involved in the light signalling pathway
that modulates the cellulase gene transcription pattern,
we examined a cluster of 52 genes that are co-regulated
with cel6a/cbh2 in all of the light affected mutant strains
and their parental strain QM9414. cel7a/cbhl, the major
cellobiohydrolase, is co-regulated with cel6a/cbh2, but
due to saturation of the microarray signal for this tran-
script, we were not able to use the transcript pattern of
cel7a/cbhl to evaluate coregulated genes of cellulases.
To confirm that the transcription pattern of cel6a/cbh2 in
the mutants resembles that of cel7a/cbhl, we performed
qRT-PCR, which confirmed coregulation (Additional file
2: Figure S1). We consequently used cel6a/cbh2 as repre-
sentative gene for evaluation of genes coregulated with
cellobiohydrolases in the presence or absence of BLRI,
BLR2 or ENV1 as described above in light and darkness
(Additional file 2: Table S2).

The gene set of the cel6a/cbh2 cluster comprised 12
more glycoside hydrolase family genes, a swollenin (TR_
123992), which was shown to disrupt the structure of cellu-
losic materials [41], two carbohydrate esterase family genes
(axel- TR_73632, TR_54219), cipl and cip2 - each con-
taining a carbohydrate-binding module and were previously
shown to be co-expressed with cellulases and represent
“novel” types of cellulases [42,43], a flavohemoglobin
(TR_76722), a GABA permease (TR_70098) and two po-
tential transcription factors (TR_77154, TR_73654). In
addition, two hypothetical proteins, a WD40-repeat con-
taining protein (TR_103064) and a hypothetical G protein
coupled receptor (TR_53238) were also coregulated with
cel6a/cbh2. Notably, the xylanase regulator 1 encoding gene
xyrl was also shown to be coregulated with cel7a/cbhl and
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cel6a/cbh2, which is in agreement with earlier data, because
XYR1 influences cellulase gene transcription positively and
correlates with cellulase transcription levels [44,45]. How-
ever, positive regulation of xyrl by light has not been ob-
served upon growth on lactose [46] and appears to be
specific to cellulose, which also suggests differential light
dependent regulation of plant cell wall degrading enzymes
on these carbon sources. Indeed, previous studies of T.
reesei grown on cellulose or lactose showed that the effect
of light on cellulase gene expression is positive on cellulose
[22] and negative on lactose [46].

Light impacts pentose and D-galactose metabolism

The considerable regulation of glycoside hydrolases and
hence of mechanisms involved in substrate degradation
by ENV1 led us to re-evaluate data on growth patterns
for various carbon sources in more detail [23]. The
results for growth on 96 carbon sources in constant light
and constant darkness of the parental strain and the
ENV1-non functional strain envi™5~ [13,22] were re-
arranged and used for hierarchical cluster analysis.
envI®™5~ showed considerably weaker growth in light
than in darkness on most carbon sources, as could be
expected from its published growth defect in light
[13,22] (Figure 5). The growth of the wildtype was en-
hanced in light in a cluster of 19 different carbon
sources including D-sorbitol, L-arabinose, D-fructose, D-
galactose and xylitol in light, while the envl mutant
strain showed a considerably lower growth rate in light on
these carbon sources (indicated by an arrow in Figure 5).
Hence, the positive influence of light on growth on these
carbon sources is likely to be at least in part mediated
by ENVI1.

D-galactose and pentose catabolism are regulated by
light on cellulose

Interestingly, this cluster of carbon sources with ENV1
dependent enhanced regulation by light comprises several
carbon sources of the D-galactose and pentose catabolism
(D-galactose, L-arabinose, D-sorbitol, xylitol and D-fructose).
The respective enzymes are assumed to be involved in me-
tabolism of hemicellulose degradation products [47]. Consi-
dering coregulation of many plant cell wall degrading
enzymes upon detection of an inducing substrate [48], a
regulation of these pathways also on cellulose seemed rea-
sonable and was indeed observed with the microarray data
of this study, albeit very low expression levels for Ixr3, lxr4
and lad1 as well as only small differences in transcript levels
necessitated independent confirmation of these data. Con-
sequently, we evaluated the microarray data by qRT-PCR
for the key components of oxidoreductive pentose and
D-galactose pathway with respect to transcriptional regula-
tion by light and/or the photoreceptors (Figure 6).
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Transcription of all genes involved in catabolism of D-
galactose and L-arabinose (Figure 7; [30]) except xkil showed
a statistically significant increase in light in the wildtype (p-
values <0.01). This indicates that the cascade starting from
D-galactose or L-arabinose and D-xylose, respectively is posi-
tively affected by light during growth on cellulose.

Besides the Leloir pathway, an oxidoreductive pathway
was identified in T. reesei and many of the enzymes in-
volved are also part of the L-arabinose and D-xylose
pathway [27,30]. The degradation of the hemicellulosic
sugars D-xylose, L-arabinose and D-galactose starts with
the same reaction: an NADPH-linked reduction by an
aldose reductase XYL1 [28]. The next step, the oxidation
of galactitol or L-arabitol is catalyzed by LAD1, the L-
arabitol-4-dehydrogenase [49]. Recently it was shown
that Ixr4, encoding an L-xylo-3-hexulose reductase is the
missing link in the oxidoreductive D-galactose catabol-
ism in 7. reesei [30]. The last step of the D-galactose
degradation before glycolysis is the mediated by a NAD-
xylitol dehydrogenase XDH1, which also catalyzes the
conversion from xylitol to D-xylulose in the L-arabinose
and D-xylose pathways [50]. The last phosphorylation
step of the L-arabinose and D-xylose pathway before the
substance enters the pentose phosphate pathway is pre-
sumably done by the gene product of xkil, a xylulose
kinase and a homolog of Aspergillus niger xkiA [51].

Differential expression between constant light and con-
stant darkness upon growth on cellulose was abolished
upon lack of BLR1 and BLR?2 for all genes investigated, ex-
cept xkil, which does not show regulation by light in the
wild-type (Figure 6). Transcript abundance predominantly
drops to darkness levels in Ablrl and Ablr2. Hence, BLR1
and BLR?2 are concluded to be necessary for positive regu-
lation of this pathway in light.

For ENV1 the situation is more complex. In the ab-
sence of ENV1, differential expression between light and
darkness is abolished for Ixr3 (which is enhanced to
light-levels), ladl and xdhl. In contrast, the difference
between transcript levels in light and darkness becomes
even more pronounced for lxr4 and xyl1, which is due
to a strong upregulation of /xr4 and of a considerable
down-regulation of wxylI in light. Down-regulation of
xkil in light upon lack of ENV1 results in differential ex-
pression of xkil in this strain, which was not observed
in the wild-type. This effect is also one example, how
lack of adaptation as mediated by ENV1, BLR1 or BLR2
could result in an increased number of genes differen-
tially transcribed between light and darkness.

These results are in complete agreement with the re-
sults of the BIOLOG analysis, since lack of ENV1 causes
decreased transcription of most of the enzymes in the
pathway in light (Figures 5 and 7). Consequently, while
the data for individual genes and growth on individual
carbon sources for wild-type and mutant strains only
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carbon sources [23]. Hierarchical cluster analysis was performed using HCE 3.5 with default settings. Standard deviations shown result from three
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Figure 6 qRT PCR analysis of transcript abundance of genes involved in D-galactose and L-arabinose metabolism. Transcript levels of
Ixr3 (A), Ixr4 (B), xyl1 (C), lad! (D), xdh1 (E) and xkil (F) were analyzed in constant light (LL) and constant darkness (DD) on cellulose in QM9414,
Aenvl, Ablrl and Ablr2. Data from two biological and three technical replicates were included in the calculations. Different letters above the data
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show minor differences in dependence of light (mostly
around 2fold, sometimes less), consistent regulation of
growth and transcript abundance of the genes encoding
enzymes of the oxidoreductive pentose and D-galactose
pathway strongly indicates that the response of T. reesei
to hemicellulose building blocks is modulated by photo-
receptors in response to light.

A MEME search using the online version 4.9.0 (http://
meme.nbcr.net/meme/cgi-bin/meme.cgi) did not reveal a
common sequence in these promotors related to known
light responsive motifs. According to the flat hierarchical
network as proposed for photoreceptors N. crassa [52],
the effect seen here is likely to be exerted indirectly. For
xyl1, regulation by the cellulase and hemicellulase regula-
tor XYR1 was shown [45,53]. We therefore screened all
gene promoters of the pathway for XYR1-binding sites

and only xdhl has a XYR1 binding site. As xyrl, similarly
to xdhl and xyll is positively regulated by ENV1 in light,
this regulation might be mediated by XYR1.

Lxr1 is part of a ENV1 regulated cluster in light

While initially assumed to be an L-xylulose reductase as it
catalyzed the NADPH/NADP + specific reactions for L-
xylulose/xylitol and for D-fructose/D-mannitol [54], LXR1
later turned out to be a mannitol dehydrogenase [55]. On
D-mannitol, our growth analysis showed a slightly slower
growth of the wild-type in light. Due to its additional
activity on fructose [54], LXR1 could also be involved
in the increased growth of the wild-type and the decreased
growth in the envl mutant on this carbon source in
light (Figure 5).
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Investigation of the genomic region around /lxrl
revealed that 9 genes in its genomic vicinity are regu-
lated negatively (up to 40 fold) by ENV1 in light upon
growth on cellulose and hence form a cluster
(Figure 8A). BLR1 and BLR2 do not influence the regu-
lation of the cluster. In contrast to the effect upon
growth on mannitol, ENV1 has a strongly negative
effect on [xrl and the genes in its cluster upon growth
on cellulose (Figure 8B). The cluster is located at
scaffold 1 between position 2343169 — 2393717 and
comprises besides lxrl also a Zn-cluster transcription
factor (TR_53067), a putative oligopeptide transporter
(TR_44278), two probable old yellow enzyme (OYE)
family flavin oxidoreductases (NADPH or NADH
dependent; TR_103015 and TR_53868), a putative GTP
cyclohydrolase (TR_54554) and a proline oxidase/de-
hydrogenase involved in conversion of proline for use
as a carbon and nitrogen source (TR_54564). Two of
these genes, Ixrl and TR_103015 have homologues in
N. crassa (NCU09041 and NCUO04452), which are re-
sponsive to light ([18]). However, neither these nor the
other members of this cluster are syntenic in N. crassa.

Within the borders of the ENVI1-regulated Ixri-
cluster, a light regulated cluster starts (Figure 8A),
which comprises TR_103015, TR44278, as well as a
taurine dioxigenase involved in sulphur metabolism
(TR_103012) and additionally contains a GATasel-
like (glutamine-amidotransferase type 1) domain
containing peptidase (TR_103039), which is located
outside the /xr1 cluster.

Consistent targets of photoreceptors in N. crassa and

T. reesei

Previous studies indicated at least in part comparable regu-
lation of cellulase gene expression by light and photorecep-
tors in T. reesei and N. crassa [13,14,22,25]. We were hence
interested, whether the regulatory targets of photoreceptors
in these two fungi are similar. Therefore, we re-analyzed
the transcriptome data for N. crassa wild-type as well as
Awc-1, Awe-1 and Avvd upon growth on cellulose in light
([25]; GEO Accession number: GSE32871) for significant
2fold differential regulation in order to be comparable with
our data. 609 genes were found to be differentially regulated
in one or more of the N. crassa photoreceptor mutants and
are hence photoreceptor targets in light. 369 of these genes
have reciprocal best hits (p-value for blast analysis set to
le-05) in 7. reesei and are therefore likely homologues. 55
genes were identified as consistent targets of one or more
photoreceptors in N. crassa and T. reesei (Additional file
10). In agreement with previous findings, these genes were
enriched in functions of metabolism (p-value 1.63e-05),
particularly C-compound and carbohydrate metabolism (p-
value 1.71 e-04) and sugar, glucoside, polyol and carboxyl-
ate metabolism (p-value 1.56e-03). Additionally, functions
in C-compound and carbohydrate transport (p-value 2.38e-
05) and glycolysis and gluconeogenesis (p-value 4.86e-03)
were enriched. Among the consistent photoreceptor targets
are further five glycoside hydrolases (TR_120229 (xyn3),
TR123818 (xyn2), TR 123989 (cbhl), TR_72526 (girl),
TR_72567 (cbh2)), one carbohydrate esterase (TR_72072)
and two genes involved in sexual development (TR_
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Figure 8 Schematic representation of the ENV1-regulated Ixr1 genomic cluster. (A) The genomic region comprising the /xr7 cluster is drawn
to scale. Besides genes regulated by ENV1, further genes are located within this genomic region, which are given in black. Genes regulated by light on
cellulose are given with yellow frames, those consistently regulated in N. crassa are shown with an orange frame. (B) Regulation of the /xr7 cluster
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104292, TR _123697) including the gene encoding the
alpha-type peptide pheromone precursor ppg-1 which was
shown to impact cellulase regulation in N. crassa [25].
Two putative sugar transporters (TR_76800 and
TR_106556) and one putative carboxylic acid transporter
(TR_121441) were also among these genes. Although
functions in sulphur and amino acid metabolism were not
enriched among these 55 genes, two putative methionine
synthases (TR_121820 and TR_3823) as well as one me-
thionine permease (TR_77969) were consistently regu-
lated. Moreover, two transcription factors were found to
be consistent targets: TR_120715, which has not yet been
characterized and TR_53067, the homologue of tah-2,
which is involved in conidiophore development [56] and
shows increased transcript levels upon growth on
miscanthus [57] in N. crassa. TR_53067 is part of the lxrl
cluster described above and intriguingly, also IxrI itself is
among the consistently regulated genes. However, the well
characterized cellulase regulators of 7. reesei and N.
crassa, such as xyrl, crel, clr-1 or clr-2 are not among the
consistently regulated genes.

Discussion
In this study we investigate the light signalling machin-
ery of T. reesei at a genome wide level upon growth on
cellulose, which is the closest defined carbon source to
what T. reesei encounters in its natural habitat. We ex-
tend previous knowledge on the function of photorecep-
tors, which was mainly done on glucose and in constant
light, with investigating the effect of the photoreceptors
in darkness. This enabled us to study both differential
gene regulation between growth in light and darkness
(termed light responsiveness here) and investigation of
regulatory targets (differential regulation compared to wild-
type) of BLR1, BLR2 and ENV1 in light and darkness. Al-
though only few genes are regulated by the photoreceptors
in darkness, a clear role in carbon metabolism and trans-
port functions could be detected in darkness. These func-
tions resemble also the targets in light, indicating that
regulation by photoreceptors is not strictly light dependent.
One of the most intriguing and puzzling findings of this
study was the increased number of differentially tran-
scribed genes in the photoreceptor mutants, as we rather



Tisch and Schmoll BMC Genomics 2013, 14:657
http://www.biomedcentral.com/1471-2164/14/657

expected the opposite effect. A similar phenomenon was
observed for mutants in the G-protein pathway [10]. One
explanation for the reason that so many genes are light-
regulated in the photoreceptor mutants might be a lack
of light adaptation in the photoreceptor mutants: in the
comparison between growth in constant darkness and in
constant light, many transcripts might appear unchanged
due to adaptation to light. However upon deletion of
BLR1/BLR2 or ENV, both light induction and adaptation
are assumed to be lost, which would cause decreased/
altered transcript levels in the mutants. Indeed, evaluation
of the regulatory targets of BLR1, BLR2 and ENV1 re-
vealed the highest numbers of regulated transcripts to
be downregulated in the mutant strains in constant light
(Additional file 4, Additional file 5 and Additional file 6),
which supports this hypothesis.

While we cannot provide a mechanistic explanation yet,
our working hypothesis currently involves a higher order
regulation to be targeted by the photoreceptors such as
chromatin remodelling, which was shown to be impacted
by light and the clock [58,59]. This would explain the
wide-spread effect we see and it would be in agreement
with a rather tight regulation in the wild-type. Neverthe-
less, also such a mechanism would require an additional,
so far unidentified factor to transmit the light signal in the
absence of photoreceptors.

Recently, investigation of the effect of photoreceptors on
cellulase gene expression in N. crassa revealed that this
process is subject to photoadaptation in this fungus. Add-
itionally, the known cellulase repressor gene acel, the car-
bon catabolite repressor gene crel and the cross pathway
control protein encoding cpcl, which is involved in re-
sponse to amino acid starvation response, were found to
be regulated by photoreceptors in N. crassa [25]. In T.
reesei however, the situation appears to be different. We
could identify the cellulase and hemicellulase regulator
gene xyrl to be a target of BLR1 and ENV1 on cellulose,
whereas N. crassa xyr-1 is not regulated by photorecep-
tors. Also the T. reesei homologues of clr-1 and clr-2 [60],
two recently identified N. crassa cellulase regulators,
(TR_26163 and TR_27600) are subject to regulation by
photoreceptors, although they are not light regulated in
the wild-type. Additionally, neither acel nor crel or cpcl
are among the targets of the light signalling machinery in
T. reesei. Hence, despite largely similar global processes to
be targeted by BLR1, BLR2 and ENV1, such as carbon-,
amino acid- and sulphur metabolism, the regulation of the
involved pathways seems to be achieved differently in N.
crassa and T. reesei. This finding is also in agreement with
consistent regulation of metabolic genes but not the re-
spective known regulators between N. crassa and T. reesei
in light. Also the effects on glycogen metabolism observed
in N. crassa were not obvious for T. reesei. However, the
general influence of photoreceptors on carbon and amino
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acid metabolism as well as its assumed correlation with
cellulase gene expression [25,34,61] is clearly conserved in
T. reesei and N. crassa.

The results of this study illustrate an important pheno-
typic characteristic of strains lacking ENV1. These strains
show severely reduced growth rate and conidiation, both
in liquid media and on plates in light [13,22,24]. This de-
fect is clearly reflected in the strongly altered transcrip-
tome of this strain in light compared to darkness. In the
absence of ENV1, considerable alterations involving both
positive and negative regulation of metabolic genes — es-
pecially those in carbon and amino acid metabolism — as
well as genes for substrate transport and energy metabol-
ism occurs. Hence ENV1 is of crucial importance for ad-
justment of metabolism to changing light conditions. So
far we could not identify the reason for the diminished
growth rate of Aenvl under the conditions we used and
hence effects besides metabolic imbalance may influence
the phenotype of this strain. Additionally, it was found
that growth rate does not necessarily correlate with pro-
duction of hydrolytic enzymes in T. reesei ([10] and refer-
ences therein). Despite its slow growth, specific cellulase
activity secreted into the medium by Aenv1 is several fold
increased compared to wild-type (M. Schmoll, unpub-
lished). We conclude that ENV1 is an essential regulator/
signal transmitter for adjustment of growth rate to envir-
onmental conditions in light. This function, however, is
most important on cellulose, as the BIOLOG analysis on
numerous carbon sources (Figure 5) showed that the light
dependent growth defect of Aenvl does not occur on
every carbon source. Therefore, it can be assumed that the
function of ENV1 in light is most critical upon growth on
cellulose, but less important for growth in the presence of
other carbon sources in light.

To complement our transcriptome analysis for growth
on cellulose, we compared the growth patterns on differ-
ent carbon sources in light and darkness for wild-type and
an envl non functional strain [13,22], because of the
strong effect of ENV1 on light dependent gene regulation.
Earlier analysis had indicated that the degradation of dif-
ferent carbon sources is regulated in a light dependent
manner and that ENV1 is involved in the transfer of the
positive light signal in many cases [23]. Our re-evaluation
and cluster analysis showed that especially intermediates
of the oxidoreductive D-galactose and L-arabinose path-
way (Figure 7), which is also important for utilization of
lactose, are among the carbon sources on which growth in
the wild-type and the envl mutant were most clearly
influenced. Due to the ability of T. reesei to grow and ex-
press cellulases on lactose, the degradation of lactose is
very well investigated [28]. In eukaryotes lactose is first
cleaved to glucose and galactose and galactose is further
converted into glucose 6-phosphate by enzymes of the
Leloir pathway. Together with arabinose, also catabolism
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of galactose is involved in utilization of hemicellulose
building blocks [47]. As for the most part, plant cell wall
degrading enzymes are coregulated in 7. reesei [43], this
is in accordance with our finding that the genes encoding
the enzymes operative in these pathways [30] are ex-
pressed upon growth on cellulose. These findings are in
agreement with the hypothesis that T. reesei senses the
presence of plant cell wall material in its environment by
detection of building blocks of cellulose and hemicellu-
lose. Interpretation of the respective signals is subse-
quently adjusted to the requirements in light and darkness
by BLR1, BLR2 and ENV1.

Conclusions

In summary, we showed that BLR1, BLR2 and ENV1 exert
important metabolic functions, not only in light, but also
in darkness. Lack of components of the light signalling
machinery causes considerably increased light responsive-
ness of transcript levels, likely caused by a light-dependent
, positive effect on output pathways. Thereby, the photore-
ceptors BLR1 and BLR2 do not exclusively act as a com-
plex, but additionally have individual targets. This finding
also applies to ENV1, for which the transcriptome pattern
indicates a sizable amount of independent targets in light.
Interestingly, the targets of the light response machinery
also include the catabolic enzymes necessary for degrad-
ation of hemicellulose building blocks i. e. the D-galactose
and pentose pathway and /xrI, which adds a new aspect to
light dependent gene regulation on cellulose. Comparison
with transcript profiles of N. crassa indicates a conserved
adjustment of metabolic pathways in light by photorecep-
tors, but also different regulatory mechanisms applied in
order to achieve this effect.

Methods

Strains and culture conditions

Trichoderma reesei strain QM9414 (ATCC 26921) was
used as the parental strain, and the recombinant strains
Aenvl, Ablrl and Ablr2 [13], were analysed throughout
this study.

For the inoculum, strains were grown on malt extract
medium for 14 days in constant darkness until sporulation
in order to avoid interference of random light pulses. For
cultivation, strains were grown in 1 L shake flasks at 28°C
on a rotary shaker (200 rpm) in Mandels-Andreotti min-
imal medium [62], supplemented with 0.1% (w/v) peptone
to induce germination using 1% (w/v) microcrystalline cel-
lulose (#1402; SERVA, Heidelberg, Germany) as carbon
source. Strains were grown for 72 hours in constant dark-
ness (indicated with DD) or constant light (LL, 25 umol
photons m™ s*; 1800 lux). Harvesting of dark grown cul-
tures was done under safe-red-light (darkroom lamp,
Philips PF712E, red, E27, 15 W). Strains were grown in

Page 15 of 18

two biological replicates and at least two biological repli-
cates were used in the analyses described below.

Nucleic acid isolation and manipulation

For isolation of nucleic acids, the mycelium was filtered,
briefly washed with medium containing no carbon source
and frozen in liquid nitrogen. Total RNA was isolated as
described elsewhere [24]. The concentration was measured
with a Nanodrop ND-1000 spectrophotometer (PEQLAB,
Erlangen, Germany). Total RNA was treated with DNase I
(Thermo Fisher / Fermentas, Vilnius, Lithuania) and puri-
fied using the RNeasy Plant Mini Kit (QIAGEN, Hilden,
Germany). The quality of total RNA was evaluated using
the Experion Automated Electrophoresis System (Bio-Rad,
Hercules, USA) and the Experion RNA StdSens Analysis
Kit (Bio-Rad). The treshold for minimum quality for use in
our experiments was set to RQI > 7.

Quanitative reverse transcription PCR and

microarray analysis

¢DNA for microarray experiments was obtained by
reverse-transcribing five pg of purified total RNA with
RevertAid-H™ First Strand ¢cDNA Synthesis Kit (Thermo
Fisher / Fermentas) using Random Hexamer Primers fol-
lowing the manufacturer’s instructions. cDNA for qRT-
PCR was obtained similarly, except for the use of oligo-d
(T)-primers instead of the Random Hexamer Primers. iQ
SYBR Green supermix (Bio-rad) and the IQ5 ICycler sys-
tem (Bio-rad) were used for qRT-PCR, The open source
software REST (relative expression software tool) was ap-
plied for data analysis and evaluation of significant differ-
ential expression between different strains in light and
darkness [63]. The experiments were done in technical
triplicates from at least two independent biological repli-
cates (for primer sequences and PCA analysis of replicate
datasets see Additional file 2: Table S3 and Figure S2). For
normalization of the qRT-PCR data the ribosomal gene
rpl6e was used, as it shows robust constitutive transcript
levels on cellulose in light and darkness [10,24].

The gene expression full service for custom arrays as pro-
vided by Roche-NimbleGen (Roche-NimbleGen, Madison,
USA) was used for microarray analysis with two biological
replicates. Oligonucleotide arrays were used as described
in [10]. Data analyzed in this study are deposited at
NCBI Gene Expression Omnibus with accession numbers
GSE36448, GSM683732, 683733, 683734 and 683735.

Microarray data analysis was done by using PARTEK
Genomics Suite 6.6 (PARTEK Inc., St. Louis, Missouri,
USA), which uses ANOVA for evaluation of statistically
significant differentially expressed genes. As threshold for
the significant regulation of a gene a twofold transcrip-
tional difference between light and darkness (i.e. light re-
sponsiveness) or between a mutant strain and the wildtype
(i.e. targets) was applied. For significance the combined
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p-value for significant regulation due to different light con-
ditions and different strains was set to <0.1. No adjustment
has been made for multiple hypothesis testing and p-values
reported are suggestive of an association. Hierarchical clus-
tering was done using the open source software HCE 3.5
with default settings [64]; http://www.cs.umd.edu/hcil/hce).
Genomic cluster analysis was performed using the open
source software REEF [65,66]

Results were analyzed using the community annotation
including GO (Gene Ontology) classifications from the T.
reesei genome database v2.0 provided by JGI (http://gen-
ome.jgi-psf.org/Trire2/Trire2.home.html) and revised an-
notations from [10].

Additional files

Additional file 1: Light responsiveness of transcript abundance as
influenced by BLR1, BLR2 or ENV1. Genes at least two-fold up- or
downregulated in light compared to darkness in QM9414 and deletion
strains Ablr1, Ablr2 and Aenv.

Additional file 2: Regulation by ENV1 in darkness. Genes specifically
upregulated in AenvT in darkness as revealed by hierarchical cluster analysis
of transcript profiles in QM9414 and deletion strains AblrT, Ablr2 and Aenvi.

Additional file 3: Supporting information. Figure S1. Co-regulation of
cel6a/cbh2 (data obtained from microarrays) and cel7a/cbh1 (data obtained
from gPCR) in QM9414 and Ablr1, Ablr2, Aenvi, Agnbl, AgngT and AphipT.
Table S1. Regulation of glycoside hydrolase genes in QM19414 and the
deletion strains Aenv1, AblrT and Ablr2 and comparison with regulations in
Aphlpl, AgnbT1 and Agngl. Table S2. Genes coregulated with cbh2/celéa in
QOM9414 and the deletion strains Aenv1, Ablrl and Ablr2. Table S3.
Sequences of oligonucleotides used in this study.

Additional file 4: Regulatory targets of ENV1. Genes at least two-fold
up- or downregulated in Aenvl compared to QM9414 in light (LL) and
darkness (DD).

Additional file 5: Regulatory targets of BLR1. Genes at least two-fold
up- or downregulated in Ablr1 compared to QM9414 in light (LL) and
darkness (DD).

Additional file 6: Regulatory targets of BLR2. Genes at least two-fold
up- or downregulated in Ablr2 compared to QM9414 in light (LL) and
darkness (DD).

Additional file 7: Overlapping targets of ENV1, BLR1 and BLR2.
Genes at least two-fold up- or downregulated in Aenv1, Ablr1 and Ablr2
compared to QM9414 in light (LL) and darkness (DD). For an overview
see Figure 4, which shows the number of genes comprised in each
sheet of the file.

Additional file 8: Targets of BLR1 and BLR2 (BLR complex) versus
ENV1. Genes at least two-fold downregulated in Ablr1 and Ablr2 compared
to QM9414 in light but upregulated in AenvT and genes at least two-fold
up- or downregulated in AblrT and Ablr2 compared to QM9414 but not in
Aenv1 in light and darkness. For an overview see Figure 4, which shows the
number of genes comprised in each sheet of the file.

Additional file 9: Individual targets of ENV1. Genes at least two-fold
differentially regulated in Aenvi compared to QM9414 in light and darkness,
which are not targets of BLR1 or BLR2. For an overview see Figure 4, which
shows the number of genes comprised in each sheet of the file.

Additional file 10: Genes consistently regulated in N. crassa and T.
reesei in one or more photoreceptor mutant strains upon growth

on cellulose in light.
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