CORRECTION

Open Access

Correction: cDNA-AFLP analysis reveals differential gene expression in compatible interaction of wheat challenged with Puccinia striiformis f. sp. tritici

Xiaojie Wang¹, Chunlei Tang¹, Gang Zhang¹, Yingchun Li¹, Chenfang Wang¹, Bo Liu¹, Zhipeng Qu¹, Jie Zhao¹, Qingmei Han¹, Lili Huang¹, Xianming Chen² and Zhensheng Kang^{1*}

Text

After the publication of this work [1], we became aware of the fact that the GenBank accessions listed in column 2 of Table 1 and Additional File 1 are incorrect. The EF# accession numbers should be prefixed with FF# and not with EF#. The corrected Table 1 is provided below. The corrected additional file can be accessed via the additional file contained in this article.

* Correspondence: kangzs@nwsuaf.edu.cn

¹College of Plant Protection and Shaanxi Key Laboratory of Molecular

Biology for Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, PR China

Full list of author information is available at the end of the article

© 2013 Wang et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

TDF	Accession No.	Size (bp)	P graminis f. sp. tritici clones	E-value
PST_72-1-2b	FF339818	235	PGTG_02587 Glycine dehydrogenase	7e-15
PST_C40	FF339683	311	PGTG_04973 Fructose-1,6-bisphosphatase	1e-28
PST_C37 ^a	FF339680	294	PGTG_01121 UDP-glucuronic acid decarboxylase	3e-22
PST_C38	FF339681	265	PGTG_15605 ATP synthase subunit alpha	3e-15
PST_C87	FF339730	237	PGTG_04870 ATP synthase subunit beta	1e-15
PST_C59 ^a	FF339702	643	PGTG_06894 NADH-quinone oxidoreductase chain 3	3e-74
PST_315-3ª	FF339797	407	PGTG_16250 possible glycosyl transferase	1e-16
PST_84-3b ^a	FF339823	410	PGTG_13068 Conserved hypothetical protein	7e-25
PST_C81	FF339724	318	PGTG_08200 Vesicular-fusion protein SEC17	3e-14
PST_C16	FF339660	366	PGTG_14848 Conserved hypothetical protein	2e-09
PST_C88	FF339731	216	PGTG_14274 Plasma membrane proteolipid 3	2e-12
PST_68b-1	FF339813	259	PGTG_18059 NADH-quinone oxidoreductase	4e-06
PST_68b-3ª	FF339814	257	PGTG_18059 NADH-quinone oxidoreductase	7e-16
PST_C101 ^a	FF339744	586	PGTG_07295 Conserved hypothetical protein	1e-21
PST_315-4 ^a	FF339798	404	PGTG_10913 Predicted protein	1e-21
PST_C86ª	FF339729	436	PGTG_15782 Hypothetical protein	8e-32
PST_C83ª	FF339726	414	PGTG_02587 Glycine dehydrogenase	7e-33
PST_C73	FF339716	249	PGTG_13068 Conserved hypothetical protein	2e-24

Table 1 Transcript derived fragments (TDFs) from wheat leaves infected by *Puccinia striiformis* f. sp. *tritici* with homologies to genes in *P. araminis* f. sp. *tritici*

^a These genes are confirmed to be of stripe rust fungus origin by sequencing. Wang *et al. BMC Genomics* 2009 **10**:289 doi:10.1186/1471-2164-10-289.

Additional file

Additional file 1: Transcript derived fragments (TDFs) from *Puccinia striiformis* f. sp. *tritici* infected wheat leaves with altered expression patterns and their closest matches in the GenBank database.

Author details

¹College of Plant Protection and Shaanxi Key Laboratory of Molecular Biology for Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, PR China. ²USDA-ARS and Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430, USA.

Received: 2 October 2013 Accepted: 2 October 2013 Published: 7 October 2013

Reference

 Wang X, Tang C, Zhang G, Li Y, Wang C, Liu B, Qu Z, Zhao J, Han Q, Huang L, Chen X, Kang Z: CDNA-AFLP analysis reveals differential gene expression in compatible interaction of wheat challenged with Puccinia striiformis f. sp. tritici. *BMC Genomics* 2009, 10:289.

doi:10.1186/1471-2164-14-671

Cite this article as: Wang *et al.*: Correction: cDNA-AFLP analysis reveals differential gene expression in compatible interaction of wheat challenged with Puccinia striiformis f. sp. tritici. *BMC Genomics* 2013 14:671.

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

Submit your manuscript at www.biomedcentral.com/submit

BioMed Central