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Abstract

primate models of disease.

macaques, Cynomolgus macaques

Background: G-protein coupled receptors (GPCRs) play an inordinately large role in human health. Variation in the
genes that encode these receptors is associated with numerous disorders across the entire spectrum of disease.
GPCRs also represent the single largest class of drug targets and associated pharmacogenetic effects are
modulated, in part, by polymorphisms. Recently, non-human primate models have been developed focusing on
naturally-occurring, functionally-parallel polymorphisms in candidate genes. This work aims to extend those studies
broadly across the roughly 377 non-olfactory GPCRs. Initial efforts include resequencing 44 Indian-origin rhesus
macaques (Macaca mulatta), 20 Chinese-origin rhesus macaques, and 32 cynomolgus macaques (M. fascicularis).

Results: Using the Agilent target enrichment system, capture baits were designed for GPCRs off the human and
rhesus exonic sequence. Using next generation sequencing technologies, nearly 25,000 SNPs were identified in
coding sequences including over 14,000 non-synonymous and more than 9,500 synonymous protein-coding SNPs.
As expected, regions showing the least evolutionary constraint show greater rates of polymorphism and greater
numbers of higher frequency polymorphisms. While the vast majority of these SNPs are singletons, roughly 1,750
non-synonymous and 2,900 synonymous SNPs were found in multiple individuals.

Conclusions: In all three populations, polymorphism and divergence is highly concentrated in N-terminal and
C-terminal domains and the third intracellular loop region of GPCRs, regions critical to ligand-binding and signaling.
SNP frequencies in macaques follow a similar pattern of divergence from humans and new polymorphisms in
primates have been identified that may parallel those seen in humans, helping to establish better non-human

Keywords: Resequencing, Single-nucleotide polymorphism, Indian-origin rhesus macaques, Chinese-origin rhesus

Background

Animal research has provided the scientific community
with extraordinary advances in medicine from the devel-
opment of vaccines to the prevention and treatment of
diseases. Unfortunately at present 85% of novel thera-
peutics fail in preclinical and early phase clinical trials
and of the therapies that reach late phase trials an add-
itional 50% fall short due to an inability to demonstrate
efficacy and safety [1]. Reasons for these shortcomings
include low patient recruitment, poor study design, and
ineffective use of animal models [1,2]. Coupled with
soaring drug development costs including both financial
commitments and in years of labor, these shortfalls
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necessitate a biological and economic need for fun-
damental changes in the bench to bedside process.
Furthermore, with advances in genome sequencing tech-
nologies there is a growing awareness that animal
models fall short in terms of predictive power. A recent
study comparing the genomic responses of human in-
flammatory diseases to mouse models, for example, sug-
gested that mice poorly mimic the human genetic
response [3]. Continued progress in the understanding
of human disease pathologies and the development of
safe and effective therapies demands a more comprehen-
sive understanding of animals in preclinical research.
Although greater numbers of rodents are used in bio-
medical research, non-human primates are the gold
standard of animal models in preclinical research offer-
ing advantages which include greater similarities in
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genome organization and sequence, behavior, and physi-
ology [4]. The rhesus (Macaca mulatta) and cynomolgus
(M. fascicularis) macaque are two of the most com-
monly used non-human primate species in research la-
boratories, sharing ~93.5% of their genome with humans
[5]. In academic research non-human primate use is
most common in the fields of microbiology (HIV/AIDS),
biochemistry/pharmacology, and neuroscience [6]. Be-
cause of similarities in physiology and the central ner-
vous system, non-human primates, for example, are
crucial in stem cell-based regenerative medicine to en-
sure the efficacy and long-term safety of autologous cell
therapies, which is not possible in rodents [7]. In indus-
try settings, non-human primates are important to drug
development and are commonly found in drug metabol-
ism and toxicology studies [8,9]. Despite these distinct
advantages, drawbacks to non-human primates include
greater genetic heterogeneity and higher costs which
tend to lead, in turn, to small samples sizes [4]. Ultim-
ately these disadvantages contribute to the limited use of
non-human primates in biomedical research, particularly
in academic settings. This necessitates the need to
optimize study design through careful animal selection,
which can only be accomplished by gaining a more thor-
ough understanding of the genetic variation inherent in
non-human primates and more specifically the func-
tional effects relative to similar variation in humans.

Comparative genetic studies between non-human pri-
mates and humans have increased from early candidate
gene studies through whole genomes, with limited but
significant research now focusing on variation within
species. Candidate polymorphism studies in non-human
primates, for example, have revealed variation in the
dopamine transporter (DAT) [10,11], tryptophan hydroxy-
lase 2 (TPH2) [12,13], the serotonin transporter (SLC6A4)
[14-18], monoamine oxidase A (MAOA) [17,19], brain-
derived neurotrophic factor (BDNF) [20], neuropeptide Y
(NPY) [21], and corticotropin-releasing factor (CRH) [22]
that parallel and functionally mimic variation found in
humans. In addition, not only are similar effects seen
when these polymorphisms are compared in vitro but
similar associations to organismal phenotypes also persist
across human and non-human primate species.

G-protein coupled receptors (GPCRs) comprise the lar-
gest family of cell surface receptors. Though they share a
similar seven transmembrane domain structural hom-
ology, they are extraordinarily diverse with the capacity to
transduce messages triggered by ligands as varied as
photons, organic odorants, nucleotides, nucleosides, pep-
tides, lipids and proteins [23]. Consequently, excluding the
olfactory subgenome, which represents a distinct class of
GPCRs with targeted function [24,25], this receptor su-
perfamily represents the largest group of druggable tar-
gets [26] comprising >50% of pharmacotherapies on the
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market today. Interestingly, only a third of these GPCRs
have been explored for drug development portending a fu-
ture active area of research for the discovery of novel ther-
apeutics [26,27]. Polymorphisms in GPCRs however can
affect drug efficacy through altered ligand binding, recep-
tor activation/inactivation, and/or varied signaling cas-
cades. Characterizing non-human primate variation in
GPCRs can therefore complement the study of disease
and pharmacotherapies whilst refining the translational
capacity of non-human primates in preclinical research.

Here the exonic sequence of non-olfactory GPCRs in
44 Indian-origin rhesus, 20 Chinese-origin rhesus, and
32 cynomolgus macaques was resequenced to gain a bet-
ter understanding of the natural variation in GPCRs of
common non-human primate models. Polymorphisms
were then compared to fixed species differences and
similar variation in humans. Predicted and known
protein structural features were also used to better
contextualize the changes and their likely functional ef-
fects. Comprehensive polymorphism data in non-human
primates not only will facilitate characterization of func-
tional variation at important drug targets and support a
better understanding of disease but will also aid in in-
formed a priori selection of animals in preclinical stud-
ies and increased translational validity of the non-human
primate models ultimately leading to more safe and ef-
fective pharmacotherapies and treatments.

Results and discussion

Over 700 million reads were generated representing over
35 billion base pairs of sequence from 96 animals. The
number of reads per animal ranged from approximately
1 million to 10 million with a median of just over 6.5
million. These reads were aligned to the rhesus genome
with the percentage of reads mapped confidently ranging
from a minimum of 91.8% to a maximum 95.6%, with a
median of 94.3%. Of the 377 GPCRs targeted, 354 had
complete coverage across the gene. For the remainder,
most had localized failures, often a single missing exon or
portion of an exon, due to poor or inadequate annotation
in the rhesus genome. It is probable that RNA-based ap-
proaches or improved annotation would ameliorate many
of the failures. While there were 8 animals for which more
than 20% of regions were not called, presumably due to
suboptimal DNA quality or some other manual error in
the processing stages, the median coverage for individual
animals was 99.75%.

Over 100,000 SNPs were identified across all regions
and populations (Figure 1, Additional file 1: Table S1).
Although the DNA capture targeted exons, a large pro-
portion of adjacent introns, upstream, and downstream
flanking regions were also resequenced. Within exons,
coding regions were the primary focus, though polymor-
phisms were also found in the 5° and 3’ untranslated
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Figure 1 SNP annotation by category. Singletons are light and SNPs found in multiple individuals are dark. Line graph shows number of
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regions (UTRs) in large numbers. It is worth noting, how-
ever, that 3" UTRs, in particular, may be poorly annotated
in the rhesus genome and difficult to comprehensively in-
terrogate. In coding sequence, nearly 25,000 coding SNPs
were identified including over 14,000 non-synonymous
and over 9,500 synonymous SNPs. As expected, regions
showing the least evolutionary constraint show greater
rates of polymorphism and greater numbers of higher fre-
quency polymorphisms. Across non-coding regions, with
the notable exception of the 5" UTR, singletons represent
roughly 60% of all polymorphisms. Synonymous polymor-
phisms within coding regions are also at 61.2%. In com-
parison, non-synonymous polymorphisms show a much
greater proportion of singletons, 81.6%, consistent with a
slightly deleterious genetic load. The 5" UTR shows an
intermediate proportion of singletons, 67.8%, perhaps
reflective of greater constraint due to a higher density of
regulatory elements.

While much fewer, frameshift and nonsense (stop
gain) mutations in coding sequence were also observed.

For the most part these were rare events (Table 1). 83%
(38/47) of frameshift mutations were observed in a sin-
gle individual and nearly 96% (1,049/1,098) of nonsense
mutation were singletons. Among common mutations
(defined herein as mutations observed in multiple

Table 1 Frameshift and stop gain mutations

Frameshift Stop gain
Singleton 39 1049

Common 8 49
Chinese Rhesus 1 6
Indian Rhesus 1 16
Cynomolgus 0 11
Chinese-Indian 2 4
Chinese-Cynomolgus 1 0
Indian-Cynomolgus 0 12
All 3 0

Common alleles defined as those observed in multiple individuals.



Goswami et al. BMC Genomics 2013, 14:703
http://www.biomedcentral.com/1471-2164/14/703

Table 2 High frequency frameshift and stop gain mutations

Page 4 of 14

Chinese rhesus Indian rhesus Cynomolgus
Position Reference Allele Allele Gene CDS n X Y n X Y n X Y
allele X Y consequence
chr1:112314147 - - g CELSR2 Frameshift 21 762% 238% 35 800% 200% 30 650% @ 35.0%
chr10:90409612 g g a CELSR1 Stop gain 20 700% 300% 30 767% 233% 29 1000% 0.0%
chr1:84773138 a a - LPHN2 Frameshift 20 775% @ 225% 16 844% 156% 29 845% 155%
chr3:196105681 C C t VIPR2 Stop gain 21 1000% 00% 33 1000% 00% 30 767% 233%
chr14:53770846 C C t MRGPRX3 Stop gain 21 952%  48% 31 823% 177% 30 1000%  0.0%
chr10:90386626 g g a CELSR1 Stop gain 20 1000% 00% 26 1000% 00% 29 776% 224%
chr13:124076459 c @ t HTR5A Stop gain 14 1000% 0.0% 13 1000% 00% 20 70.0%  30.0%
chr1:9594364 C C t TASTR1 Stop gain 21 1000% 00% 33 1000% 00% 29 845% 155%
chr10:90412270 g g a CELSR1 Stop gain 21 1000% 00% 30 1000% 00% 29 845% 155%
chr3:95248643 c C t GHRHR Stop gain 17 794%  206% 21 1000% 00% 28 1000% 0.0%
chr10:90411842 g g a CELSR1 Stop gain 21 857% 143% 28 982%  18% 29 1000% 0.0%
chr10:90385309 g g a CELSR1 Stop gain 20 850% 150% 24 1000% 00% 29 1000% 00%
chr14:86696825 t t - GRM5 Frameshift 19 974% 26% 27 98.1% 19% 28  92.9% 7.1%

individuals) private alleles predominated. One note of
caution, however, in that annotation difficulties within
the rhesus genome may have overinflated these num-
bers. Because of the relative likelihood that these muta-
tion will result in functional effects, often creating
natural knockouts, particularly common mutations were
further examined (Table 2). Of note, is that five of the
thirteen most common of these variants all occur in the
CELSRI gene, notable for its extensive N-terminal do-
main. This and other variation offers fertile ground for
potential animal model development going forward.

Population demography

Cynomolgus and rhesus macaques, despite being separate
species, share polymorphisms [28] and may show some
evidence of natural admixture [29]. Both cynomolgus
macaques and rhesus macaques are widely distributed
across southeast Asia and cryptic population substructure
has been a pervasive problem in biomedical research. In
Indian- and Chinese-origin rhesus differences in suscepti-
bility and progression of simian immunodeficiency virus
(SIV) as a model of HIV/AIDS are the most recognized
confounds in research laboratories [30,31] though other
behavioral and physiological differences also certainly exist
[32-37]. Using STRUCTURE ([38], rhesus and cynomolgus
macaques were readily separated (Figure 2A). It is perhaps
noteworthy that those animals that are less unambiguous
are those for which fewer reads were generated and had
lower levels of coverage across genes. When only rhesus
macaques were considered (Figure 2B) the Indian and
Chinese subpopulations readily separated, though three
putative Indian-origin animals showed significant propor-
tions of Chinese admixture, one a 50/50 hybrid and two

75/25 hybrids. During retrospective investigation these an-
imals were confirmed as known hybrids of the inferred
proportions. Indian-origin rhesus macaques were sourced
from three locations (New England Primate Research Cen-
ter, Oregon National Primate Research Center, Caribbean
Primate Research Center) but no genetic subdivision was
observed. With regards to the cynomolgus macaques,
although all of the individuals used in this study were de-
rived from Mauritius stock, unexpected cryptic substruc-
ture was observed (Figure 2C). This substructure remains
unexplained though recent published studies have indi-
cated similar uncertainty as to the genetic homogeneity of
the population [39]. In any case, further study and consid-
eration is warranted.

The demographic history of the subgroups can be con-
firmed by comparing the allele frequency spectra. As
predicted by population genetics theory, the vast majority
of these SNPs [8] are singletons. In fact, singletons are
overrepresented in all three populations (counting the
cynomolgus macaques as a single panmictic population)
suggestive of recent population expansion (Figure 3A-B).
Again, however, cryptic population substructure in Maur-
itian cynomolgus macaques is supported by an excess of
high frequency alleles with a corresponding decline in
mid-frequency alleles. While the two populations of rhesus
macaques behave similarly, the allele frequency spectrum
of the Chinese population appears more similar to that
expected under neutrality while the Indian population
appears to have undergone a more recent population ex-
pansion. These findings are contrary to conventional un-
derstandings of the population history of rhesus macaques
and to previous genetic studies [40]. It is possible that this
discrepancy can be explained through greater artificial
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Figure 2 STRUCTURE analyses of populations using GPCR polymorphisms. Each individual is represented by a column and inferred ancestry
is shown by color. A., k=2 analysis separating rhesus from cynomolgus macaques. B., k=2 analysis separating Chinese- and Indian-origin rhesus
macaques, note the hybrids. C., k=2 analysis on cynomolgus macaques identifies what appears to be cryptic substructure.

selection by humans as the Indian rhesus macaques have
been bred in biomedical research facilities under strong
pressures to avoid inbreeding and to maximize genetic di-
versity, while Chinese populations are more recently de-
rived from wild caught animals. It is also possible that
cryptic differential natural selective regimes otherwise
exist between the populations. As expected, however, a
greater percentage of higher frequency non-synonymous
SNPs are lost in all populations, likely representing selec-
tion against deleterious alleles.

These findings extend when population specificity of
SNPs is considered (Figure 4). Focusing exclusively on
SNPs found in multiple individuals (non-singletons) the
percentage of SNPs found in both Indian and Chinese rhe-
sus populations is roughly one third with synonymous
SNPs only slightly more likely to be found in both popula-
tions compared to non-synonymous SNPs (37.0% and
31.8% respectively). But while synonymous SNPs are more
likely to be private to Indian-origin animals (37.9% com-
pared to 25.2% Chinese), non-synonymous SNPs are more
often private to Chinese-origin rhesus (41.5% compared to
26.6% Indian). If non-synonymous SNPs are considered to
be under greater selective constraint, then these findings

are suggestive of either greater constraint in Indian-origin
animals (seemingly unlikely) or a recent population ex-
pansion in these Indian animals when compared to the
Chinese animals. This latter finding is consistent with the
allele frequency spectrum data though shares the same ca-
veats with regard to human selective breeding.

Previous studies have demonstrated that cynomolgus
macaques share polymorphism with rhesus macaques
[28,41]. Using control regions under selective neutrality
or presumed constant selective pressures across the spe-
cies, shared and private polymorphism was used to es-
tablish a divergence time of roughly 1.3 MYA and a
consistent, if asymmetric, gene flow [42]. Studies focus-
ing on the cytochrome P450 genes, important modula-
tors of xenobiotic metabolism, have shown a relative
increase in private polymorphism thought to perhaps
represent the effects of differential selective regimes
[43]. Interestingly, in GPCRs a greater percentage of
non-synonymous SNPs (20.2%) are shared between the
species than synonymous SNPs (11.3%). This distinction
is further muddied, however, when the two rhesus sub-
populations are taken into account. Among synonymous
SNPs the majority of shared polymorphisms (59.5%) are
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Figure 3 Frequency distribution of polymorphisms in the three populations. A. Synonymous changes. B. Non-synonymous.
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shared among cynomolgus macaques and both rhesus
subpopulations, compared to only 23.5% of non-
synonymous SNPs. The preponderance of shared syn-
onymous SNPs is consistent with previous, smaller-scale,
findings on non-coding SNPs [28] and is roughly con-
sistent with expectations under neutrality. The pre-
ponderance and distribution of non-synonymous SNPs,
however, are perhaps indicative of balanced selection.

Much of these findings have concentrated on general de-
scriptions of the polymorphism profile of the macaque
populations. While these results have focused on protein-
coding regions more likely under negative selective pres-
sures than previous studies of presumably, or more likely,
neutral variation, the results have by and large been the
same. To this point, the most notable finding is that non-
synonymous polymorphisms seem more likely to be shared
between populations than synonymous variation. While in-
formative, general demographic understandings are better
approached through neutral variation and that was not the
primary purpose here. Rather, the focus of this study was
in identifying and understanding likely functionally rele-
vant variation aimed at improving the usage of macaques
as biomedical research models. The focus on GPCRs, the
most common of druggable targets, belies this goal.

Distribution of variation

To understand the variation most likely to be functionally
relevant in the GPCRs an initial focus was on polymorph-
ism location with regards to secondary structure. Macaque
sequences derived from existing annotation coupled with
refinements from the consensus resequencing results were
aligned with human sequences. Secondary structures for
human proteins were pulled from the UniProt database.

The consensus macaque sequences were aligned and fixed
divergent sites between macaque and humans were
mapped onto secondary sequences. In accordance with ex-
pectations, fixed synonymous mutations were distributed
homogenously across the protein without regard for sec-
ondary structure. Non-synonymous differences, however,
were non-randomly distributed across the secondary
structure. Transmembrane domains were significantly
more conserved than either intracellular or extracellular
domains. N-terminal and C-terminal domains were the
most divergent between taxa and the first and second
intracellular domains were the most conserved of the non-
transmembrane domains. These findings are consistent
with understandings of GPCR structure and function
given that transmembrane domains are expected to be
under strong functional constraint to maintain secondary
structure and hydrophobicity. Extracellular domains medi-
ate ligand binding with functional residues largely spread
across the three loops. Intracellular signaling domains are
largely mediated through either the C-terminal domain or
the third intracellular loop depending on the nature of the
particular GPCR and, therefore, divergence in these do-
mains suggests an evolutionary lability to these functions
and drives a need for improved understanding.

As with fixed differences, synonymous SNPs in each of
the populations are distributed evenly and consistently
across the protein. This distribution, driven by neutral
mutation rate and largely unaffected by selection, is also
seen in the distribution of singletons across the second-
ary structure (Figure 5A). In comparison, SNPs that are
found in multiple individuals show distribution patterns
across the proteins more similar to those seen in diver-
gence with human (Figure 5B). This pattern also holds
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for human polymorphisms when the cutoff for common
SNPs is arbitrarily placed at 1%. Again it is supposed
that rare SNPs include many slightly deleterious muta-
tions that are destined to be selected out of the popula-
tion, while more common polymorphisms show patterns
consistent with the effects of selective forces.

This can further be explored through the use of func-
tional prediction algorithms. Three unique algorithms
were used to classify each of the macaque non-
synonymous changes: PolyPhen-2 [44], SIFT [45], and
EvoD [46]. A consensus of these was used to classify non-
synonymous SNPs as “ambiguous”, “deleterious”, “likely
deleterious”, “likely neutral”, or “neutral” after established
methods [47]. Regardless of the frequency of the SNPs,
singletons or multiples, the percent identified as damaging
was statistically the same (roughly 55%). There was also
no difference in the proportion of damaging SNPs within
the various populations and subpopulations. This also did
not significantly vary based on the secondary structure do-
main within the protein or on their distribution between
subpopulations (Additional file 2: Figure S1 and Additional
file 3: Figure S2).

These findings run contrary to what is seen in
humans. In humans, as one would predict if these pre-
dicted deleterious SNPs are truly damaging, the more
common the SNP the less likely it is to be classified as
deleterious [47]. Here not only is there not a correlation
between frequency and likelihood of being damaging,
but there also seems to be no correlation with secondary
structure domain. This is despite the fact that there does
seem to be a correlation between non-synonymous SNP
frequency and domain as predicted by our conceptual un-
derstandings of GPCR structure and function. There are
several possible explanations for this observed pheno-
menon. The first and more intriguing is that SNPs being
classified as deleterious are perhaps more likely to change

Table 3 Recurrent mutations
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protein function but not necessarily in a selectively ne-
gative way. Some portion of these SNPs could thus be
beneficial and driven to higher frequencies. More likely,
however, are much more mundane explanations that these
algorithms simply are not designed to work well across
species and do not or that the frequencies of alleles ob-
served in these populations are the result of human select-
ive breeding forces in biomedical research colonies and
not representative of natural selective effects.

Functional variation
Regardless, the primary motivation for this study was to
understand how functional variation in macaque GPCRs
might be used to better understand evolutionary adapta-
tion and the role of macaques as biomedical research
models. One question in particular is how variation in
human GPCRs might compare to variation in their
macaque orthologs and whether functional effects in
humans could be better understood or possibly even
modeled in macaques. To investigate this, human poly-
morphisms with frequencies greater than one-half of
one percent (0.5%) were drawn from dbSNP. While arbi-
trary, these criteria ensured the validity of the SNP and
at least a modicum of data. It is important to note, how-
ever, that human SNPs were not chosen by frequencies
in specific subpopulations and there are notable issues
of ascertainment bias still present in the human data set.
Human SNPs were then mapped to secondary structures
following the same methodologies of the macaque poly-
morphisms and the two data sets were compared.
Somewhat unexpectedly, though perhaps not in retro-
spect, nine recurrent mutations (Table 3) were identified.
These mutations are present in both humans and ma-
caques. Only SNPs present in multiple macaque animals
were included and the animals sharing these “human”
alleles were different so it is reasonably certain that they

Human Macaque
Gene AA AA1 AA2 Consensus GRCh37.p5 dbSNP Human rheMac2 Chinese Indian Fascicularis

position prediction MAF MAF MAF MAF

FZD6 664 A E Deleterious  chr8:104343607 1512549394 0.02 chr8:105850125 0.00 0.00 0.10

GPR19 116 \% | Likely chr12:12815037  rs41276680 0.01 chr11:13015710 0.02 0.00 022
deleterious

GPR44 204 vV A Likely neutral ~ chr11:60620585 152467642 0.01 chr14:13261124 0.07 0.02 0.83

GPR78 342 R H Deleterious chr4:8589023 rs9685931 0.1 chr5:197204 0.05 0.00 0.00

GPR98 194 P H Deleterious  chr5:89920969  rs61745498 0.02 chr6:86859930 0.00 0.05 0.00

GPR146 266 \% M Deleterious chr7:1097947 1s55677825 0.01 chr3:38980764 0.14 0.00 0.00

GPR153 209 R H Neutral chr1:6313938 rs12735670 031 chr1:9260385 0.10 0.00 0.00

GPR156 798 R H  Likely neutral  chr3:119885931  rs115365859 0.01 chr2:40203636 0.00 0.00 0.14

MRGPRX3 198 L R Likely chr11:18159342  rs28482781 0.02 chr14:53770726 0.07 0.00 0.00
deleterious

AA: Amino acid, MAF: Minor allele frequency.



Table 4 Shared amino acid mutations

Human Macaque

Gene AA AA1 AA2 Consensus GRCh37.p5 dbSNP Human  AA1 AA2 Consensus rheMac2 Chinese Indian Fascicularis
Position Prediction MAF Prediction MAF MAF MAF
DRD5 330 p Q Likely Neutral chr4:9784642 151800762 0.03 p L Neutral chr5:4664928 012 0.00 0.00
GPR78 318 R C Likely Neutral chr4:8588950  rs61746144 0.01 R H Neutral chr5:197276 0.00 0.00 017
HTR1E 208 A T Likely Deleterious  chr6:87725674  rs3828741 0.01 A S Likely Neutral chr4:82975291 0.00 0.03 0.00
MRGPRX1 55 R L Deleterious chr11:18956168 1555954376 0.01 R @ Deleterious chr14:52926663 0.00 0.24 0.00
P2RY4 168 \ M Likely Neutral chrxX:69478973  rs1152186 0.05 \Y A Likely Neutral chrX:69226991 007 0.00 0.00

AA: Amino acid; MAF: Minor allele frequency.
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represent real macaque SNPs. These polymorphisms do
not represent true trans-species polymorphisms of a
shared origin, but rather are recurrent mutations at the
same position. It remains unclear if this is due simply to
chance or if there are similar underlying evolutionary pres-
sures. While there is neither functional information nor
phenotypic associations with these SNPs in humans, it is
perhaps interesting to note that consensus predications
from PolyPhen-2, SIFT, and EvoD show six of nine as
“deleterious” or “likely deleterious”. In comparison there
are only five instances where the same ancestral amino
acid was mutated to two different amino acids in human
and macaques (Table 4). In these cases, the majority of
changes are categorized as neutral, though in MRGPRX1
both human, Arg55Leu, and macaque, Arg55Cys, poly-
morphisms are predicted to be deleterious.

In total, 128 instances were identified in which “com-
mon” human variation was found in the same gene and
protein secondary structure domain as “common” ma-
caque variation (Additional file 4: Table S2). These
spanned 99 distinct genes or roughly one-third of the
GPCRs resequenced in this study. Although the majority
of these were located in either the N-terminal (38%) or
C-terminal (29%) domains, shared variation was found in
every secondary structure domain. The third intercellular
domain, often associated with the signaling functions of
the GPCRs, had the third greatest amount of shared vari-
ation (11%). Further, more than half of all SNPs identified
this way in macaques are predicted to be “deleterious” or
“likely deleterious”.

Of these, it is useful to highlight some specific exam-
ples. The known parallel functional variation between
human and rhesus macaques in OPRM1 is recapitulated
here. In the N-terminal domain of the mu-opioid recep-
tor, two human polymorphisms C17T (Ala6Val) and
A118G (Asn40Asp) show parallel in vitro functional ef-
fects with the Indian rhesus macaque C77G (Pro26Arg)
mutation [48,49] as well as parallel phenotypic associa-
tions with alcohol consumption and response to naltrex-
one [50-52]. This parallel function has already proven to
be a useful tool in elucidating the role of the mu-opioid
receptor in alcoholism. Prior to the rhesus macaque
studies, human work had been inconclusive despite a
relatively large number of studies [53,54]. This variability
across studies, inherent in human research due to gen-
etic and environmental heterogeneity, could be quickly
and simply teased apart using carefully selected and
managed non-human primate models.

In another example, early studies have tentatively
linked human variation in ADRAIA with complex pain
and fibromyalgia [55,56] and specific variation in the
third intracellular domain, Gly247Arg, with receptor
pharmacology [57]. While not identical, one common
polymorphism is found in the third intracellular loop in
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macaques, Arg266Leu, with predicted deleterious effects.
Two polymorphisms are also found in the C-terminal
domain, Lys349Arg and Arg405His, where associations
have also been seen in humans.

Several other human variants with putative associa-
tions also have possible homologs in macaques. In the
oxytocin receptor (OXTR), Ala218Thr has been associ-
ated with emotional empathy in humans [58], while
Ser224Cys, in the same receptor domain, is a common
polymorphism in Chinese-origin rhesus and cynomolgus
macaques. Somatostatin receptor 4 (SSTR4) variation,
Phe327Ser, has been associated with response to co-
lorectal cancer treatment in humans [59], and rhesus
macaques and cynomolgus macaques harbor common
polymorphisms Ala357Asp and Met360Val, respectively.
Variation in follicle-stimulating hormone receptor (FSHR)
and histamine receptor H4 (HRH4) have been associated
with polycystic ovarian syndrome [60] and breast cancer
[61] respectively and likewise similar polymorphisms may
be observed in macaques.

These examples only scratch the surface with the focus
here on common human variation, not pathogenic vari-
ation. It is possible that there are additional examples of
pathogenic variation that is modeled in macaques or hu-
man variation that simply has yet to be recognized as
pathogenic due to the vagaries of human research. Com-
mon macaque polymorphism may illuminate the func-
tional relevance of human variation even in the absence
of known human associations. Variation found in the
same genes and secondary structures in humans and
macaques offer potentially informative targets for studies
of functionally similar, though evolutionarily distinct,
variation across species and for the improvement of un-
derstanding the molecular underpinnings of disease.

Conclusions
Drug discovery and translational medicine benefit from
strong animal models. For too long poor animal models
have led researchers down the wrong paths, leading, per-
haps, to novel understandings and interesting results,
but not to improved treatments in humans that have
been promised. In part, the scientific community has
been playing the cards it was dealt, too quick to believe
that shared phenotypes implied a shared molecular basis.
Now, however, the revolution in sequencing technologies
allows us to look closer at the molecular basis of disease
than has ever been possible and, in doing so, we can
more easily identify when shared phenotypes do share
molecular bases and when they do not. Moreover, we can
identify where similar molecular and genetic foundations
exist, but do not lead to the same phenotypic effects.
Non-human primates have long been known to share
genetic and physiological similarities with humans. This
has made them the gold standard for preclinical
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research, though one for which it has not always been
clear if the benefits outweighed the price. By better un-
derstanding the genetics of non-human primates we lay
clear the benefits, demonstrating where genetic similar-
ities exist with humans and where non-human primates
are most likely to be beneficial. We also develop tools
for maximizing the utility of non-human primates, en-
suring that when they are used as biomedical research
models they are used appropriately and result in the
greatest power.

Here we catalog the polymorphism in the GPCRs of
rhesus macaques of Indian and Chinese origin and
Mauritian cynomolgus macaques. Together these species
represent the most commonly used non-human primate
biomedical research models and the genes represent the
single largest family of drug targets. This information can
be used going forward to develop improved animal models
and to better understand gene-phenotype associations. By
improving our animal models we improve the ability of our
science to be translational and ultimately to bring basic
research to bear on issues of human health.

Methods

Ethics statement

Blood draws for the isolation of genomic DNA for animals
used in this study were done during routine preventative
health care by trained veterinary phlebotomists within the
NEPRC Division of Veterinary Resources. All animals were
maintained in accordance with the guidelines of the
Harvard Medical School Standing Committee on Animals
and the Guide for Care and Use of Laboratory Animals of
the Institute of Laboratory Animal Resources, National
Research Council.

Animals and genomic DNA

Blood from 32 cynomolgus macaques (Macaca fascicularis),
44 Indian-origin rhesus macaques (M. mulatta) and 20
Chinese-origin rhesus macaques was collected in EDTA
vacutainer tubes (BD, Franklin Lakes, NJ) during standard
preventative health care. Genomic DNA was isolated using
DNeasy Blood and Tissue Kit protocols (Qiagen, Valencia,
CA). 17 Indian-origin rhesus were born at the New
England Primate Research Center (NEPRC), 13 born at
the Oregon National Primate Research Center (ONPRC)
and 14 born at the Caribbean Primate Research Center
(CPRC). Chinese-origin rhesus were purchased from
Charles River Laboratories. All animals had been housed
at the NEPRC for at least three years prior to blood draws
obtained for this study. Cynomolgus macaques, also
housed at the NEPRC a minimum of three years at the
time of study, were purchased from Charles River Labora-
tories and were of purported Mauritian origin.
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Target capture and next generation sequencing
A custom SureSelectXT (Agilent Technologies, Santa
Clara, CA) library was designed using GPCRs from both
the human and rhesus macaque genomes as baits. While
ideally the rhesus genome should be sufficient and best
for capture of macaque targets, annotation remains in-
complete and gaps persist. These problems are not
present to the same degree in the human genome and
the flexibility of the technology can support the diver-
gence between humans and old world monkeys [62].
Following capture, sequencing libraries were prepared
using the SureSelectXT library preparation kits and pro-
tocols with barcodes for 24x multiplexing (Agilent
Technologies, Santa Clara, CA). Prior to sequencing,
libraries undergo quality control using an Agilent
Bioanalyzer 2100 (Agilent Technologies, Santa Clara, CA).
Next generation sequencing was performed on HiSeq
2000 (Ilumina Inc, San Diego, CA) using a 50 bp single
end read protocol. Target enrichment, library preparation,
and next generation sequencing was performed at the
Biopolymers Facility, Department of Genetics, Harvard
Medical School, Boston, MA.

Data analysis

Initial data analysis was processed through DNAnexus
(DNAnexus Inc., Mountain View, CA). All reads were
aligned to the rhesus genome (MGSC Merged 1.0/
rheMac2). Using Geneious version 6.0.5, (created by
Biomatters, San Francisco, CA) additional alignments using
‘bowtie’ and ‘velvet’ were implemented though they did not
show meaningful differences. Average read depth in coding
regions among animals was >100x, ranging from >200x to
50x. Variability between samples is likely due to effects of
multiplexing as well as sample quality. Read depth was also
notably greater in coding sequences compared to untrans-
lated regions, presumably due to poorer capture efficiency
in the UTRs as a result of greater sequence divergence.

The “nucleotide-level variation” analysis pipeline imp-
lemented in DNAnexus was used to identify and call poly-
morphic sites in each individual animal. Allelic variation
was called using a Bayesian model which incorporates qual-
ity scores, read/reference mismatches, and SNP rate priors
[63]. It is anticipated that at these read depths SNP identifi-
cation coverage approaches full sensitivity [64].

Human orthologs were identified using Homologene
and Ensembl and were aligned to the hand curated rhe-
sus genes. Divergence values were calculated using Perl
scripts developed in-house. Secondary structure, notably
including the positions of transmembrane domains, were
determined for the human orthologs using information
gathered from the UniProt database [65] and transliter-
ated to the aligned rhesus ortholog.

Non-synonymous macaque polymorphisms were
mapped onto orthologous human sequences and run
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through predictive algorithms for evaluating their impact
on protein function. PolyPhen-2 [44] and SIFT [45] were
evaluated as well as their evolutionarily-balanced imple-
mentation [47] and the EvoD algorithm [46]. Transliter-
ation posed difficulties first due to poor or incomplete
annotation in the rhesus macaque genome and second due
to actual biologically meaningful divergence between the
species. Also, because many of these algorithms make use
of multi-species conservation in their implementation, it is
unclear how this may affect regions “known” to be diver-
gent between the taxa. Because of these issues a conserva-
tive approach was taken whereby the predictive algorithms
were run only on variation where the mutated amino acid
was unambiguously present and conserved in humans.

Additional files

Additional file 1: Table S1. All SNPs identified by this survey.

Additional file 2: Figure S1. Consensus functional prediction of SNPs
in macaques by secondary structure domain. A. Singleton
polymorphisms. B. Polymorphisms observed in multiple individuals
(common).

Additional file 3: Figure S2. Venn diagram with pie charts showing
distribution of consensus functional predictions of SNPs in macaques.
Additional file 4: Table S2. Common variation in human and macaque
within a secondary structure domain.
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