Leite et al. BMC Genomics 2013, 14:741

http://www.biomedcentral.com/1471-2164/14/741
p BMC

Genomics

RESEARCH ARTICLE Open Access

MRNA-Seq and microarray development for the
Grooved carpet shell clam, Ruditapes decussatus: a
functional approach to unravel host -parasite
interaction

Ricardo B Leite"®™", Massimo Milan?', Alessandro Coppe®, Stefania Bortoluzzi®, Anténio dos Anjos',
Richard Reinhardt’, Carlos Saavedra® Tomaso Patarnello?, M Leonor Cancela'” and Luca Bargelloni2

Abstract

Background: The Grooved Carpet shell clam Ruditapes decussatus is the autochthonous European clam and the
most appreciated from a gastronomic and economic point of view. The production is in decline due to several
factors such as Perkinsiosis and habitat invasion and competition by the introduced exotic species, the manila clam
Ruditapes philippinarum. After we sequenced R. decussatus transcriptome we have designed an oligo microarray
capable of contributing to provide some clues on molecular response of the clam to Perkinsiosis.

Results: A database consisting of 41,119 unique transcripts was constructed, of which 12,479 (30.3%) were annotated
by similarity. An oligo-DNA microarray platform was then designed and applied to profile gene expression in R. decussatus
heavily infected by Perkinsus olseni. Functional annotation of differentially expressed genes between those two conditions-
was performed by gene set enrichment analysis. As expected, microarrays unveil genes related with stress/infectious
agents such as hydrolases, proteases and others. The extensive role of innate immune system was also analyzed and
effect of parasitosis upon expression of important molecules such as lectins reviewed.

Conclusions: This study represents a first attempt to characterize Ruditapes decussatus transcriptome, an important
marine resource for the European aquaculture. The trancriptome sequencing and consequent annotation will increase
the available tools and resources for this specie, introducing the possibility of high throughput experiments such as
microarrays analysis. In this specific case microarray approach was used to unveil some important aspects of host-parasite
interaction between the Carpet shell clam and Perkinsus, two non-model species, highlighting some genes associated
with this interaction. Ample information was obtained to identify biological processes significantly enriched among
differentially expressed genes in Perkinsus infected versus non-infected gills. An overview on the genes related with the
immune system on R. decussatus transcriptome is also reported.
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Background

European clam aquaculture production is centered in
three major species of clams: Ruditapes philippinarum,
the manila clam, Ruditapes decussatus, the grooved carpet
shell clam and Venerupis pullastra, the pullet carpet shell
clam. According to FAO and Fishstat reports, most of the
relevant increases of production have been concentrated
in R. philippinarum and R. decussatus, both of which have
been severely affected by perkinsosis during the last years.
Historical records show that R. decussatus was one of the
major aquaculture species in Europe, but due to overfish-
ing, recruitment failures and some outbreaks of bacterial
infection and parasitism, producers started to substitute
this species for a closer but exotic clam from the same
family, the manila clam R. philippinarum [1]. The intro-
duction of this species, with a faster growing rate and be-
lieved to be more resistant to some diseases, originated a
progressive replacement of the native clam and nowadays
the production of grooved carpet shell clam is almost in-
significant in most Mediterranean countries. However, its
commercial, historical and gastronomic values are still
high making the production of this clam an important
niche to explore. Despite the fact that its culture de-
creased considerably in countries such as France, Italy,
Portugal and Spain, there is some desire to increase R.
decussatus production. Yet, because of the potentially high
vulnerability of its production, management and control
strategies and their implications when implemented are
key factors for protecting this industry from the effects
of diseases. One of the most persistent infections is caused
by the parasite Perkinsus sp., a facultative intracellular
protist parasite belonging to the phylum Perkinsozoa.
Interestingly, Perkinsus is also considered a model organ-
ism to understand adaptations to parasitism [2].

Parasites from Perkinsus sp. family are considered to be
one of the most problematic agents being blamed for
mass infections leading to dramatic reductions in culture
beds of clams Ruditapes descussatus in Southern Portugal
[3,4]. Some reports indicated mortalities up to 80% in
Portugal, with more than 90% of the clams infected in a
specific season/area. Also Spain and France reported high
mortality rates reaching up to 100% in cultures of Manila
clam in Spain [5]. Although clam Perkinsiosis was first
identified in R. decussatus, the Manila clam can also be
affected and Perkinsus was first detected in South Korea
in 1993 [6] and later in China [7] and Japan [8]. The
agent responsible for these mortalities, Perkinsus olseni
is the same that caused similar episodes in Europe but it
can also infected abalones, pearl oysters, oysters and
other species of clams besides Ruditapes sp. Although
the clam infection process is not entirely unveiled, it
starts when the Perkinsus trophozoites, a free living
stage, are uptake by the host, followed by their engulf-
ment by bivalve hemocytes in which are capable of
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remaining viable, proliferate by successive bipartitioning
in the connective tissue of all organs and disseminate
throughout the entire organism [9], leading to host
death in most cases. In the case of infection, lectins are
the main mechanism responsible to trigger bivalve’s de-
fenses by recognizing and preventing infection [10-13].
Other mechanisms are involved such as the generation
of proteases inhibitors [14], lysosomal enzymes and
ROS species and parasite encapsulation [15].

The routine use of high throughput sequencing and
microarrays is becoming more frequent and it is revolu-
tionizing the study of host-parasite interaction [16-19] re-
vealing some key molecular interactions and modulation
of host-species to parasite. The scientific community is
paying more attention to marine organisms and in the last
3—4 years some important commercial species of fish and
shellfish were sequenced and became the target of gene
expression studies [20-26]. The importance of mollusks as
biological filters and thus potential bio-monitors cannot
be sub estimated and this tool can also be applied to infer
some facts about how pollution and other antropogenic
activities can influence clam transcriptome, increasing the
range of future applications for the platform presented
here. In the present study we aimed to infer how a para-
site can influence host gene regulation by looking at host
gene profile and expression and interpreting the basis of
molecular determinants by pinpointing host gene clusters,
processes and mechanisms of defense and co-existence
with the parasite. In conclusion we present a set of new
tools for the grooved carpet shell clam, comprising a
transcriptome survey, web database integrating gene
annotation and blast search and the introduction of an
adaptable microarray platform for R. decussatus.

Results and discussion

Next-generation sequencing and hybrid contig assembly
Using Roche 454 FLX technology, two sets of libraries
(MGEO11: 122,471 reads; cDN18: 327,209 reads) consist-
ing of a total of 449,680 reads were sequenced using
normalized ¢cDNA libraries constructed using either a
mixture of adult tissues or containing gonadal tissue and
entire larvae. The same libraries were used to obtain re-
spectively 2,434 and 2,077 ESTs with traditional Sanger
sequencing analysis. Using all data available, amounting
to a total of 454,191 reads plus ESTs, a assembly was
performed and grouped them into 41,119 contigs.

The average read size from 454 sequencing was 257 bp
(Figure 1 shows the distribution of sequence lengths) and
quality level of the reads was assured by a distribution of
the sequences with 96% of reads with Phred sequence
quality >20 (Figure 2, left panel) while ESTs of R. decussa-
tus have a mean length of 604 bp. The GC content of the
reads was in average 33% + 6,6% similar with the EST se-
quences of R. decussatus deposited in Genbank (34.78 +



Leite et al. BMC Genomics 2013, 14:741 Page 3 of 17
http://www.biomedcentral.com/1471-2164/14/741

25D 1sD M 1sD 2sD

|“|“||“|||||“llll|h e o e o

760 950 1140 1330 1520 1710
Read Length in bp (Bin size: 19 bp)

N
=
~
&

# Sequences (per bin)

Figure 1 Read length distribution of R. decussatus 454 sequencing. Bars indicate relative percentage of reads per real length in an interval of
19 bp, with an average read length of 257 bp.

6.26%), with a maximum of 74% (Figure 2, right panel). similar to that obtained for R. philippinarum (30%) by
All 454 reads have been deposited in GenBank (SRA) with ~ Milan and co-workers [24]. The highest number of signifi-

the accession number [SRA058431]. cant similarity scores (9,364 hits, 22.8%) was obtained with

Crassostrea gigas protein database, second best-matching
Transcriptome annotation and microarray quality species Lottia gigantea (8,828 hits, 21.4%) and third Danio
assessment rerio (7,170 hits, 17.4%) in accordance to what was previ-

To determine the putative identities of assembled contigs, ously observed for R. philippinarum annotation (24,1%
Blastx and Blastn similarity searches on several protein and  and 18.5% annotated contigs with L. gigantea and D. rerio
nucleotide sequence databases were performed. Of 41,119  respectively).

unique sequences, 8,560 (21%) showed at least one signifi- Probe design took into consideration all annotated en-
cant match (e<10) in the NCBI non-redundant protein  tries (12,479). Non annotated transcripts with sequence
database (Additional file 1). In addition to the annotation  lengths >400 bp and average Phred sequence quality > 30
with Blast2GO, Blast searches against UniProtKB/Swiss-  were also considered. A total of 21,900 target sequences
Prot database, UniProtKB/TrEMBL database and 5 differ- were obtained and for each of them, two probes with
ent species-specific data bases (Additional file 1) were im-  opposite orientations (sense and antisense) were designed.
plemented in order to further increase the number of A total of 43,758 out of 43,800 (99.9%) probes were
putatively annotated R. decussatus contigs (see Methods for  successfully obtained, representing 21,887 R. decussatus
details). This approach provided a significant match for transcripts. The percentage of annotated transcripts repre-
additional 3,919 transcripts, which previously showed no  sented in the microarray was 57%. Annotated genes were
correspondence with the NCBI non-redundant protein  categorized according to Gene Ontology (GO) Functions in
database, bringing the final number of clam entries associ-  the three root categories and also in terms of main families
ated with a known protein or transcript to 12,479 (30.3%).  of genes using a previously defined GO classification (see
The percentage of annotated expressed sequences is very  Additional file 2). Probe sequences and other details on the
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Figure 2 Reads quality score graphic (left) and GC content in percentage (right). Bars indicate relative percentage of reads per quality (left)
and GC content (right).
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microarray platform can be found in the GEO database
under accession number GSE36276.

Validation of microarray data by quantitative real-time
PCR analysis of gene expression

Comparative analysis of microarray and qPCR expres-
sion data is presented in Figure 3. Pearson correlation
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indicated coefficients of 0.984 for 12 compared genes
and a p <0.005 when comparing data for microarray
probe and correspondent qPCR, corroborating the
good reliability of the microarray platform. Fold
change is always higher by qPCR than measured by
microarray with one exception, a common situation
with Agilent microarrays [27].
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Figure 3 Combined plot representation (log scale) of Pearson correlation matrixes of microarray probe fold change (crosses) and
respective qPCR (diamonds) (A) and Relative Fold Induction of microarray probe fold change (dark grey bar) and respective qPCR
(light grey bar) (B) upon presence or absence of infection in selected sequences/probes. N. D. Stands for Sequence not determined, S-Lec
for sialic acid-binding lectin; PyrND for pyridine nucleotide-disulphide oxidoreductase; TetSpafor tetraspanin, ESPET for Epididymal secretory pro-
tein E1: MSR for methionine sulfoxide reductase b3 isoform 2 isoform 1xboxBP for x-box binding protein 1; FB for fructose- -bisphosphatase; IAP
for inhibitor of apoptosis protein; GD for glucose dehydrogenase and calmodulin.
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Microsatellite content (SSR-EST)

The genome of Bivalves is known to harbor a large num-
ber of microsatellites [28], that can be useful for as
markers for different kinds of studies such as population
genetic structure, demography, selective breeding and
quantitative trait loci studies in clam [29]. Nevertheless
microsatellite marker development can be difficult to de-
velop in mollusk for many reasons, some of them still
unknown [30]. EST derived microsatellites have some
advantages such as being more conserved across species
and be more adequate for selective pressure studies for
example [31]. Previous studies have characterized some
EST-SSR in clams using 454 [26,32] but none used R.
decussatus as a model.

We used two similar approaches to determine if micro-
satellites are transcribed into R. decussatus RNA, one
using Misa script [33] and Msatcommander [34]. Table 1
reflects the occurrence of single SSR, combined SSR and
the most abundant motifs longer than 20 bp. We have
found 91 dinucleotide, 171 trinucleotide and 224 tetranu-
cleotide, 217 pentanucleotides and 106 hexanucleotides
across 330 transcripts with a size superior to 150 bp. Sixty
nine transcripts contained more than one microsatellite,
and five transcripts contained 5 SSRs and one 6SSRs. Un-
expectedly was the higher number of repeats containing
tri, tetra penta and hexa units, being more abundant than
for example dinucleotides SSRs. Although most of the se-
quences with SSR detected allowed primer design it will
require further testing to determine their utility as
markers. However our dataset increased the number of
markers available for R. decussatus with the advantage of
being linked to known genes, facilitating linkage map de-
velopment or gene mapping.

Rdecusdb, a Ruditapes decussatus database
Rdecusdb (http://morse-ccmar.ualg.pt/edge) is centered
on contigs sequence and annotation. All contig sequences

Table 1 Statistical analyses of EST-SSRs present in
Ruditapes decussatus transcriptome

Number %

Sequences statistics Most predominant

SSR containing: 330 1,0
Containing > 1 SSR: 140 04
With combined SSR 69 02
Total 33247 100,0

SSRs and Distribution:

Dinucluotide 91 11,2 AT/AT (75)
Trincleptide 171 21,1 AAC/GTT (42)
Tetranucleotide 224 27,7 ACGT/ACGT (70)
Pentanucleotide 217 26,8 AACGTT/ACGTT (1071)
Hexanucleotide 106 13,1 AACGTT/AACGTT (44)
Identified SSR (total) 809 100 AACGT/ACGTT (101)
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as well as different layers of results for data analysis will
be available through Tripal [35]. Tripal is an open source
and freely available collection of Drupal modules for man-
agement and visualization of data stored within a GMOD
Chado database. Analysis results are indexed by Drupal’s
full text searching mechanism, allowing the users to find
data of interest. For each contig, a gene-like entry shows
different data and bioinformatic analysis results, being
identified with a description together with a sequence in
fasta format along with blast hits and the reads that as-
sembled that same contig. In addition, for each contig and
whenever predicted, Gene Ontology is given for Biological
Process (BP), Molecular Function (MF), and Cellular
Component (CC). IT includes several analysis such as: the
Analysis BLAST homology module, the Analysis InterPro
module, the Analysis KEGG module; and the Analysis GO
module for displaying trees and charts for GO mappings.
Recently the sequences were update due to a new assem-
bly. The assembly used in this article and the recent one
can be download from the website.

Comparison of gene expression in infected versus non
infected clams

Clam gills were used because they are the main connec-
tion with the outside environment, together with the si-
phons which are one of the most affected tissues upon
Perkinsus parasitism [36]. They participate as defense
barriers sharing functions in the respiratory process and
being also involved in the elimination of ROS molecules
by endogenous antioxidant genes [37].

Data captured from transcripts fluorescence hybri-
dization derived from four non infected and four in-
fected clam gills was normalized and used to identify
transcripts differentially expressed between the two con-
ditions. Principal component analysis of conditions
proved the good clusterization of samples (4 biological
replicates) and consistence of the results between repli-
cates, allowing the differences in steady-state mRNA
levels between infected and non infected clams to be re-
liably measured.

All microarray data was deposited in the GEO data-
base [38] under accession numbers GSE36276.

To perform microarray analysis a two unpaired class
Significance Analysis of Microarray (SAM) test was car-
ried out on normalized data. By imposing a False Dis-
covery Rate (FDR) of 5% and Fold Change (FC) >1.5, a
list of 949 probes, was obtained (see Additional file 3).
From these, a total of 227 transcripts were up-regulated
in infected clams versus non infected clams with a FC
ranging from 1.5 to 102 while a total of 722 transcripts
were down-regulated with a FC ranging from 1.6 to 76.

Genes were identified and categorized in terms of per-
centage using GO categories (cellular component, bio-
logical process and molecular functions) and specifically


http://morse-ccmar.ualg.pt/edge

Leite et al. BMC Genomics 2013, 14:741
http://www.biomedcentral.com/1471-2164/14/741

according to possible role in the immune response. For up
regulated genes (Figure 4), more than half were found to
be involved in general metabolism (53%) and in protein,
lipid and carbohydrate metabolism (13%, 6% and 4% re-
spectively) and in specific processes like stress response
(12%) and response to biotic stimulus (4%). Expression of
several genes associated with mitochondria represented
two per cent of genes up regulated. Among the genes
found to be down regulated, 46% were associated with gen-
eral metabolism while only 1% was associated with lipid
metabolism. For both categories, percentages were lower
than those found for up regulated genes. Other gene clus-
ters were also less represented when compared, such as
those related with biotic stimulus (1.2%), stress response
(7%) or even not present such as mitochondria related.

In contrast, the percentage of down regulated genes asso-
ciated with apoptosis (1%), defense (1%), immune response
(1%) and response to external/internal stimulus (2%) in-
creased when compared with up regulated genes (Figure 5).
Altogether, data suggests that metabolic and stress related
genes are the most affected by Perkinsus parasitism, reflect-
ing changes in growth and clam survival.

From all genes found to be differentially expressed
upon Perkinsus infection (Additional file 3), only 67 of a
total of 227 up regulated genes and 259 from a total 722
down-regulated genes were annotated successfully based
on NCBI (National Centre for Biotechnology Informa-
tion) amino acidic non redundant (nr) database. Some
annotation was trivial and a second search using ncbi nr
together with nt database was conducted, obtaining a
more accurate annotation, returning 44 genes for up-
regulated (Additional file 4), and 231 for down-regulated
(Additional file 5). From these two lists we can identify
lectins and a number of genes associated with immune/
stress response. Up regulated genes include matrilin, a
gene already associated with zebra mussel hemocytes host
defense [39], methionine-r-sulfoxide reductase, a gene
linked with antoxidant stress [40], exosome component 5,
a set of genes capable of an immunomodulatory activity
[41,42], different kinds of proteases (serine proteases),
some already described as defenses against Perkinsus in
different bivalves [43-49], acid phosphatases-like genes
and dimethylarginine dimethylaminohydrolase, a gene as-
sociated with immune response in amphioxus [50].

Among the down regulated genes (see Additional file 5),
we can point out several related to calcium binding such
as calmodulin. This finding is in agreement with previous
data. Indeed, one of the majors players during Perkinsus
infection is hypoxia [51] and calmodulin is known to be
down regulated during hypoxia events in mussels [52].
Calmodulin can be associated with almost all cellular pro-
cesses, including apoptosis, metabolism, inflammation
and the immune response. Some immune responses such
NF-kB signaling pathway in pearl oyster are regulated by
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calmodulin binding proteins such as calcineurin [53] and
calmodulin was shown to be an important molecular de-
terminant response to Perkinsus infection [54,55].

The presence of lectins among the down-regulated
genes constitutes an indication that Perkinsus parasitism
can also negatively affect expression of some lectins as
already shown for mussels [56] where multiples genes in-
volved in immune defense are down regulated upon ex-
posure to an infectious agent. Glutathione s-tranferases
(GST) are also less expressed in this situation, a result
contrary to our expectations since due to their role in cell
detoxification and oxidative stress response, necessary for
protecting the clam from the oxidative burst, we expected
these levels to be up-regulated. However, and in agree-
ment with our findings, some authors already demon-
strated that in other mollusks, GST is up-regulated during
the initial steps of infection but decreases when infection
is established [57,58]. Other genes related with oxidative
stress, such glutaredoxin a, aldo-keto reductase, hmgb-
like protein, hephaestin, glucose dehydrogenase, peptide
o-xylosyltransferase-like or agglutination (hemagglutinin
amebocyte aggregation [59]) and anti-apoptosis related
genes (e.g. achain structure of the ciap2 ring domain)
were also down regulated, supporting the theory that
after the initial infection period there is a relaxation of
immune defenses.

In order to obtain a more systematic functional inter-
pretation of the set of differentially expressed genes, en-
richment analyses using the Database for Annotation,
Visualization, and Integrated Discovery (DAVID) was
performed. Indeed, among the up-regulated cluster of
ESTs, we found a high number of transcripts coding for
immune response related genes as expected. The im-
mune system of clams and bivalves in general is deprived
of an adaptive system and fight pathogen aggression
through an innate immune response [60] exerted by
humoral factors and cell-mediated mechanisms (Figure 6).
Humoral factors include lectins (agglutinins, opsonins),
lysosomal enzymes (phosphatase acid, lysozyme and
various hydrolytic enzymes), antimicrobial peptides and
protease inhibitors, among others [61]. The constitutive
or induced expression of such genes can potentially be
directly linked to an effort to arrest Perkinsus infection
as observed in other systems. It is interesting to observe
that oxidative processes, hydrolase activity and nucleic
acid binding are the main processes represented and
most were already pointed out as having influence dur-
ing resistance to microorganisms (Table 2). At the cellu-
lar level we could also highlight a number of genes
linked to non-membrane bounded organelles and to
intracellular non-membrane bounded organelles, sug-
gesting that activity from these organelles (ribosome,
cytoskeleton related) is necessary for the entrapment of
microorganisms and for protein synthesis.
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Importance of lectins on Host Parasite interaction

Due to the important role of lectins upon Perkinsus in-
fection, this family of genes was chosen to be the sub-
ject of a particularly detailed characterization. Three
different families of lectins were identified: C-type lec-
tins, Clq-lectins and galectins. The members of these
families were identified using conserved residues as pat-
terns for search. A search into Rdecusdb revealed over
than 90 sequences using lectin as keyword, but some
genes were just classified as having a lectin domain. For
classification purposes all the transcripts were orga-
nized in families and superfamilies and respective fold
change annotated. Also the domain architecture and
presence of signal peptide was deduced (see Additional
file 6: figure S6). Nevertheless 9 of those genes (Figure 7)
were differentially expressed when comparing infected
with non infected clams, one of them being the identi-
fied gene with the highest fold change in the array (over
50 times over expressed).

C-type lectins presented some conserved domains
such WxD (position 139 and 141) [62] and CE (position
154) as shown in Figure 8. Cysteines are maintained
due to their capability of forming disulphyde bonds
[63], while WxD region is associated with calcium bind-
ing. Most of the lectins known to be linked to Perkinsus
response are C-type lectins [10,64]. They have diverse
carbohydrate specificities and present multiple struc-
tural domains. They can be classified in different groups
including collectins, proteoglycan core proteins, selec-
tins, endocytic receptors, and the mannose-macrophage

receptor, some of them directly or indirectly involved in
immune function [65].

Galectins, which constitute one family of lectins, are
characterized by a conserved sequence motif in their
carbohydrate recognition domain (CRD) and a specific
affinity for b-galactosides. When compared with other
bivalves galectins, Ruditapes decussatus galectins present
some conserved signature residues F(D/N)XR(F/L/I),
(N/K)X(V/I/L)XXN and WGXERXR [66]. Interestingly,
despite the large evolutionary distance between inverte-
brate and vertebrates galectins, they still share more
than 30% of homology. Host galectins are also known to
be related to presence of parasite and in oysters it was
previously shown that some galectins are induced fol-
lowing Perkinsus marinus infection [12].

Clq domain containing proteins are essential in the
innate immune system of invertebrates, and can be the
link between innate immune system and adaptive im-
munity as seen in lamprey, where mammalian homolo-
gous Clq was shown to be act as a lectin in lamprey
[67]. The Clq has a globular domain [68] and is one of
the most represented lectins. C1q can be involved in a
variety of immune related processes such as activation
of complement system or pathogen recognition and
even mediating cell migration [69]. The R. decussatus
Sialic binding lectins (Clq) namely rud_dec_c29141
were shown to be highly expressed in the presence of
Perkinsus olseni. To improve clq pattern recognition
all sequences from bivalve Clq lectins deposited in
Genbank were collected (August 2012) and conserved
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Table 2 GO terms significantly over-represented, among genes differentially expressed, between Perkinsus infected
and non infected clams

Category Term Count % P-value Benjamini
Response to bacterium 5 3 4,1E-04 1,00E-01

Biological process Translation 9 54 1,7E-03  2,00E-01
Oxidation reduction* 11 66 33E-02 3,80E-01
Hexose metabolic process 4 24 37E-02 6,70E-01
Monosaccharide metabolic process 4 24 37E-02 6,30E-01
Cytoskeleton organization 4 24 71E-02 6,80E-01

Cellular Nucleosome 3 1,8 22E-02 6,60E-01

compartment Protein-DNA complex 3 18 24E-02 460E-01
Non-membrane-bounded organelle 10 6 4,1E-02 500E-01
Intracellular non-membrane-bounded organelle 10 6  4,1E-02 5,00E-01
Chromatin 3 18 78E-02 640E-01

Molecular function Triose-phosphate somerase activity 2 1,2 1,8E-02 930E-01
Hydrolase activity, acting on carbon-nitrogen (but not peptide) bonds, in linear amides 3 18 43E-02 960E-01
Translation factor activity, nucleic acid binding 4 24 43E-02 870E-01
Intromolecular oxidoreductase activity, interconverting aldoses and ketoses 2 12 88E-02 9,60E-01
RNA binding 6 36 95E-02 940E-01
Hydrolase activity, acting on carbon-nitrogen (but not peptide) bonds, in linear, 2 1,2 96E-02 9710E-01
amidenes

KEGG pathway Glycolysis Gluconeogenesis 6 36 36E04 2,10E-02
Base excision repair 3 1.8 48E-02 7,60E-01
Fructose and mannose metabolism 3 18 64E-02 730E-01
Focal adhesion 6 3,6 74E-02 6,80E-01
Nucleotide excision repair 3 1,8 76E-02 6,00E-01
NOD-like receptor signaling pathway 3 18 97E-02 6,30E-01

Sub category

*QOxidation reduction

Term

Aldo-keto reductase family member Ala (aldehyde reductase)
Dehydrogenase/reductase (SDR family) member 11a
Hypothetical LOC570613; sorbitol dehyfdrogenase
Methionine sulfoxide reductase 33

Similar to alcohol dehydrogenase S; alcohol dehydrogenase S
Sulfide quinone reductase-like (yeast)

Lbiguinol-cytochrome reductase hinge protein
Hydroxysteroid (17-beta) dehydrogenase 14

zgs: 56622; similar to CG6084CG6084-PA

Short chain dehydrogenase/reductase family 16C member Sa

Aldehyde dehydrogenase family, member A1

residues were analyzed, allowing us to identify a bi-
valve Clq signature (Figure 9).

Conclusion

High throughput methodologies such as NGS and micro-
arrays are changing our approach to biodiversity in a way
that makes possible to understand changes in adaptation
of a semi closed microcosm, like the one represented by a

bivalve and its parasite (e.g. Ruditapes sp. and Perkinsus
sp), at the transcriptomic level. This should allow us to ac-

quire a broader understanding of all its molecular deter-
minants, in particular those involved in host defenses and

adaptation to parasite and thus contribute to unveil weak
or advantageous host genetic characteristics in order to
select more resilient clams. This approach will be of re-
levance to start a selection program based on specific
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Probe name Length | Fold change
rud_dec_c29141 332

rud_dec2_c601 1114

rud_dec_c11370 1127

rud_dec2_c959 992
rud_dec_rep_c20999 | 624

rud_dec2_c1247 811

rud_dec_c11467 583

rud_dec_c30762 323

rud_dec_c27379 280

BLASTX Best Hit

Sialic acid-binding lectin

Galectin-3

Complement Cl1g-like protein 2

Complement C1g tumor necrosis factor-related protein 6
Galectin-related protein

Complement C1g tumor necrosis factor-related

Sialic acid-binding lectin

C-type lectin domain family 4 member A;

Perlucin-like protein isoform C

homology when blasting the sequence against genbank database.

Figure 7 Retrieval of keyword lectins in Rdecusdb with a significant fold change associated and respective size of the contig. In red
lectins up regulated and in green when is down regulated, between infected and non infected clams. Blastx best hit represents the closest

genetic characteristics. In the case of bivalves, transcrip-
tomic approaches can shed light on delicate issues for
aquaculture such as the effect of pollutants, infections and
human environmental interference. Clams can be very
sensitive to these factors and the availability of new bio-
markers can boost the use of clams as water quality bio-
monitors. This study is relevant for addressing the high
mortalities associated to Perkinsus sp. in different mollusc
species, and the consequent impact and losses at eco-
nomic/social level.

Although clams can express specific cellular and humoral
responses to Perkinsus infection, until now the invertebrate

innate immune system might have been underestimated
and over-simplified [63,70]. Yet, through the use of micro-
arrays to assess the hosts” immunological and physiological
responses to Perkinsus infection, we could identify some
factors related to the first line of defense against the para-
site’s invasion. From this study we can conclude that a
number of genes are altered by Perkinsus infection, in par-
ticular those belonging to important gene families such as
lectins, which are part of the host defense system and cap-
able of recognizing specific molecules through their carbo-
hydrate recognition domains. Some of them were already
characterized, such as the specific galectin that is used by

DQYKFIKGHLTTITG.GYI

FESGHAIGPATEWD .
LETGINVGPFSKWG .

WG.
PEGSASFTYSN. . .

mzsu i

+ .« YTIPL

VCLLLCVSFVPTVVCSCH!

4@ 50 &0

Figure 8 Diversity of C-type lectins founded in R. decussatus sequences. Alignment with other bivalve c-type lectins highlighted important
residues. Cystein and Tryptophan residues are usually conserved (positions W1, C8, C31, W68, W83, W85, W105, C122, W139 and CC154) and to-
gether with other important residues such as A27, 138, G70, G82, D141 and E155. All positions shadowed are conserved at least 50%.
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285 276 280 285
G Y[D N] G-x-F-x-[ACSTV]-P

Figure 9 Partial alignment of amino acid sequences from
bivalves C1q family. All sequences available were collected and
most conserved region is presented as a logo, where highly
conserved residues are shown as larger characters with error bars. A
possible signature for identification of C1qg sequences is underlined.
Numbers indicate the amino acid position relative to the align
consensus sequence.

the host to recognize P. marinus or others that are differen-
tially expressed upon Perkinsus infection. In oyster, this
specific galectin can be responsible for subverting the host's
immune/feeding recognition mechanism, giving Perkinsus
marinus a passively gain entry into the host hemocytes, the
first line of defense [71]. These families of lectins were
identified in R decussatus and are now being subjected to a
more detailed characterization. In R philippinarum some
lectins, known as Manila Clam Lectins (MCL) were also as-
sociated with Perkinsus infection and are able to bind to
the surface of Perkinsus hypnospores, indicating that MCL
plays a particular role in clam defense [12,62,72].

P. marinus and his most affected host, the oyster C.
virginica, was already the subject of a similar microarray
study [55] again emphasizing the importance of solving
this problem that affects at the moment the bivalve pro-
duction worldwide. In the case of C. virginica the re-
sponse of the oyster was mainly at levels of antimicrobial
and oxidative stress, consistent with the microarray results
obtained for infected R. decussatus, and thus providing
additional information on the molecular determinants in-
volved in host interaction, by identifying the correspond-
ing genes. Also Suppression Subtractive Hybridization
was used to attest genes differentially expressed in R.
decussatus during Perkinsus olseni infection [73] confirm-
ing that the major genes involved were related with im-
mune and stress response.

Non annotated genes which expression was found to be
substantially altered during Perkinsus infection are also
being the focus of specific analyses and in a near future
we expect that they will be identified and their role during
that process documented. Nevertheless, the most import-
ant aspect of this study is its contribution to increase the
number of ESTs available for bivalves genetics studies. It
is also expected to provide tools to infer some facts like
how pollution and human related activities can influence
clams transcriptome or the effect of some biological
events such as metamorphosis or reproduction.

Although we believe to have a good representation
of Ruditapes decussatus transcriptome, and despite the
use of normalized libraries of adult and larvae stages,
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the representation of the clam transcriptome is incom-
plete and some of the contigs are not fully represented,
often missing its 5 extremity, a problem associated
with ¢DNA library construction. The continuous
technological advances and NGS cost drop should pro-
vide, in a near future, full coverage of relevant tran-
scriptomes for this and other organisms, allowing the
identification and use of more biomarkers or defense
related genes to characterize different populations of bi-
valves of a specific area. Furthermore they should allow us
to also identify the specific adaptations of each species to
adverse and/or favorable conditions. But already at
present, with the availability of two Ruditapes species
transcriptomes (this study and Milan and collaborators
[24]), we can start to identify the genetic differences be-
hind their susceptibility to different pathogen organisms
and point out resistance factors.

Methods

Sampling, cDNA library construction and sequencing
Samples of R. decussatus were collected in Faro, in
the Ria Formosa lagoon system which spreads along
the mid region of the southern Portugal coast. Total
RNA was extracted using the acid guanidinium
thiocyanate-phenol-chloroform method [74]. Two li-
braries were constructed, one using a mixture of all
adult tissues from 20 individuals and a second using
gonadal tissues from both sex with a ratio of 1 male
to 4 females (gonadal phase IV) and juveniles clams
with sizes ranging from 2 to 4mm total length. The
c¢DNA libraries were constructed using the SMART
kit from BD Biosciences Clontech and equal amounts
of RNA and then normalized using the duplex-
specific nuclease (DSN) method [75].

Sequencing was performed at the Max Planck Institute
using 454 GS FLX instrument with Titanium series chem-
istry following manufacturer protocol. Pyroluminescence
intensity was converted to sequence data using Newbler
suite. 454 reads were post processing using sff extract
(0.2.8) and trimmed using clean_reads (0.2). Final reads
quality was assessed using prinseq-lite (0.14.4).

Transcriptome assembly

A hybrid assembly using ESTs collected from Genbank
and all 454 reads was performed to improve the assem-
bly. For the latter the quality score files were taken into
consideration. The purpose of a hybrid assembly is to
explore the advantages of the two technologies, the nu-
merous reads of 454 and the quality and length size of
Sanger reads. MIRA3 performed the assemblies in two
runs [76], where all contigs obtained with the first run of
hybrid assembly were used for a second run to eliminate
contig redundancy.
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Transcripts annotation

Little information, specifically on gene annotation, is avail-
able in public databases for mollusks species, with the ex-
ception of recent deposition of sequences from Pacific
oyster [23,77], blue, Mediterranean [56] and deep sea vents
mussel [78] and manila clam [24,79]. Although those spe-
cies are not annotated in a satisfactory way, they can still
provide some extra information. Blast searches were con-
ducted against NCBI (National Centre for Biotechnology
Information) amino acidic non redundant (nr) database (re-
lease of March 2012), using Blastx option. Alignments with
an E-value of at most 1.0 e'” were considered significant,
and up to 10 hits per contig were taken into account.

Unfortunately, like any non-model organism, the an-
notation of the clam transcriptome can be a challenge
and the annotation project was conducted using two
other different strategies by i) blasting against ensemble
protein databases of different species including Danio
rerio, Gasterosteus aculeatus, Oryzias latipes, Takifugu
rubripes, Tetraodon nigroviridis, Homo sapiens, Dros-
ophila melanogaster using a cutoff value of <1.0 ],
and ii) blastn search (cut off e-value of <1.0 ) against
Lottia gigantea v1.0 database [80], Crassostrea gigas
transcripts databases [23,81] and Argopecten irradians
EST database [82].

For de novo annotation of R. decussatus contigs, we
used Blast2go tool, which encompasses all the tools for
functional annotation of (novel) sequences and the ana-
lysis of annotation data [83,84]. The Gene Ontology
(GO) terms associations for BP, MF and CC were per-
formed using Blastx algorithm against the NCBI amino
acid nr database implemented in Blast2GO software. To
categorize the GO terms into different GO categories, a
web-based tool, CateGOrizer [85], was employed.

EST-SSR search

Misa software was used to screen simple SSRs and msat-
commander for complex forms (combinations of different
SSRs of coexistence of two or more SSRs). In either cases
search was performed to obtain SSRs longer than 20 bp
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and at with the following tuning: dinucleotide repeat > 20
bases; trinucleotide repeat > 21 bases; tetranucleotide re-
peat > 20 bases; pentanucleotide repeat > 20 base; hexa-
nucleotide repeat (HNP) (and more) > 24 bases.

DNA microarray design

Agilent technology of oligo-DNA microarray was chosen
to design a specific microarray based on sequenced
transcriptome (Figure 10), containing two probes with
both orientations considering all annotated transcripts
and unknown transcripts with Phred quality>30 and
length>400 bp. This 60mer oligo-probes design, in a
4 x 44K format, was assisted using the Agilent eArray
interface [86].

Biological handling, RNA extraction, labeling and
hybridization

Fifty grooved carpet shell clams with a size of 25-28 mm
were collected from the wild in the Ria Formosa, Portugal
and rested in proper aquariums for 4 days before sacrifice
in order to reduce stress. Gills were dissected and imme-
diately homogenize in Tri-reagent (Ambion, Austin. USA)
and simultaneous a small portion of the gills and the rest
of the tissues was incubated in Ray's fluid thioglycollate
medium assay, following previously established protocol
[4], to determine the level of Perkinsus.

Two groups were selected, one of four clams not in-
fected (No hypnospores present) and another with four
clams heavy infected with hypnospores presented in all
tissues (Mackin scale 5). RNA was extracted individu-
ally from these two groups using Tri-reagent (Ambion,
Austin. USA), following manufacturer’s instructions
and later purified and treated with Dnase I using the
RNeasy Mini Kit (Qiagen, Hilden, Germany), following
the manufacturer’s instructions for RNA cleanup. RNA
concentration was determined using a NanoDrop®
ND-1000 spectrophotometer, (NanoDrop Technologies,
Wilmington, USA) and integrity and quality were finally
evaluated on an Agilent 2100 Bioanalyzer (Agilent
Technologies, Palo Alto, CA).

Sample
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R. Decussatus
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454 & ESTs
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Figure 10 Overview of tissues origin and sequencing technologies used in this report.
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Table 3 Real time Primers used for microarray validation
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Putative gene annotation Sequence identifier

Primer sequence 5'->3’

Amplicon lenght (bp)  PCR efficiency

N.D rud_dec_c1521 F-GCACTTGTTGGTGGTCCTTATTGCTGG 183 92%
R-TGATTTGGTTAGTCAACTTCGCCG
Sialic acid-binding lectin rud_dec_c29141 F-CGTGGGCAGAACCTTTCAGTATGAG 98 94%

R-CACTTCACCCACACCCGTTGTCCTT

Pyridine nucleotide-disulphide rud_dec_c15726

F-CCTGGGGAGCCGTCATCATTAGC 149 91%

R-TACCTCCCCTTCTCTTCCCAAAACAA

Tetraspanin, rud_dec_c39872

F-TGGGTTCGGTAG GTCCTTCTAGTC 153 95%

R-AAAACTGCTGCTGTAATACCACCCGAG

Epididymal secretory protein 1 rud_dec_c2016

F-ACCTGTTCCATTTCCCGTTCCCT 149 95%

R-GGACTTCCCACTTTACAAGCAGCCG

Methionine sulfoxide reductase  rud_dec2_c944

F-AGATACCAAGTTCAACTCCCACTCGG 261 89%

R- CATCAGCCAGTGTTACGCTTTC

X- box binding protein 1 rud_dec2_c33

F-CAAGCAATCGCAAATCGCCAACA 225 92%

R-GTGGGAGACACTTTAAGTTGACCAG

Fructose-bisphosphatase rud_dec_c1253

F-AAGCAGCGGAACAGGCTAAAGAG 199 90%

R-CTGCCAGTGCTCTAAATGCCTTGTT

Inhibitor of apoptosis protein rud_dec_c1093

F-ATTGCCTGTGGTCACATGGTTA 110 96%

R-AGACAGCCATAAGAGCACGGACA

Glucose dehydrogenase rud_dec_c2753

F-TGGGAATGTTTCGTTCGTCACCT 146 93%

R-GAGGCATTCAACAACTCGAACC

ND rud_dec_c27604

F-GAATACTGCTTGTTGCTTTCGGTGT 102 95%

R-TGCCTCTCACTTCGTCTGTGTCGGA

Calmodulin rud_dec_c873

F-TGAAGTTGTATGCTGACGGAAATGGA (AR 95%

R-TTGGAATACTTCAAGTAACCCCTCTTCACTA

Labeling was done using 200 ng of total RNA linearly
amplified and labeled with Cy3-dCTP (Agilent One-Color
Microarray-Based Gene Expression Analysis). For control,
a mixture of 10 different viral poly-adenylated RNAs (Agi-
lent Spike-In Mix) was added to each RNA sample before
amplification and labeling. Labeled cRNA was purified
with Qiagen RNeasy Mini Kit, and sample concentration
and specific activity (pmol Cy3/pg cRNA) were deter-
mined using a NanoDrop spectrophotometer. A total of
1,650 ng of labeled cRNA was prepared for fragmentation
adding 11 pl 10X Blocking Agent and 2.2 pl of 25X Frag-
mentation Buffer, heated at 60°C for 30 min, and finally
diluted by adding 55 pl of 2X GE Hybridization buffer. A
volume of 100 pl of hybridization solution was then dis-
pensed in the gasket slide and assembled to the micro-
array slide (each slide containing four arrays). Slides were
incubated in the oven overnight at 65°C and then washed
according to manufacturer’s protocol.

Microarray scanning and data processing

Scanning was performed twice at two different sensitivity
levels (XDR Hi 100% and XDR Lo 10%) at 5 um resolution
using an Agilent G2565BA DNA microarray scanner. The

two images were analyzed together and data were ex-
tracted and background subtracted using Agilent Feature
Extraction (FE) Software version 9.5.1. After quality mea-
sures, all control features (positive, negative, etc.), except
for Spike-in (Spike-in Viral RNAs), were excluded from
subsequent analyses. Normalization procedures were per-
formed using R statistical software using Spike-in control
intensities to normalize each dataset. Significance Analysis
of Microarray (SAM) [87] was used to identify differen-
tially expressed genes between healthy clams and those in-
fected with Perkinsus.

Functional enrichment of differentially expressed genes

Gene functional annotation based on gene enrichment
was performed using the Database for Annotation,
Visualization and Integrated Discovery (DAVID) v6.7
[88,89]. DAVID is capable of recognizing functional an-
notation data from limited species, mainly human,
mouse and zebrafish. So, in order to use clam data, it
was necessary to convert clams genes into the equiva-
lent orthologs of zebrafish Gene IDs or entrez entries,
by blasting clam nucleotide sequences against zebrafish
protein counterparts. This was done by downloading
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blasted annotated protein sequences and performing in-
house blast routines. Then gene ontology search was
performed in DAVID using two lists, one with all identi-
fied genes as background and another with the differen-
tially expressed up and down regulated genes using the
same predefined settings.

Multiple sequence alignments

Available c-type lectins and clq sequences were re-
trieved from bivalve species present in Genbank, in-
cluding Mpytilus sp., Haliotis sp., Chlamys farreri,
Mercenaria, and Ruditapes philippinarum and aminoacid
protein sequences aligned using T-Coffee server [90], ap-
plying default settings. Alignments were subject to a pos-
terior manual adjustment. C1q signature was determined
using PRATT [91] server and sequence logos were then
created from multiple alignments using WebLogo [92].

Architecture domain analysis

Domain analyses of lectins present in R. decussatus was
performed using Superfamily at http://supfam.cs.bris.ac.
uk/SUPERFAMILY [93] using nucleotide sequences of
putative lectins discovered in our database. Lectins were
classified according to domain architecture. Signal pep-
tide was predicted using Signallp 4.0 server [94].

Quantitative real-time PCR analysis

Quantitative real-time reverse-transcription polymerase
chain reaction (QRT-PCR) was performed to validate and
assess the microarray data. Primers were designed for 12
differentially expressed genes identified by microarray
analysis (Table 3), randomly chosen. Real-time qPCR was
performed in a StepOnePlus apparatus (Applied Biosys-
tems) using gene specific primer sets to quantify expres-
sion of selected genes. Each reaction was prepared by
adding 2 pl of a 1:10 ¢cDNA dilution to reaction mix con-
taining 0.2 pM of each primer and 10 pl of SsoFast™
EvaGreen® (Bio-Rad), in a final volume of 20 pl. The qPCR
program contained an initial cycle of 10 min at 95°C
followed by 45 cycles comprising an initial denaturation
step at 95°C for 20 sec then annealing and extension at
68°C for 15 sec. The fluorescence was measured at the
end of each extension cycle in the FAM-490 channel.
Relative levels of clam gene expression were determined
by 2744¢* [95] comparing non infected versus infected
conditions and normalized with a previous described
housekeeping gene for R. decussatus, the L28 ribosomal
gene [96]. The neutral behaviour of this gene was also
confirmed in the microarray data. PCR efficiency was de-
termined for each pair of primers by using at least 4 dif-
ferent dilutions of the template cDNA and all the primers
pair showed efficiency between 89 and 96%. All experi-
ments were performed at least twice, and in a minimum
of triplicate wells. Microarray fold change was compared
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with relative gene expression of Realtime qPCR in order
to validate microarray results.

Additional files

Additional file 1: Table S1. Summary of Blastx (E-value < 10e-3) and
Blastn (E-value < 10e-5) similarity searches on several protein and nucleo-
tide databases for R.decussatus transcripts annotation.

Additional file 2: Figure S2. Functional categories distribution of R.
decussatus trancriptome, according to cellular component, biological
process and molecular function (A) and using map2GO classification
clustering (http://www.geneontology.org/external2go/egad2go).
Percentage of transcripts is reported for each functional category.

Additional file 3: Table S3. List of significant up and down regulated
sequences identified by SAM analysis (Fold change>1.5; FDR=5%) by
comparing controls and infected R. decussatus. In Green transcripts down
regulated and in red transcripts upregulated.

Additional file 4: Table S4. GO assignment, sequence description and
first e-value of blasted sequences (Genbank nr/nt database) with a man-
ual curated annotation (e-value < 1e-10) for up regulated genes.

Additional file 5: Table S5. GO assignment, sequence description
and first e-value of blasted sequences (Genbank nr/nt database) with a
manual curated annotation (e-value < 1e-10) for down regulated genes.

Additional file 6: Table S6. Retrieval of keyword lectins in Rdecusdb and
classification of lectins according to Superfamily prediction. Sequences are
distributed according to sequence name, superfamily and support e-value,
family and respective support e-value and domain architecture. Colors
represent classification, being yellow for c-type lectins, blue for Clg
(TNF-like), green for galactose binding lectins, pink for Fibrogen C-terminal
domain like, red for galectin and light cyan for Scavenger receptor cysteine
rich domain. Black triangles denote the presence of a signal peptide and FC
represents Fold change in the actual study.
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