
Anstead et al. BMC Genomics 2013, 14:764
http://www.biomedcentral.com/1471-2164/14/764
RESEARCH ARTICLE Open Access
The broccoli (Brassica oleracea) phloem
tissue proteome
James A Anstead1*, Steven D Hartson2 and Gary A Thompson1
Abstract

Background: The transport of sugars, hormones, amino acids, proteins, sugar alcohols, and other organic
compounds from the sites of synthesis to the sites of use or storage occurs through the conducting cells of the
phloem. To better understand these processes a comprehensive understanding of the proteins involved is required.
While a considerable amount of data has been obtained from proteomic analyses of phloem sap, this has mainly
served to identify the soluble proteins that are translocated through the phloem network.

Results: In order to obtain more comprehensive proteomic data from phloem tissue we developed a simple
dissection procedure to isolate phloem tissue from Brassica oleracea. The presence of a high density of phloem
sieve elements was confirmed using light microscopy and fluorescently labeled sieve element-specific antibodies.
To increase the depth of the proteomic analysis for membrane bound and associated proteins, soluble proteins
were extracted first and subsequent extractions were carried out using two different detergents (SDS and CHAPSO).
Across all three extractions almost four hundred proteins were identified and each extraction method added to the
analysis demonstrating the utility of an approach combining several extraction protocols.

Conclusions: The phloem was found to be enriched in proteins associated with biotic and abiotic stress responses
and structural proteins. Subsequent expression analysis identified a number of genes that appear to be expressed
exclusively or at very high levels in phloem tissue, including genes that are known to express specifically in the
phloem as well as novel phloem genes.
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Background
The phloem tissue of plant vascular systems forms the
functional conduit for transporting photosynthates, mac-
romolecules and other organic compounds from the sites
of synthesis to the sites of use or storage. The phloem is a
complex tissue composed of multiple cell types that have
specific functions in translocation, structure and defense.
The highly specialized conducting cells, sieve elements
(SEs) are connected by perforated sieve plates to form
sieve tubes; a living, functional conduit of cells that allows
low resistance movement of sap throughout the plant
(Oparka and Simon 2000). During development, the cyto-
plasmic contents of SEs are extensively restructured to
provide an open and continuous lumen for translocation.
Due to the developmental degradation of the nucleus,
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ribosomes and Golgi bodies, the SE is dependent for many
of its functions on its neighboring companion cells (CCs),
establishing a functional complex between the two cell
types that facilitates the exchange of molecules through
pore-plasmodesmatal connections. Thus, proteins are ei-
ther synthesized in immature SEs or transported from
CCs. The SE-CC complex is embedded within phloem
parenchyma cells, and the phloem tissue can contain
other specialized cells such as phloem fibers that provide
structural support or cells that are involved in defense
mechanisms. An example of a unique defense mechanism
in brassicas involves S-cells located between the endoder-
mis and phloem that accumulate glucosinolates and associ-
ated M-cells within the phloem that produce myrosinase,
an enzyme that catalyzes the hydrolysis of glucosinolates
into potent plant defense compounds [1]. There is also
a growing body of evidence that the phloem transports
macromolecules, including proteins and RNAs that are
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involved in plant defense, maintaining cellular functions
and as developmental signals [2-9].
Proteomic investigations of the phloem tissue have

predominantly focused on the analysis of phloem sap ex-
udates, identifying several hundred physiologically rele-
vant proteins and ribonucleoprotein complexes within
the translocation stream. Proteome analysis of phloem
sap has been conducted in oilseed rape (Brassica napus),
hybrid poplar (Populus trichocarpa × Populus deltoids),
rice (Oryza sativa), pumpkin (Cucurbita maxima),
cucumber (Cucumis sativus), and melon (Cucumis melo)
[4,9-14]. Highly represented among these studies are pro-
teins involved in redox regulation, defense and stress
responses, and calcium regulation. Changes in the phloem
sap proteome have also been investigated in response to
external stimuli. In poplar, leaf wounding led to the accu-
mulation of two proteins; SP1 and a pathogen-related
(PR-5) family protein [12]. Similarly, melon plants infected
with Cucumber mosaic virus accumulated additional plant
defense proteins in the phloem sap [11].
The vasculature is embedded within ground tissue,

especially in stems, making it difficult to isolate large
amounts of highly enriched phloem tissue required for
proteomic analysis. In contrast to phloem sap proteins,
there is much less information available about proteins
present throughout the phloem tissue. Such data could
reveal information about the presence and function of
membrane-associated or complexed proteins within the
SEs or proteins present in other cell types within the
phloem tissue. Laser-microdissected vascular bundles
have been successfully used for proteomic analysis in
Arabidopsis [15]. Despite the low volume of tissue recov-
ered by this technique, 49 proteins were identified from
5000 micro-dissected vascular bundles with comparative
analysis of tissue sections with and without vascular
bundles identifying 17 vascular bundle proteins [15]. In
another study, nano-LC-MS/MS was used to identify 56
proteins from pooled Arabidopsis S-cells sampled using
glass capillaries [16], these included proteins that formed
the biosynthesis machinery for methionine and hence
glucosinolates as well as high amounts of TGG1 and
TGG2. This indicated that in Arabidopsis myrosinases
and glucosinolates can be localized in the same cells,
presumably in different compartments. Isolated strands
of phloem tissue from celery petioles (Apium graveolens)
have also been used for transcriptomic studies, revealing
mRNAs encoding tissue-specific expression patterns for
several major classes of phloem proteins. Genes were
identified encoding a number of structural proteins in-
cluding phloem lectins, various cell wall associated genes
and cytoskeletal proteins as well as proteins involved in
metal homeostasis, stress responses, including genes as-
sociated with JA synthesis and degradation or turnover
of proteins [17].
Other approaches have focused on individual proteins
that are associated with the unique physiological func-
tions or structures in the phloem. For instance, sieve
element occlusion and sieve element occlusion related
proteins (SEO and SEOR) have been identified and local-
ized in a number of systems including Arabidopsis [18-20].
Enzymes involved in sugar metabolism and transport were
also found to be phloem-specific. Two sucrose synthase
genes (SUS5 and SUS6) are expressed exclusively in the
phloem [21,22]. Sucrose transporters are also highly ex-
pressed in phloem tissue and phloem-specific transporters
have been identified in many different plant species [23].
In Arabidopsis other research has focused on phloem-
associated lipid binding proteins [2] and enzymes involved
in the Yang cycle [24].
In this study, a simple technique was used to isolate

large quantities of phloem-enriched tissue to study the
phloem proteome of broccoli (Brassica oleracea). The
vascular architecture in the stem of broccoli is composed of
large, easily identifiable phloem strands that can be physic-
ally separated from the surrounding tissues, particularly the
xylem and epidermis. Differential extraction methods com-
bined with LC-MS/MS revealed different classes of soluble
and membrane-associated proteins. Because Brassica
oleracea and Arabidopsis thaliana are both members of
the family Brassicaceae, protein identification was facili-
tated by the availability of the well-annotated Arabidopsis
genome allowing a more in-depth functional analysis.

Methods
Tissue dissection
Stems from commercially grown broccoli crowns were
scored with a double-edged razor blade near the base
into cylinder-like sections ~3-5 cm wide at a depth of ~1-
2 mm. A vertical slice was made to expose the cambium,
and the exterior layer composed mostly of the epidermis
was peeled off using fine forceps under a binocular micro-
scope. The majority of the phloem tissue was removed
with the epidermal peel, leaving behind the xylem tissues.
Strands of phloem-enriched tissue were prepared by peel-
ing phloem fibers from the epidermal peel with a probe
under the binocular microscope. Control tissue, contain-
ing both pith and xylem tissue, but no phloem, was
extracted from the same stem sections using a 2.5 cm core
borer. Dissected tissues were flash frozen in liquid nitro-
gen, weighed and stored at -80°C.

Immunolocalization
Two different phloem-specific monoclonal antibodies,
RS6 and RS32, were used to visualize SEs within the
excised phloem-enriched tissue. The R6 antibody readily
cross-reacts with the protein antigen in B. oleracea that
is homologous to the Arabidopsis Sieve Element-specific
Early Nodulin (SE-ENOD) encoded by At3g20570 [25].
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The RS32 antigen has been designated as p35 for an
unidentified 35 kDA protein that localizes to SEs in
Brassica and Arabidopsis (Sjolund R – pers. Comm.).
Excised phloem-enriched tissues from B. oleracea were

washed twice in 10 mM PBS and incubated for 30 mi-
nutes in PBS with 3% non-fat dry milk (blocking buffer).
Strands were then washed twice with PBS and incubated
for 45 minutes with each monoclonal antibody in block-
ing buffer (1:100). After incubation with primary anti-
body, the strands were washed three times with PBS and
then incubated in PBS with ALEXA 488 nm fluores-
cently tagged secondary goat anti-mouse antibody (Invi-
trogen, Carlsbad, CA) (1:250). The labeled tissues were
washed twice with PBS and once with nanopure water
and observed under a Nikon E600 epifluorescence micro-
scope with an excitation wavelength of 490 nm and an
emission wavelength of 512 nm.

Protein extraction
Two grams of phloem-enriched tissue were ground in
liquid nitrogen with a mortar and pestle and extracted
with 4 ml of soluble protein extraction buffer (10 mM
Tris pH 7.2, 10 mM EGTA, 150 mM NaCl, 10 mM KCl,
1% Sigma plant protease inhibitor cocktail, 20 mM dithio-
threitol). The tissue was incubated in the soluble extrac-
tion buffer for one hour on a rocking platform at 4°C.
Soluble proteins were removed following centrifugation at
17,000 rpm for 25 minutes in JA 20 rotor in Avanti J-E
centrifuge (Beckman Coulter). Tissues were resuspended
in 4 ml of either CHAPSO (10 mM Tris pH 7.2, 10 mM
EGTA, 150 mM NaCl, 10 mM KCl, 1% Sigma plant prote-
ase inhibitor cocktail, 20 mM dithiothreitol) or SDS buffer
(4% SDS, 125 mM Tris–HCl pH 7.2, 150 mM NaCl,
10 mM KCl, 50 mM dithiothreitol, 1% Sigma plant prote-
ase inhibitor cocktail) and incubated at room temperature
for 1 hour on a rocking platform. Four ml of the super-
natant containing total membrane proteins were collected
following centrifugation as described above. Protein con-
centrations were determined with the RCDC protein assay
kit (Bio-Rad, catalog no.500-0119), which is compatible
with CHAPS and SDS. Aliquots of the aqueous and deter-
gent extracted protein fractions were flash frozen in liquid
nitrogen and stored at -80°C.
Prior to mass spectrometry proteins were concentrated

using TCA-acetone that removed components such as
SDS that interfere with mass spectrometry. Protein sam-
ples were dissolved in 8 M urea, 100 mM TrisHCL pH =
8.5, 5 mM tris(2-carboxyethyl)phosphine and denatured at
room temperature for 20 min. After incubation, 1/20th
volume of 200 mM iodoacetamide was added, and the
alkylation was allowed to proceed for 15 min in the dark at
room temperature. The sample was then diluted with four
volumes of 100 mM TrisHCl and digested with 4 μg/ml
sequencing grade trypsin (Promega V511C) overnight at
37°C. Digested samples were acidified to 1% formic acid,
purified by reversed-phase chromatography using C18 af-
finity media (OMIX tips from Agilent), and three analytical
replicates analyzed by mass spectrometry.

LC-MS/MS
Samples were analyzed on a hybrid LTQ-Orbitrap mass
spectrometer (Thermo Fisher Scientific) coupled to a New
Objectives PV-550 nanoelectrospray ion source and an
Eksigent NanoLC-2D chromatography system. Peptides
were analyzed by trapping on a 2.5 cm ProteoPrepII pre-
column (New Objective) and analytical separation on a
75 μm ID fused silica column packed in house with 10-cm
of Magic C18 AQ, terminated with an integral fused silica
emitter pulled in house. Peptides were eluted using a 5-40%
ACN/0.1% formic acid gradient performed over 40 min at a
flow rate of 300 nL/min.
During each one-second full-range FT-MS scan (nom-

inal resolution of 60,000 FWHM, 300 to 2000 m/z), the
three most intense ions were analyzed via MS/MS in the
linear ion trap. MS/MS settings used a trigger threshold of
8,000 counts, monoisotopic precursor selection (MIPS),
and rejection of parent ions that had unassigned charge
states, were previously identified as contaminants on blank
gradient runs, or were previously selected for MS/MS
(data dependent acquisition using a dynamic exclusion for
150% of the observed chromatographic peak width).

Data analysis
Centroided ion masses were extracted using the ex
tract_msn.exe utility from Bioworks 3.3.1 and were used
for database searching with Mascot v2.2.04 (Matrix Sci-
ence) and X! Tandem v2007.01.01.1 (www.thegpm.org).
Searches were conducted using the following search pa-
rameters: parent ion mass tolerance 15 ppm; fragment ion
mass tolerance 0.8 Da; up to one missed trypsin cleavage;
and variable modifications pyroglutamate cyclization of glu-
tamine, oxidation of methionine, acylamide or iodacetamide
adducts of cysteine, formylation or acetylation of the pro-
tein N terminus. Mass spectra were searched against a local
copy of the NCBI compiled on 03/28/10, and filtered to
contain only either Viriplantae or A. thaliana sequences, as
well as reversed sequence decoys. Peptide and protein iden-
tifications were validated using Scaffold v2.2.00 (Proteome
Software) and the Peptide Prophet algorithm [26]. Probabil-
ity thresholds were greater than 95% probability for protein
identifications, based upon at least 2 peptides identified
with 80% certainty. Proteins that contained similar peptides
and could not be differentiated based on MS/MS analysis
alone were grouped to satisfy the principles of parsimony.

Semi-quantitative PCR
Total RNA was extracted from both the phloem-enriched
and control tissue using the Trizol method and reverse

http://www.thegpm.org/
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transcribed using SuperScript II according to the manufac-
turer’s instructions. Primers were designed to amplify par-
tial, intron spanning sections of each Arabidopsis gene
identified using VectorNTI (Invitrogen). Primers which suc-
cessfully amplified are listed in Additional file 1: Table S1.
Gene fragments were amplified by PCR (95°C for 7 min,
followed by 40 cycles of 95°C for 15 seconds, 55°C for
15 seconds, 72°C for 90 seconds, followed by 72°C for 7 mi-
nutes). Products were separated by agarose gel electrophor-
esis and visualized with ethidium bromide.
Results
Phloem-enriched tissue extraction
The large stems of broccoli crowns proved to be a useful
source to isolate strands of phloem-enriched tissue. The
outer layer composed mostly of epidermis and adjacent
cells was easily peeled from the stem. These sections
contained vertical files of phloem tissue that had sepa-
rated at the cambium from the xylem. Phloem-enriched
strands were readily separated from the peeled outer
layer containing the epidermis. Large numbers of sieve
elements with their connecting sieve plates in the isolated
strands could be observed by light microscopy (Figure 1).
The presence of previously characterized SE-specific pro-
teins SE-ENOD (Figure 1B) and p35 (Figure 1C), respect-
ively, in SEs within the excised tissue was confirmed by
A

Figure 1 Phloem-enriched strands isolated from Brassica oleracea. (A)
numerous sieve plates (arrows) (bar = 200 μm). (B-C) Immunolocalization o
phloem-specific protein antigens for monoclonal antibodies that recognize
immunolocalization experiments with RS6 and RS32
monoclonal antibodies.
Protein identifications
Three extraction protocols were used to isolate protein
from the phloem-enriched strands. An aqueous soluble
fraction was first extracted from the tissues, which were
subsequently extracted with either a non-denaturing
(CHAPSO) or denaturing (SDS) detergent-containing
buffer, all three samples were then analyzed using LC MS/
MS. Peptide identities were carefully validated using
Scaffold’s (v2.2.00) Mascot, Xtandem!, and Peptide
Prophet modules (Additional file 2: Table S2). Protein
identifications were validated using Scaffold and the
Peptide Prophet algorithm [26] (Additional file 3: Table
S3). A total of 379 total proteins were identified that
matched Arabidopsis genome data from the combin-
ation of all three extraction protocols and all LC-MS/
MS runs (Additional file 3: Table S3). False discovery
rates calculated by using the Protein Prophet algorithm
were 0.075 for spectra and 0.002 for proteins. Proteins
ranged from the most common mitochondrial ATP
synthase subunit alpha to the p23 co-chaperone which
was only detected once. Overall, the highest number of
proteins (223) was detected in the SDS fraction and the
largest number of unique proteins in the soluble (74)
B C

Brightfield micrograph of the phloem-enriched strands showing
f sieve elements within the phloem-enriched strands, containing
the (B) SE-ENOD and (C) SE-specific p35 protein (bar = 100 μm).
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(Figure 2). A large number of unique proteins were also
identified in the SDS fraction (67) and CHAPSO (53)
fraction. A total of 127 proteins from all three extraction
protocols were previously identified from proteomic ana-
lyses of phloem in several species with the SDS fraction
containing the most previously identified proteins (95 out
of 127) (Figure 2 and Additional file 3: Table S3).
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Functional analysis
The biological functions and processes of the B. oleracea
phloem-enriched strand proteins were analyzed using
the currently available gene ontology (GO) annotations
in Arabidopsis (Figure 3 and Additional file 4: Table S4).
Though not a definitive analysis of function GO annota-
tions can provide an indication of gross changes in
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function between tissues. Comparing GO slim annota-
tion categories of proteins with known gene functions
between the B. oleracea phloem proteome and the entire
Arabidopsis genome, the largest enrichment was in GO
annotations in structural molecule activity (6% versus
1%), nucleotide binding (11% versus 7%), other binding
(18% versus 11%) hydrolase (13% versus 8%) and other
enzyme activity (21% versus 9%). Conversely there was a
paucity of annotations in nucleic acid binding (1% versus
3%), kinase activity (2% versus 6%) and transferase activity
(7% versus 11%). Comparing GO slim annotation categor-
ies for proteins involved in known biological processes,
the greatest differences were in responses to abiotic or bi-
otic stimulus (9% versus 5%) and stress (10% versus 5%).
In both the gene function and biological process annota-
tion, there was a large decrease in genes assigned as un-
knowns in the phloem proteome when compared to the
Arabidopsis genome, probably as a result of the inclusion
of non-protein coding genes within the genome.
A comparison was also made between the gene ontol-

ogy annotations for proteins identified from each of the
three extraction protocols (Figure 4 and Additional file 5:
Table S5). As expected there was a higher proportion of
cytosolic proteins in the soluble fraction (soluble 12% of an-
notations = 97 proteins; CHAPSO 6% of annotations = 30
proteins; SDS 5% of annotations = 30 proteins) (Figure 4A).
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The CHAPSO fraction contained the highest proportion
of cell wall associated proteins (CHAPSO 9% of annota-
tions = 43 proteins; SDS 3% of annotations = 23 proteins;
soluble 3% of annotations = 35 proteins). The largest and
most obvious difference among the extraction protocols
involved proteins with transporter activity. The SDS ex-
tracted fraction contained many more proteins with trans-
porter activity (14% of annotations = 39 proteins) than
either the CHAPSO (2% of annotations = 5 proteins) or
the soluble buffer (< 1% of annotations = 1 protein). This
was supported by biological processes annotations where
52 proteins (10% of the annotations) in the SDS sample
indicated involvement in transport versus only 5 proteins
(1% of the annotations) and 12 proteins (2% of the annota-
tions) in the soluble and CHAPSO fractions, respectively.
The SDS extraction also outperformed the CHAPSO for
structural molecules with 8% of annotations and 22 pro-
teins versus 3% of annotations and 8 proteins.

Gene expression
Semi-quantitative RT-PCR was used to examine whether
the genes encoding the 377 proteins identified in the
phloem were expressed in the excised phloem-enriched
strands. To determine whether any of these genes showed
evidence of high or phloem-specific expression, expres-
sion in the phloem-enriched strands was compared with
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pith (non-phloem) tissue isolated from stems. Two sets of
control genes that are known to be either ubiquitously
expressed or expressed only in the sieve elements in Ara-
bidopsis were used to confirm the absence of phloem in
the phloem-enriched sample and control for expression
levels (Figure 5). These genes confirmed the absence of
sieve elements in the pith tissue sample. From the 377 pri-
mer pairs designed, 166 gave amplification products detect-
able by ethidium bromide electrophoresis (Additional file 6:
Figure S1). There were no genes that showed expression in
the control tissue alone although several had comparatively
much higher expression than in the phloem, perhaps due a
lower frequency of specific cell types such as parenchyma
in the phloem tissue. For example, At3g50820 which en-
codes a photosystem II subunit and At5G65760 which en-
codes a serine carboxypeptidase exhibited comparatively
lower expression in the phloem tissue (Additional file 4:
Table S4). In addition to the three control genes 20 other
genes showed enhanced or possible phloem-specific expres-
sion (Figure 5).

Discussion
Phloem dissection and protein extraction
One of the most significant hurdles to successful prote-
omic analysis of plant phloem tissue is obtaining sufficient
amounts of phloem tissue for analysis. Many studies have
focused on phloem exudates, mostly from cucurbits, where
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raised concerning the broad applicability of proteomic data
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understood as phloem constituents, and obvious contami-
nants were not apparent. This was also borne out by the
high level of expression of phloem-specific genes in the
phloem-enriched tissues when compared to stem pith tis-
sue that lacked phloem marker gene expression (Figure 5).
Whilst the phloem strands are highly enriched in sieve ele-
ments and other phloem cells, it should be noted that non-
phloem cells from surrounding ground tissue could be
included in the analysis.

Extraction methodologies
Several approaches were combined to increase depth of se-
quencing for membrane and membrane-associated pro-
teins from phloem-enriched tissues. Firstly soluble proteins
were removed using a simple salt-wash and analyzed separ-
ately and secondly different detergents, CHAPSO and
SDS, were used to extract a wider range of protein classes
from the remaining tissue. Creating differentially extracted
pools of proteins revealed differences in both the amount
and types of protein that could be identified. Small differ-
ences in the number of proteins were obtained using each
approach; however, all three fractions contained unique
proteins (Figure 2), indicating that a combined approach
using several extraction protocols provided the deepest
data set. The SDS fraction contained many more proteins
involved in transport and transport activity (Figure 4).
These included membrane proteins such as Shepherd
(SHDP) ATP/ADP carrier 1 (AAC1) and V-type proton
ATPase 16 kDa proteolipid subunit c1 (AVP1), which were
only identified in the SDS extracted fraction. Interestingly,
of the three sucrose synthases identified, two (SUS1 and 4)
were only identified in the soluble fraction and the other
(SUS6) was only identified in the SDS fraction. This agrees
with the GO annotation details for these genes as SUS6 is
reported to be located within the chloroplast, whereas
SUS1 and 4 are cytosolic proteins [29,30]. Cell wall pro-
teins were optimally extracted with CHAPSO in the buffer,
and leucine rich repeats proteins and peroxidases were
only identified in this fraction.

Identified proteins
LC MS/MS analysis identified approximately four hun-
dred different proteins, considerably more than in previ-
ously published datasets. There was however considerable
overlap with previously published data sets that identified
proteins predominantly from phloem exudates, but also
from micro-dissected phloem tissues and S-cells (Figure 2
and Additional file 2: Table S2). Twenty-one of the 49 pro-
teins identified in micro-dissected vascular bundles from
Arabidopsis were also found in the broccoli phloem-
enriched tissues [15]. Similarly, 27 of the 56 proteins iden-
tified from Arabidopsis S-cells were found in the broccoli
dataset [16]. The absence of some identified proteins in the
Brassica oleracea proteome are likely due to divergence
between Brassica oleracea and Arabidopsis. The low fre-
quency of S-cells within phloem tissue also means a whole
phloem proteome will have less depth for S-cell proteins.
However overall this simple dissection protocol produced a
deeper proteome than previous attempts and was particu-
larly rich in membrane and membrane associated proteins.

Gene processes and biological function
Identifying phloem proteins using the Arabidopsis gen-
ome allowed comparisons to be made between GO an-
notations associated with phloem proteins and those
associated with the whole Arabidopsis genome. At a
broad level this shows how the specialized function of
the phloem tissue differs from the rest of the plant. For
instance the largest differences between the whole plant
and phloem-enriched tissues in biological processes were
proteins involved in response to biotic and abiotic stimu-
lus and stress and in gene function were in structural mol-
ecule activity. Additional transcriptional analysis showed
20 Brassica homologs to Arabidopsis genes were found to
have very high expression in the phloem-enriched tissue
when compared to the control stem pith tissue (Figure 5).
Little has been published about some of these proteins,
but many of them are encoded by members of large gene
families suggesting that these genes represent tissue-
specific members within the gene family.

Biotic and abiotic stimuli and stress
The enhanced presence of proteins involved in responses
to biotic and abiotic stimuli and stress reflect a similar
enrichment of stress-regulated genes found in the tran-
scriptomic analysis of celery phloem [17]. This is per-
haps not surprising as specialist insect herbivores such
as aphids and whiteflies feed exclusively in this tissue. In
response to this specialized herbivory, plants have evolved
a range of induced responses including activation of jasmo-
nic acid, salicylic acid and ethylene defense pathways, the
production of pathogenesis-related (PR) proteins, proteins
involved in reactive oxygen species processes and calcium
signaling [7,31-35]. Proteins involved in generalized plant
defenses are also present in the phloem, including a large
number of protease inhibitors [7] and the glucosinolate-
based defense pathway [1]. Arabidopsis possesses six myro-
sinase genes encoding proteins which are expressed in
guard and phloem cells and degrade glucosinolates to pro-
duce herbivory deterring compounds [36]. In this study,
two myrosinases proteins (TGG1 and TGG2) were iden-
tified in the phloem proteome as well as a number of
other proteins involved in the production of glucosinolate
defense compounds, such as myrosinase-binding protein-
like protein (At1G52030) and a myrosinase-associated
protein (At1G54000). Myrosinase expression was high in
the phloem enriched tissue and not detectable in the con-
trol tissue (Figure 5); given that the control tissue used in
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this experiment contained no guard cells, expression in the
phloem tissue alone was to be expected. Viral defense pro-
teins have also been previously reported from phloem tis-
sue; the RTM (Restricted TEV Movement) family have
been shown to restrict the long distance movement of
potyviruses in the phloem [37,38]. A RTM2 (AT5G04890)
homolog was identified in the B. oleracea in our phloem
proteome.
β-1, 3-glucanase is involved in many different processes,

including pathogen, stress and hormone responses as well
as developmental processes. A putative (At3G55430) and a
confirmed β-1, 3-glucanases (At5G20870) were identified
in the phloem proteome. At5G20870 was shown to have
high comparative expression in the phloem (PCR amplifi-
cation failed for At3G55430). Expression analysis of this
family indicates At3G55430 is up-regulated in reponse to
fungal pathogen infestations and that At5G20870 may be
involved in developmental processes, although this is by no
means certain [39]. At5G60360.1 is a vacuolar protein [40]
that is responsive to biotic stress and ethylene [41]. The
identification and comparatively higher expression of genes
responsive to stress is likely related to the role of the
phloem in response to abiotic stresses such as drought and
salinity which perturb the phloem transport system.
The phloem is also responsive to a variety of abiotic

stresses. Water plays an important role in the long-
distance transport of compounds through phloem sieve
tubes, thus, it was not surprising to find a number of
dehydration-related proteins such as dehydrin, RD (Re-
sponsive to Dehydration) and ERD (Early-responsive to
dehydration) proteins. Other proteins involved in abiotic
stress responses, such as cold-regulated and heat-shock
proteins were also identified.
These include glucose-6-phosphate dehydrogenase 6

(G6PD6) and the lactate/malate dehydrogenase family
protein (At4G17260), both previously identified in
pumpkin phloem exudates [10]. G6PD6 provides
NADPH for redox regulation in response to ROS stress
that when activated by ASK-alpha (Glycogen Synthase
Kinase 3) reduces ROS levels induced by salt-stress, in-
creasing salt-tolerance [42]. The lactate/malate dehydro-
genase family protein (At4G17260) is also reported to be
responsive to salt-stress and ABA [43,44]. ERD10
(At1G20450) is responsive to dehydration [45] and cold-
stress; and ERD10 loss of function Arabidopsis mutants
show reduced tolerance to cold and drought stress and
low seed germination [46]. ERD10 also undergoes oxida-
tion of specific methionine residues in response to
stress, thus regulating cellular responses [47]. The
Glyoxalase/Bleomycin resistance protein encoded by
At1g67280 is expressed in all developmental and in-
duced by abiotic stresses such as salinity, drought, cold,
and heat in shoot and root tissues [48]. Similarly ADH1
is expressed in multiple plant tissues and is highly
responsive to multiple abiotic stresses including drought
and salt stress [43,49].
Tubby-like proteins are involved in plant-stress signaling

and are integrated into a number of plant-stress response
pathways [50]. TLP3 is believed to act as a stress-responsive
plasma membrane-tethered transcription factor [51] and in
plants acts in both stress responses and reactive oxygen
species (ROS) signaling [52]. GUS promoter expression
analysis showed Tubby-like Protein 3 to be highly, but not
exclusively, expressed in vascular tissue [52].

Structural proteins
Large numbers of proteins associated with structural mol-
ecule activity were also present in the dataset. The major-
ity of these were ribosomal proteins, but there were also
several members of the actin (Actin2 & 7) and profilin
families (Profilin 1 & 5) as well as a six members of the
tubulin family (Tubulin-Alpha 3 & 6, and Tubulin-Beta
1,2 4 & 5). Historically, phloem sieve elements were be-
lieved to lack a conventional cytoskeleton; however actin
and profilin proteins have been previously reported in
phloem exudates in a number of plant species [9,10,13,53]
and recent evidence has unequivocably shown that SE’s
contain a fully developed actin network [54]. In addition
to actin and profilin, an expansin (At1G26770) and cla-
thrin (At3G11130) were identified in the B. oleracea pro-
teome. Expansin 10 is a member of a large-multi-gene
family whose members tend towards tissue or cell specific
expression patterns, regulating cell wall enlargement in
growing cells by a process that appears to induce pH-
dependent wall extension and stress relaxation [55,56].
Expansin 10 has been previously reported to show a
phloem-cambium expression bias and these data support
a possible phloem-specific role for this protein [57].
Pectin methylesterases are another large family of en-

zymes involved in cell-wall restructuring. Many members
of this family are expressed in a tissue-specific manner
during developmental periods such as stem elongation
[58] and fruit ripening [59]. Promoter analysis of ATPME3
expression shows highly specific expression in phloem tis-
sue [60] in concordance with the data presented here.
Interestingly ATPME3 acts as a susceptibility factor and is
required for infection by necrotrophic pathogens [61], in-
dicating a possible route for phloem cell wall penetration
by these pathogens.
Additional highly expressed cell wall associated pro-

teins were also identified, including two peroxidases
(At3G21770, At3G32980) that had been previously iden-
tified from phloem samples [62], a Leucine Rich Repeat
cell wall protein (At4G13340) and a fasciclin-like arabi-
nogalactan (FLA2, At4G12730). Little is known about
the specific biological functions of these proteins, although
fasciclin-like arabinogalactans are believed to play a role
in secondary plant cell wall biosynthesis and other
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members of the family show tissue-specific patterns of ex-
pression [63]. The presence of these specific cell wall pro-
teins is likely associated with the unique structure of
phloem cells, particularly SEs and CCs. The same may be
true of PFK3 (phosphofructokinase 3, At4G26270) that
was also highly expressed in phloem tissue. PFK3 regu-
lated by HDA18 HISTONE DEACETYLASE 18 and in-
volved in cell patterning and fate [64] and could play a
role in phloem differentiation.

Other proteins
Phloem is believed to be the major transport route for
sulphur in plants and considerable data exists on long-
distance transport of sulfur-containing compounds in
the phloem. The enzyme S-adenosylmethionine synthase
(SAM-2) that generates S-adenosylmethionine from
methionine and ATP was identified in the B. oleracea
phloem-enriched proteome. A related methionine S-
methyltransferase that catalyses the step of the methio-
nine synthesis pathway producing S-methylmethionine
(SMM) from S-adenosylmethionine has been found in
phloem exudate collected from aphid stylectomies in
wheat [65]. Both these enzymes are required to convert
methionine to SMM, which is believed to play a major
role in sulphur transport in phloem tissue [65,66].
Proteins were identified with less defined roles in

phloem biology. The amino acid sequence of the KH
binding domain protein (At2G25970) indicates that this
is a putative RNA binding protein. While additional in-
formation for this particular protein is lacking, long dis-
tance RNA trafficking is believed to occur in the phloem
with the assistance of a number of RNA binding proteins
[6,67]. Patellin-3 (PATL-3) was also found to be highly
expressed in B. oleracea phloem-enriched tissue. Patel-
lins are a six member family of membrane proteins in
Arabidopsis, PATL1, the best characterized patellin, is a
phosphoinositide-binding protein that localizes to the
expanding and maturing cell plate [68], however little in-
formation is available regarding PATL3 and its possible
role in phloem physiology remains to be elucidated.

Conclusions
A simple dissection technique was described that gener-
ated large quantities of phloem tissue from Brassica oler-
acea. Analyses using phloem specific antibodies and
proteomic analyses indicated it was highly-enriched for
phloem tissue. Soluble and membrane associated pro-
teins were extracted using several different techniques
and analyzed using LC MS/MS to create a deep prote-
ome data set. A total of 377 proteins were identified and
analyzed using Gene Ontology terms. When compared
to the whole Arabidopsis genome the B. oleracea
phloem was enriched for structural proteins and pro-
teins related to biotic and abiotic stimuli and stress.
Subsequent transcriptional analyses identified a smaller
sub-set of genes that are highly or exclusively tran-
scribed in phloem tissue and their functional significance
is discussed.

Availability of supporting data
Mass spec data has been deposited at Peptide Atlas
(PASS00331).
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