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Abstract

Background: Fungal pathogens cause devastating losses in economically important cereal crops by utilising
pathogen proteins to infect host plants. Secreted pathogen proteins are referred to as effectors and have thus far
been identified by selecting small, cysteine-rich peptides from the secretome despite increasing evidence that not
all effectors share these attributes.

Results: We take advantage of the availability of sequenced fungal genomes and present an unbiased method for
finding putative pathogen proteins and secreted effectors in a query genome via comparative hidden Markov model
analyses followed by unsupervised protein clustering. Our method returns experimentally validated fungal effectors in
Stagonospora nodorum and Fusarium oxysporum as well as the N-terminal Y/F/WxC-motif from the barley powdery
mildew pathogen. Application to the cereal pathogen Fusarium graminearum reveals a secreted phosphorylcholine
phosphatase that is characteristic of hemibiotrophic and necrotrophic cereal pathogens and shares an ancient selection
process with bacterial plant pathogens. Three F. graminearum protein clusters are found with an enriched secretion
signal. One of these putative effector clusters contains proteins that share a [SG]-P-C-[KR]-P sequence motif in the
N-terminal and show features not commonly associated with fungal effectors. This motif is conserved in secreted

and other organisms.

model, Protein structure

pathogenic Fusarium proteins and a prime candidate for functional testing.

Conclusions: Our pipeline has successfully uncovered conservation patterns, putative effectors and motifs of
fungal pathogens that would have been overlooked by existing approaches that identify effectors as small, secreted,
cysteine-rich peptides. It can be applied to any pathogenic proteome data, such as microbial pathogen data of plants
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Background

Fungal pathogens represent one of the most important
restraints of food production worldwide and can also
threaten natural plant populations [1,2]. Any one plant
species can come under attack from a diverse range
of fungal pathogens that may not be related. These
different pathogens may also have different modes of
infection: biotrophs which require living tissue to
obtain nutrients, necrotrophs which kill the plant cells to
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obtain nutrition and hemibiotrophs which show phasic
interactions with plant hosts that are a combination of
both biotrophy and necrotrophy. The outcome of the
interaction between any of these infection modes will
depend on both the ability of the plant to defend itself and
the ability of the pathogen to cause disease. Understanding
how diverse pathogens cause disease on specific hosts
will provide information for the development of new
crop protection strategies.

Pathogens utilise a wide range of virulence strategies
to bring about disease. These include the production
of small secreted proteins (or effectors) that interfere
with host functions, the production of small secondary
metabolites that may have effector-like function or be
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toxic to host cells and the production of reactive oxygen
species. Pathogens also possess mechanisms to defend
themselves against the host response to infection such
as proteins to mask other molecules that may otherwise
be recognised by the host, enzymes to metabolise toxic
plant derived compounds and enzymes to detoxify
reactive oxygen species. However, our understanding of
the virulence arsenal of most pathogens is fragmentary.
This is in part because most virulence strategies possessed
by a single pathogen contribute in a quantitative manner
to the outcome of an interaction, making their detection
difficult. Proteinaceous effectors that act as avirulence
determinants in specific host genotypes are an exception
to a quantitative contribution to an interaction, but the
virulence function of these in compatible hosts are also
poorly defined.

De novo prediction of pathogen virulence mechanisms
in fungi based on common sequence features has to
date been difficult. In contrast, proteinaceous effectors
of bacteria and oomycete pathogens can be predicted from
conserved targeting signals in the N-terminal regions
with comparative ease. Using whole-genome sequence
and deduced protein-coding gene sequences of these
organisms, proteins with certain conserved amino-acid
motifs in their N-terminal region have been observed
to be strongly associated with predicted secreted proteins.
In bacteria, this is the signal that targets proteins to
the type III secretion system which directly delivers
proteins to the host cytoplasm [3-5]. Effectors in oomycete
secretomes have conserved RXLR-dEER [6], Crinkler
[7], CHXC [8] and YXSL[RK] motifs [9] allowing the
identification of new Oomycete effectors. The RXLR-dEER
motif has been demonstrated to facilitate effector uptake
by the host cell [10-12]. oomycete genomes encode
hundreds of such potential effectors [13], a growing
number of which have been functionally validated.

In the fungi, no functional uptake signal has been de-
scribed yet and thus robust effector prediction based on
signature sequence motifs are not feasible. Effector detec-
tion in fungal pathogens has been based largely on host
specific responses mediated by host recognition of the ef-
fectors [14]. Bioinformatics approaches utilize known ef-
fector features for analyzing the secretome of fungal
pathogens to find proteins with possible roles in viru-
lence. The secretome is typically predicted using a com-
bination of signal peptide prediction methods [15,16] and
accuracy relies heavily on the reliability of the secretion
prediction methods used. Effector prediction in the lit-
erature commonly involves selecting small cysteine-rich
proteins from the predicted secretome as these have been
associated with properties of known effectors [15,17,18].
Small, cysteine-rich proteins are typically defined as
being shorter than 150 amino acids [19] and having
more than four cysteine residues [20], however there is no
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consensus in the literature about how these thresholds are
set. Therefore, this type of selective effector prediction ap-
proach is dependent on the validity of the thresholds used
and also makes a priori assumptions about effector pro-
tein properties.

These a priori assumptions about effectors are beginning
to be challenged with the discovery of effector proteins
that are larger in size, do not contain a high number of
cysteines and are not predicted to be secreted based on
a signal peptide sequence. For example, a 290 amino acid
secreted chorismate mutase enzyme of the Basidiomycete
fungus Ustilago maydis is taken up by maize cells where it
interferes with the production of the defence-stimulating
plant hormone, salicylic acid [21]. In the bacterium
Xanthomonas campestris a 536 amino acid uridine
monophosphate transferase acts as a virulence effector
inibiting host kinases [22]. The SIX3 gene in Fusarium
oxysporum encodes an effector protein with only two
cysteine residues [23] and the AvrM gene encodes an
effector without cysteines in the haustoria-forming
pathogen Melampsora lini [24]. The barley powdery
mildew fungus genes AVR-al0 and AVRkI encode
effector proteins without a secretion signal peptide
[25]. Furthermore, in a proteomic study of the interaction
between F. graminearum and wheat, a large proportion
of proteins of fungal origin isolated from the apoplastic
space between host plant cells were also not predicted
to be secreted [26]. The reverse approach of functionally
analysing large sets of secreted proteins for roles in
virulence has to date also had a relatively low success
rates. For example, in an analysis of 78 secreted proteins
from Magnaporthe oryzae only one was shown to have
a role in virulence [27]. In summary, we propose that
fungal pathogens encode many more effectors than
those currently known and with additional or alternate
molecular properties than those that are predicted by
current approaches.

An unbiased and powerful way to predict the virulence
arsenal of fungal pathogens is to compare and contrast
fungal pathogens via comparative genomic analyses.
Fungal pathogens of the same or similar host plant can
be expected to have evolved, to some degree, common
virulence mechanisms that target the same host com-
ponents to bring about disease. The relatively small size
of fungal genomes (compared to many plant hosts) makes
them amenable to whole genome sequencing and the
number of fungal genome sequences available provides
an unprecedented opportunity to use comparative analyses
to associate genes with virulence functions. Cross species
comparative analysis has been successfully applied to
the identification of completely novel virulence mechanisms
in wilt pathogens of dicot hosts [28] and in the cereal-
infecting fungus F. pseudograminearum [29]. In both of
these examples, proteins uniquely present in organisms
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sharing a common biological feature (i.e wilt-causing fungi
or cereal-infecting fungi, respectively) were shown to
be involved in virulence. Both of these studies relied on
the sequence similarity search tool BLAST [30]. BLAST
is a position-dependent local alignment tool that works
well for regions of high sequence similarity. However,
more sensitive methods are likely to be required in
fast-evolving genome regions where mutations might
lead to little sequence identity amongst a protein family,
yet the three-dimensional structure, i.e. the functionality,
will be preserved. For example, RXLR effector proteins
might share as little as 15% sequence identity yet they can
have almost identical three-dimensional structures [31].
Sequence similarity search tools such as BLAST will
fail to detect those important functional relationships.

More sensitive interrogation techniques for screening
for putative virulence and effector molecules in fungal
pathogens are hidden Markov models (HMMs). Profile
HMMs are an alternative to BLAST and are statistical
models of multiple sequence alignments with the ability
to capture position-specific information. Certain positions
can have specific scores for amino acids as well as specific
gap penalties for insertions or deletions. This is a clear
mathematical and biological advantage over position-
independent local alignment tools such as BLAST. Profile
HMMs can group sequences into evolutionarily related
families and find remote homologues. The power of
profile HMMs becomes obvious when a family of evo-
lutionarily related sequences is known and a carefully
curated multiple sequence alignment is available. Instead
of scanning a large number of weak BLAST hits by eye
for remote homologues, a profile HMM can be calculated
from the alighment and can be used to search a database
for remote family members. Profile HMM searches are
now essentially as fast as BLAST and available in the
HMMERS3 software package [32]. If no initial multiple
sequence alignment is available, a profile HMM can be
built from a single sequence and can be used in a database
search using phmmer. Despite these advantages, to our
knowledge, single sequence profile HMM methods
such as phmmer have not been applied to the de novo
identification of putative virulence-related proteins
and effectors in pathogens.

In this work, we present a sensitive and accurate
HMM-based pipeline for predicting proteins with shared
functions, in this particular study with putative virulence
or effector functions, based on a comparative analysis
and a subsequent protein clustering step (Figure 1). We
use 174 fungal genomes from the Joint Genome Institute
(JGI) MycoCosm [33], which covers diverse pathogenic
and non-pathogenic fungi and is a well-established
resource in fungal genomics [34]. Instead of restricting
ourselves to a small number of genomes from a par-
ticular lineage (and thus creating taxonomic bias), we
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intentionally used 174 publicly available fungal genomes
which cover the fungal kingdom in a phylogenetically
and phenotypically diverse manner. The initial step of the
pipeline is to find proteins in a query fungal pathogen
genome which have HMM sequence similarity hits specific
to fungal pathogens and at the same time predominantly
absent from non-pathogenic fungi. These pathogen-
associated proteins are ranked according to their degree
of conservation across other fungal pathogens, with
and without a cereal host, to find infection mechanisms
common to pathogenic fungi. Unsupervised clustering
of the pathogen-associated protein set according to 35
sequence-derived features (e.g. signal peptide prediction
score, molecular weight, amino acid composition) leads
to protein clusters which share similar characteristics. From
this we identify clusters that have an enriched secretion
signal or conserved potential signalling domain as putative
effector protein groups. The major advantage of the
unsupervised clustering of proteins for finding effector
genes is that no heuristic cut-offs such as protein
length or the number of cysteines is used. However, if
these are features common to a group of effectors,
they will show up in the clusters naturally. Furthermore,
the clustering of pathogen-associated proteins using
sequence-derived features is a first step towards finding
structural homologies in the twilight zone of sequence
similarity (20-30% pairwise sequence identity). Our
method has revealed promising novel candidate virulence
factors as well as putative effector molecules, some of which
appear to have unusual evolutionary origins suggesting
they have been subjected to specific selection and have
important functions in pathogenesis. Furthermore, we have
identified protein groups with related sequence-derived
features, which may indicate common functionality. Our
method can have wide application in effector discovery
in microbial pathogens of plants and other organisms.

Results and discussion

Development of a candidate virulence gene

selection pipeline

To identify genes with potential roles in virulence on plant
hosts a prediction pipeline was developed that utilises
distribution across the fungal kingdom as a means of
identifying candidates. The hypothesis underlying this
pipeline is that genes involved in virulence processes are
more likely to be retained or uniquely present in organisms
that share a biological trait such as pathogenicity towards
plants. The comparative analysis pipeline queries a genome
of interest by a systematic and sensitive HMM comparison
to a large number of publicly available fungal genomes.
Here, 174 genome sequences were used, but as new
genomes are published they can be added to the pipeline.
Our approach intentionally avoids taxonomic groupings
of the 174 fungal genomes as pathogens can be phylogen-
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Figure 1 The comparative pipeline for predicting candidate virulence genes and effectors. Our comparative analysis pipeline predicts
proteins in a query pathogen genome which have HMM sequence similarity hits predominantly in fungal pathogens. For a protein to be
associated with pathogenicity, the list of phmmer hits must include at least 80% hits to proteins from pathogen species (including the query
genome itself). These pathogen-associated proteins are then analyzed in terms of two criteria: (1) their degree of conservation across other fungal
pathogens with and without a cereal host and (2) their potential to act as effectors outside the fungal cell. Proteins which are highly conserved
across a diverse range of other pathogens as identified by our F-measure ranking are prime candidates for virulence-related proteins. To identify
putative effector candidates in an unbiased way, an unsupervised clustering technique based on 35 sequence-derived protein features is used to
look for protein clusters with an enriched secretion signal. Further investigation of the clusters with regards to predicted sequence motifs, novel

secretion signals, amino acid composition and functional annotation is conducted to find and characterise novel putative effector families.

etically closely related yet at the same time be pheno-
typically diverse, e.g. by infecting different hosts or tissues.
For example, the group species Fusarium oxysporum
contains plant and opportunistic animal pathogens, host-
specific pathogens, non-pathogens and biocontrol agents.
The initial step identifies proteins predicted in the query
genome that are enriched in pathogen genomes and are
predominantly absent in the genomes of non-pathogens
(Figure 1). Thus, this step identifies putative virulence-
and pathogenicity-associated proteins. The next step in
the pipeline is to rank these pathogen-associated proteins
according to their respective frequency of association
across pathogens, and this was achieved using the F-
measure, which is the harmonic mean of precision and
recall. A perfect F-measure of 1 indicates presence uniquely
in fungal pathogens and across all fungal pathogens
(Figure 2). To investigate host-specific patterns, we report
the F-measure with respect to two backgrounds, the
frequency of association across pathogens in general
(pathogen F-measure) and the frequency of association
across pathogens with a cereal host (cereal F-measure).
To dissect the nature of the pathogen-associated proteins

we next used an unsupervised clustering method based on
35 features (e.g. signal peptide prediction score, molecular
weight, amino acid composition), deduced from the
sequences. This leads to a suite of clusters of related
pathogen-associated proteins. One of our aims was to
identify potential effector proteins, which we define as
proteins active outside the fungal cell that interact
with host defences as well as pathogen recognition
and signalling by the host, and these would be expected
to represent a subset of the pathogen-associated protein
clusters. Traditionally, effector candidates have been
identified as small secreted peptides, whereas our model
makes no assumption on size, and also includes searches
for novel potential secretion signatures, as well as con-
ventional secretion signals. If a family of effectors has
sequence-derived features in common, such as the amino
acid composition or the predicted signal peptide score, and
if these features are distinct from the remaining proteins, it
can be expected to form a natural group or cluster. This
cluster will then have an enrichment or depletion in its
characteristic features from background, which is the
set of all pathogen-associated proteins. At this stage,
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Figure 2 A visualization of the F-measure for finding highly conserved virulence genes in pathogens, with and without a cereal host.
The set of 174 fungal proteomes from the JGI MycoCosm tree [33] is shown with the subsets of pathogenic fungi and cereal-infecting fungi. The
genera of cereal-infecting fungi are colored according to fungal lifestyle (biotrophs, hemibiotrophs, necrotrophs). The F-measure is the harmonic
mean of precision and recall and ranges from 0 to 1. For a query pathogen protein of interest, a F-measure of 0 means that the protein is only
found in the query pathogen genome. A perfect pathogen F-measure of 1 means that this protein is found in all pathogen genomes and at the
same time only in pathogenic fungi, thus indicating a protein highly relevant to pathogenicity. In the middle of the scale sit pathogen proteins
which can be found mostly in pathogens and at the same time in some non-pathogens. We also introduce the more specific cereal F-measure to
identify proteins which are highly conserved and exclusive to cereal-infecting fungi to identify host-specific infection patterns.

proteins for specific functional and evolutionary analysis
can be identified to further elucidate roles in pathogenesis.

Application to S. nodorum and F. oxysporum returns
known effectors

F. graminearum is one of the most important pathogens
of cereals globally and was the focus for our study.
However, no effectors have been functionally validated
so far in the literature for this pathogen. Therefore, we
initially tested our pipeline on two fungal genomes
which have a number of characterized effector proteins,
i.e. Stagonospora nodorum SN15 [35] and Fusarium
oxysporum f. sp. lycopersici strain 4287 [36]. Note that
unlike many bacterial pathogens, no individual fungal
pathogen has sufficient numbers of known virulence
and non-virulence proteins to allow benchmarking by
identifying true positives and false positive rates, which
prohibits a large-scale validation of the pipeline.

S. nodorum SN15 is a necrotrophic pathogen of wheat
with a number of characterized effectors or host-selective
toxins, called SnToxA, SnTox1 and SnTox3. We applied
our gene-selection pipeline to the predicted protein set
of the S. nmodorum genome and found 3528 proteins
(28% of gene models) which are enriched in pathogen
genomes and are predominantly absent in the genomes
of non-pathogens (Additional file 1). The proteins with
the highest combined degree of conservation and
exclusivity across fungal pathogens according to the
pathogen F-measure are all predicted to be secreted
(SNOG_12346, SNOG_01958, SNOG_09549, SNOG_13500,
SNOG_05633). Two of the proteins have a functional
annotation, one as a putative secreted phosphorylcholine
phosphatase (SNOG_09549) and another one as a predicted
cystatin-like fold (SNOG_13500). The S. nodorum proteins
with the highest cereal F-measure are a zinc finger domain
containing protein (SNOG_09637), two small secreted
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cysteine-rich proteins with no functional annotation
(SNOG_20011, SNOG_05982) and a putative secreted
phosphorylcholine phosphatase (SNOG_09549).

Our predicted set of pathogen-associated S. nodorum pro-
teins includes the known effectors SnToxA (SNOG_16571),
SnTox1l (SNOG_20078) and SnTox3 (SNOG_08981).
Overall, Sn'ToxA was ranked 65" in the cereal F-measure
list. Due to some proteins sharing the same F-measure, the
top 65 rank positions account for 636 of the 3528 proteins
enriched in pathogen genomes. For the three known effec-
tors SnToxA, SnTox1 and SnTox3, SnToxA has the high-
est cereal F-measure of 0.35 due to HMM sequence
similarity hits to Pyrenophora tritici-repentis and Cochlio-
bolus heterostrophus isolates C4 and C5 [37]. For both
C. heterostrophus isolates C4 and C5 proteins a ToxA do-
main is predicted using the 3D structure prediction soft-
ware Phyre2 (100% confidence, 44% sequence identity).
Interestingly, despite the high level of sequence similarity,
the RGD-containing loop [38] is not conserved in C. het-
erostrophus isolates C4 and C5 (SGN-containing loop,
Figure 3). The other two host-selective toxins SnTox1 and
SnTox3 are only found in S.nodorum and thus have the
lowest possible F-measure. In general, the unsupervised
clustering of pathogen-associated proteins returns three
clusters with a significantly higher secretion signal than the
background distribution for all clusters (Mann—Whitney U/
test, p-value <2.2e-16). Interestingly, the three effectors
SnToxA, SnTox1 and SnTox3 all belong to the same cluster,
which has 191 members in total and is enriched in small
and non-polar amino acids (data not shown). The 191 pro-
teins in this cluster share sequence-derived similarites and
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based on the membership of known effectors there is good
potential that this cluster includes proteins that are worth
investigating in terms of their effector potential.

F. oxysporum f. sp. lycopersici strain 4287 is a hemibio-
troph pathogen that causes vascular wilt in tomato
plants. Our pipeline returns 4613 proteins (26% of gene
models) which are enriched in pathogen genomes and are
predominantly absent in the genomes of non-pathogens
(Additional file 2). As F. oxysporum is not a cereal-
infecting pathogen, we investigated the proteins with
highest pathogen F-measure. These include a putative
secreted phosphorylcholine phosphatase (FOXG_09820),
a putative secreted peptidase C69 domain protein
(FOXG_05778) and a putative synaptotagmin-1 protein
fold (FOXG_13700). F. oxysporum is known to secrete
several proteins during infection of the host and these
are referred to as secreted-in-xylem (SIX) proteins, which
include several functionally proven effectors [23,40-42].
Our set of predicted pathogen-associated proteins
contains all the SIX proteins for this strain, i.e. SIX1
(FOXG_16418), SIX2 (FOXG_16416), SIX3 (FOXG_16398),
SIX6 (FOXG._14246), SIX8 (FOXG_16464, FOXG_17445),
SIX9 (FOXG_14223) and SIX10 (FOXG_17457). These
effectors have lowest possible F-measure due to the lack
of hits to any other fungal pathogen. The unsupervised
clustering returns three clusters with a significantly
higher secretion signal than the background distribution
for all clusters (data not shown). For the SIX2 effector,
the software SIGNALP 4.0 does not predict a signal
peptide, yet in our analysis it is still placed in the same
cluster as the secreted SIX1, SIX6, SIX9 and SIX10
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Figure 3 HMM search returns ToxA-like proteins in Cochliobolus heterostrophus isolates C4 and C5. A phmmer search with SnToxA
(SNOG_16571) returns sequence similarity hits to Pyrenophora tritici-repentis (PTRG_04889) and hits to potential ToxA-like domains in two proteins
in Cochliobolus heterostrophus isolates C4 and C5. The corresponding multiple alignment of the phmmer domain hits is visualized by Jalview [39].
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effectors based on its sequence-derived features. This
might indicate that our clustering approach successfully
recognizes structural similarities amongst the pathogen-
associated proteins. This particular cluster has 221 members
and is enriched in tiny, small and non-polar amino acids
and in particular in the amino acids cysteine, glycine and
asparagine. Due to the occurence of known effectors in
this cluster and the traditional association of some of
the cluster characteristics (small, secreted, cysteine-rich)
with effectors, this cluster might contain other potential
effector candidates. The SIX3 and SIX8 proteins are also
not predicted to be secreted by SIGNALP 4.0. SIX3 sits in
a cluster with high average positive protein charge and
a significantly higher percentage of prolines, serines
and threonines than the other clusters. SIX8 is part of a
cluster with a strong secretion signal and a significantly
higher percentage of aliphatic amino acids than the
background distribution for all clusters.

Taken together, the blind study of S. nodorum and
F. oxysporum using comparative analysis to the lar-
ger fungal genome collection was able to highlight
pathogen-associated proteins highly conserved across
fungal pathogens using the F-measure, as well as to
recover all the proteins that are known effectors and
to predict novel effector candidates due to cluster
membership. Pathogen-associated proteins with high
F-measure, i.e. proteins that score highly for patho-
gen or cereal-infecting specificity and conservation,
are worthy candidates for putative virulence or
pathogenicity factors common to a large set of path-
ogens. On the other hand, the SIX effectors and
SnToxl and SnTox3 have the lowest possible F-
measure due to being exclusive to F. oxysporum and
S. nodorum, respectively. However, for both genomes
we find that these known effectors sit in clusters of
proteins with strong signals for being small and se-
creted. This observation fits with known signatures for
effectors and other proteins clustered with these known
effectors based on similar sequence features may repre-
sent candidates worthy of further investigation. Simi-
larly, other clusters of proteins that contain known
effectors but are defined by different sets of sequence-
derived features potentially represent uncharacterised
effector properties. In summary, the F-measure and
clustering methods are complementary approaches to
analyze the space of pathogen-associated proteins. Fun-
gal pathogens acting on the same host plant can be ex-
pected to utilize a common set of invasion strategies
reflected in proteins highly conserved across fungal
pathogens. At the same time, there will be effector pro-
teins which are exclusively found in a particular fungal
pathogen and as shown in this section, these can be
found in an unbiased way using a clustering approach
and subsequent protein selection step.
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Application to F. graminearum: pathogen-associated
proteins highly conserved across fungal pathogens

After validation of the analysis pipeline on two relatively
well characterized fungal pathogens (S. nodorum and
F. oxysporum) with known effectors, the pipeline was
applied to investigate the set of pathogen-associated
proteins in one of the most important pathogens of cereals
globally, the hemibiotrophic ascomycete F. graminearum
[43]. As set in our pipeline, pathogen-associated proteins
are returned initially and these are defined by having
hits with more than 80% pathogen precision. Therefore,
pathogen-associated proteins are proteins which are pre-
dominantly absent from the genomes of non-pathogens.

For F. graminearum proteins we find 2830 pathogen-asso-
ciated proteins which represents 21% of all F. graminearum
gene models (Additional file 3). We find that the vast
majority (99%) of the 2830 F. graminearum proteins
belong to the unclassified category when using MIPS
Functional Catalogue Database (FunCatDB) for searching
the functional distribution [44]. Only 241 of the 2830
proteins have a protein domain hit when sequence-based
tools such as Pfam search are used. 3D structure similarities
for 487 proteins of the 2830 proteins are reported by
Phyre2 with confidence >95% [45] and interestingly,
298 of these predicted protein structures have no Pfam
domain hit. Thus, predicted 3D structure similarities can
in many cases complement sequence-similarity based
functional annotations.

The majority of the 2830 pathogen-associated proteins
from F. graminearum (90%) have no significant sequence
similarity hits to a fungal pathogen outside the Fusarium
genus. The remaining 10% of the 2830 pathogen-associated
proteins have sequence similarity hits to a diverse range of
fungal pathogens. The 2830 pathogen-associated proteins
from F. graminearum were ranked according to their
degree of conservation across other fungal pathogens,
with and without a cereal host, to reveal proteins highly
relevant to pathogenicity and virulence. Table 1 shows
the top 10 proteins in terms of cereal F-measure and
pathogen F-measure, respectively, with their corresponding
Pfam domain hits and predicted 3D structure similarities.
We also report the taxonomical distribution of sequence
similarity hits outside the MycoCosm tree by using an
analysis of the phmmer web search with the non-
redundant protein databank (NR) [32].

A protein with a haloacid dehalogenase (HAD)-like
hydrolase domain hit (FGSG_03333) has the highest cereal
F-measure in our analysis. Using the Phyre2 structure
prediction program FGSG_03333 is predicted to encode
a phosphorylcholine phosphatase which is a subfamily
of the HAD superfamily. Phosphorylcholine phosphatases
have been associated with breakdown of the host cell
membrane in bacteria [46]. FGSG_03333 is also predicted
to be secreted and is orthologous to SNOG_009549 and



Table 1 The top 10 pathogen-associated F. graminearum proteins in terms of cereal and pathogen F-measure

Protein id F-measure Pfam domain (E-value, ID) Phyre2 structure (Confidence/Coverage) Molecular Signal  Distribution of significant NR phmmer hits
weight (kDA) peptide
Cereal
FGSG_03333 071 Haloacid dehalogenase-like hydrolase Phosphorylcholine phosphatase (100%/90%) 411 Yes 93% Bacteria, 7% Ascomycota
(8e-10, PF12710)
FGSG_03338 0.7 - Serine protease inhibitor 1 (98.4%/52%) 144 No 100% Ascomycota
FGSG_09148 0.69 Peptidase C69 (3.1e-25, PF03577) Acyl-coenzyme (99.2%/44%) 57.2 Yes 90% Bacteria, 9% Eukaryota, 1% Archaea
FGSG_03339 0.66 - Serine protease inhibitor 1 (99.2%/55%) 14.7 No 100% Ascomycota
FGSG_09328 0.66 Fungal specific transcription factor Centromere DNA-binding protein complex cbf3 62.6 No 94% Ascomycota, 6% Basidiomycota
domain (3.5e-05, PF04082) (98.29%/72%)
FGSG_04015 0.66 - - 574 No 100% Ascomycota
FGSG_03861 0.64 DUF3425 (1.8e-14, PF11095) Pyrimidine pathway regulator 1 (99.4%/15%) 629 No 94% Ascomycota, 5% Basidiomycota, 1% others
FGSG_04507 0.63 C2 domain (1.1e-10, PF00168) Endocytosis, exocytosis, synaptotagmin-1 52.1 No 419% Metazoan, 29% Viridiplantae, 22% Ascomycota,
(100%/54%) 8% others
FGSG_07909 0.62 Homeobox KN domain (2.3e-15, PF05920) Homeobox domain (99.7%/11%) 84.6 Yes 56% Metazoan, 29% Viridiplantae, 12% Ascomycota,
3% others
FGSG_07846 061 FMO-like (5.8e-16, PF00734) Monooxygenase (100%/75%) 62.6 No 37% Bacteria, 32% Metazoan, 15% Viridiplantae,
12% Ascomycota, 4% others
Pathogen
FGSG_04060 0.65 Rare lipoprotein A like double-psi beta Beta-expansin Ta (100%/94%) 222 Yes 48% Bacteria, 16% Ascomycota, 13% Basidiomycota,
barrel (3.1e-05, PF03330) 8% Phytophthora, 5% dictyostelium, 10% others
FGSG_09841 0.65 - - 208 Yes 76% Ascomycota, 15% Bacteria, 6% Archaea, 3% others
FGSG_11496 0.64 Rare lipoprotein A like double-psi beta Beta-expansin 1a (1009%/93%) 252 Yes 23% Viridiplantae, 21% Bacteria, 18% Ascomycota,
barrel (3.1e-05, PF03330) 13% Basidiomycota, 11% Phytophthora,
6% Dictyostelium, 8% others
FGSG_03333 0.58 Haloacid dehalogenase-like hydrolase Phosphorylcholine phosphatase (1009%/90%) 41.1 Yes 93% Bacteria, 7% Ascomycota
(8e-10, PF12710)
FGSG_09148 0.55 Peptidase C69 (3.1e-25, PF03577) Acyl-coenzyme (99.2%/44%) 572 Yes 90% Bacteria, 9% Eukaryota, 1% Archaea
FGSG_04507 052 C2 domain (1.7e-10, PF00168) Endocytosis, exocytosis, synaptotagmin-1 52.1 No 419% Metazoan, 29% Viridiplantae, 22% Ascomycota,
(100%/54%) 8% others
FGSG_03549 0.52 - - 282 No 100% Ascomycota
FGSG_11152 049 - Coronatine-insensitive protein 1 (99.9%/94%) 444 No 100% Ascomycota
FGSG_09328 048 Fungal specific transcription factor Centromere DNA-binding protein complex cbf3 62.6 No 94% Ascomycota, 6% Basidiomycota
domain (3.5e-05, PF04082) (98.2%/72%)
FGSG_07909 0.48 Homeobox KN domain (2.3e-15, PF05920) Homeobox domain (99.7%/11%) 84.6 Yes 56% Metazoan, 29% Viridiplantae, 12% Ascomycota,

3% others

For each protein, its Pfam annotation, Phyre2 structure prediction, molecular weight and signal peptide predicted by SignalP are given as well as the distribution of significant phmmer hits against the non-redundant
protein databank (NR) in terms of taxonomy.
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FOXG_09820 identified in the analysis of the S. nodorum
and F. oxysporum genomes (see above). A NCBI BLAST
search and phylogenetic tree analysis reveals strong
sequence-based matches to bacteria many of which are
pathogenic on plants, e.g. Pseudomonas syringae (Figure 4).
The I-TASSER server [47] also returns a confident 3D
structure prediction (TM-score 0.61 +0.14) with the top
structural analogue again a phosphorylcholine phosphat-
ase from P. aeruginosa [46]. This P. aeruginosa protein
has not previously been reported to be associated with
cereal pathogenicity, however the phylogenetic analysis
for FGSG_03333 suggests that its presence is charac-
teristic of hemibiotrophic and necrotrophic cereal patho-
gens and that it may have undergone an ancient selection
process with bacterial plant pathogens. Interestingly,
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we also find two proteins in close genomic proximity
(FGSG_03338 and FGSG_03339) in the top 10 cereal
F-measure table, which both have hits restricted to the
Ascomycota (Table 1).

The highest pathogen F-measure of 0.65 is shared by
two proteins and both are predicted to be secreted
(FGSG_04060 and FGSG_09841). Protein FGSG_04060 is
confidently predicted to be a beta-expansin la-like protein
by Phyre2 as well as by the I-TASSER server (TM-score
0.73 £ 0.11), with the top structural analogue being a beta-
expansin and group-1 pollen allergen from maize [51]. A
public database search with FGSG_04060 returns a large
number of significant hits to a wide range of pathogenic
fungi including ascomycetes and basidiomycetes as well
as to oomycetes and proteobacteria pathogenic on plants

0.99

0.97|

Pseudomonas syringae
.39

vl Pseudomonas aeruginosa
07 Burkholderia ambifaria/cepacia/gladioli/multivorans
1

Pseudomonas viridiflava UASWS0038 GI:410094293
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Septoria populicola/musiva
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Figure 4 FGSG_03333 encodes a putative phosphorylcholine phosphatase with a shared selection process with bacterial plant
pathogens. For protein FGSG_03333, a BLASTp search returns 231 hits with E-value < 1.0e-05 and these were merged with our results from the
MycoCosm tree. A MUSCLE alignment [48] and maximum likelihood phylogenetic tree estimation by PhyML [49] returns this phylogenetic tree
with branch support values, visualized by FigTree [50]. The tree indicates that this protein has been selectively retained in hemibiotrophic and
necrotrophic fungal pathogens of cereals, plants and insects. Furthermore, this protein is closely related to a highly conserved protein in a large
number of Pseudomonads, indicating a shared selection process and suggesting a common role in pathogenicity.
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(Table 1). Bacterial and fungal expansin-like proteins have
been associated with plant pathogenesis or plant cell wall
degradation [52,53] and thus this protein might constitute
a virulence factor that is worth functionally charac-
terizing. Protein FGSG_09841 has an equally high patho-
gen F-measure with hits mainly to ascomycetes, however it
has no significant Pfam domain hits or confident 3D struc-
ture predictions.

In summary, the ranking of pathogen-associated proteins
in terms of their F-measure is a technique that is able to
identify proteins in the query genome which are highly
conserved across other fungal pathogens and at the same
time predominantly absent from non-pathogenic fungi.
Proteins with these properties are prime candidates for
key factors in pathogenicity or virulence. The use of
two different types of rankings, namely the cereal and
pathogen F-measure aims to identify proteins that might
be specific to pathogens acting on cereal hosts or on
plants in general. All of the pathogen-associated proteins
reported by us are predominantly absent from saprophyte
genomes, however they vary in terms of how their
sequence similarity hits are distributed in other kingdoms.
For example, we find a large number of hits for
FGSG_03333 to the bacterial kingdom or more specific-
ally to bacterial plant pathogens, supporting a role in
pathogenicity or virulence. On the other hand, for sev-
eral of the proteins in Table 1 the taxonomical distribu-
tion outside the MycoCosm tree might not give a clear
indication as to whether they have a functional role in
virulence. For example, some proteins have sequence
similarity hits restricted to pathogenic ascomycetes
(FGSG_03338, FGSG_03339, FGSG_04015, FGSG_03549,
FGSG_11152) whereas others contain domains that are
widespread across the bacterial and eukaryotic kingdoms
(FGSG_04507, FGSG_07909, FGSG_07846, FGSG_04060,
FGSG_11496). Proteins are generally composed of sev-
eral domains and the combination of the domains de-
termines the function of the protein. Therefore, the
presence of one domain that is widespread across
pathogenic and non-pathogenic organisms, e.g. the F-
box domain, and thus results in a large number of hits
to diverse species, is not enough evidence to dismiss a
protein as not having a role in pathogenicity or
virulence.

Clustering of the pathogen-associated proteins in

F. graminearum reveals groups of putative effectors

To find putative F. graminearum effectors in the set of
pathogen-associated proteins, we applied unsupervised
clustering based on 35 sequence-derived features. As
is required by the k-means approach, the number of
clusters has to be predefined and it was set at 12,
based on estimates using the elbow plot method (see
Methods). The feature attributes of each cluster were
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compared to the full background distribution to identify
those features that statistically discriminated that clus-
ter from background. Clusters were examined further
based on likely or established models of effector char-
acteristics, for example a strong predicted secretion
signal, potential novel signalling domain or a striking
amino acid composition.

Table 2 shows the 12 clusters (numbered from C1 to
C12) and their associated properties that were found
using our k-means clustering approach (Additional file 4).
We find three clusters of proteins (C2, C11, C12) with
an enriched positive protein charge that are distinct
from each other in terms of their amino acid composition.
Cluster C12 contains proteins with a high percentage of
aromatic amino acids, whereas cluster C2 features tiny
amino acids and cluster C11 has a large proportion of
polar amino acids. On the other hand, five clusters show
depletion in positive protein charge and thus contain
proteins with low charge (C3, C5, C8, C9, C10). Two of
these clusters (C3, C9) contain a significantly higher
number of aliphatic amino acids that are very hydrophobic
and tend to stay in the interior of a protein structure.
Cluster C5 shows depletion in cysteines and cluster C10 is
enriched in aromatic amino acids. Another cluster (C6)
contains 166 proteins with significantly higher molecular
weight than the background distribution for all clusters,
however no other discriminative features are evident.
Cluster C4 has 210 proteins with enrichment of the amino
acid proline. Proline has unusual biochemical properties
and has been associated with a variety of functions,
such as membrane proteins, cell adhesion or cereal
storage proteins. Three clusters (C1, C7, C8) show an
enriched secretion signal predicted by SignalP and WoLF
PSORT, and are thus likely candidates for proteins which
are secreted from the pathogen to the host apoplast.

In general, we find that our k-means clustering approach
divides the space of pathogen-associated proteins into
groups of proteins with distinct sequence-derived features.
As expected, some clusters have more discriminative
features than others. We anticipate the set of pathogen-
associated proteins to contain protein groups which
share a number of features that are clearly distinct from
background, as for example seen for small, secreted,
cysteine-rich proteins in cluster C7. On the other hand,
there will be protein groups which have been assigned
to a cluster based on a less discriminative feature set,
such as cluster C6 which contains proteins with high
molecular weight and no other characteristic feature.
Taken together, k-means clustering is an unsupervised
method which will find natural groups of proteins with
discriminative features in the set of pathogen-associated
proteins. Unlike methods for effector prediction which
use a number of thresholds and assumptions for selecting
putative effectors, k-means clustering will return putative
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Table 2 Selected properties for the clusters of pathogen-associated proteins

Cluster c1 c7 c8 cé c3 c9 c5 c10 C11 c2 c4 c12
# Proteins 268 150 110 166 411 149 180 279 236 409 210 262
Characteristic Secretion signal Molecular weight  Hydrophobic Negative charge Positive charge  Proline  Aromatic
Secretion 1 1 1

Molecular weight i i

Protein charge 1 1 l l 1 1 1 1
Tiny 1 ! ! ! 1 1 !
Small T ! i ! 1 !
Aliphatic 1 1 1 1 l l

Aromatic il | l l il l i
Polar Lo ! 1 1 1

Charged Lo 1 1 1

Basic ! l ! ! 1 1

Acidic ! T !

Serine (S) 1 1

Threonine (T) 1

Leucine (L) i | i 1

Cysteine (C) 1 I

Glycine (G) T

Proline (P) 1

For each feature in the 35-dimensional feature vector, Mann-Whitney U tests were used to test whether the distribution within a cluster is identical to the full
background distribution for all clusters and highly significant p-values for both directions (lesser | and greater 1, p-value < 2.2e-16) are shown. Secretion refers to
the predicted SignalP score and WoLF PSORT extracellular score. The following amino acid membership are used: tiny (A,C,G,S,T), small (A,C,D,GN,P,S,T,V), aliphatic
(A,l,LV), aromatic (F,H,W,Y), polar (D,E,H,K,N,QRS,T), charged (D,EHKR), basic (H, K, R) and acidic (D, E).

effector clusters in an unbiased way, if discriminative
characteristics for effector proteins exist.

Examination of putative effectors reveals extracellular
domains and conserved N-terminal sequence motifs
From the clustering of pathogen-associated proteins and
the extraction of significant cluster features, we identified
three clusters (C1, C7, C8) of proteins with an enriched
predicted secretion signal, thus prime candidates for
containing putative effector proteins (Table 2). These three
clusters differ significantly in terms of their protein charac-
teristics and amino acid composition. Cluster C1 contains
268 proteins with enrichment in the secretion signal as
well as in the non-polar, aromatic and aliphatic amino acid
content. Aliphatic amino acids have been associated with
transmembrane regions and indeed the TMHMM program
[54] predicts transmembrane regions for 98 of the 268 pro-
teins. Only 9 of the 268 proteins have a significant Pfam
domain hit, e.g. a copper amine oxidase (FGSG_01761), a
carbon-nitrogen hydrolase (FGSG_07204), an ion-channel
(FGSG_11239) and a ferroportin 1 (FGSG_13446). The
two other protein clusters (C7, C8) are enriched in tiny
and small amino acids and are at the same time predicted
to be secreted, which are features traditionally associated
with effector proteins.

Cluster C7 contains 150 proteins and is enriched in
amino acids cysteine and glycine. Cysteines are commonly
associated with extracellular proteins due to their ability
to form stable disulfide bonds. Glycine is the smallest
amino acid and has no side chain. Thus glycine often
plays a structural role in sterically restrictive turn regions.
Significant Pfam domain hits are found for only 14 of
the 150 proteins and some have associations with
pathogenicity in the literature. FGSG_03573 has a predicted
CFEM domain which has been found in extracellular
fungal membrane proteins and has been associated
with fungal pathogenesis, for example in Magnaporthe
grisea [55]. Another protein FGSG_03109 has a cysteine-
rich secretory Pfam domain hit and has predicted
structural similarity to the plant PR-1 class of pathogen-
related proteins. FGSG_00029 has a LysM domain which
has been associated with carbohydrate and chitin binding
and has been shown to be part of effector proteins in
Mycosphaerella graminicola [56] and Cladosporium
Sfulvum [57]. Phyre2 returns confident structure predictions
for 31 of the 150 proteins, e.g. for putative beta expansions
la (FGSG_04060, FGSG_11496) or a putative cellulose
1,4-beta-cellobiosidase fold (FGSG_07728). MEME does
not find a motif common to more than five proteins from
this set, except for the signal peptide. For example,
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FGSG_02841, FGSG_07766 and FGSG_08175 share com-
mon motifs as well as the three proteins FGSG_00111,
FGSG_00112 and FGSG_13443. In summary, predicted
extracellular protein domains and the enrichment in cyste-
ines, small amino acids and the secretion signal form
strong evidence for the presence of potential effector pro-
teins in this cluster.

Cluster C8 contains 110 proteins and has sequence-
derived features that are distinct from Cluster C7. A
striking difference to the other clusters is the enriched
threonine content and molecular weight as well as the
depleted leucine content and protein charge (Table 1).
Interestingly, enrichment in serines, threonines and de-
pletion in leucine has been reported for type III secreted
effectors of animal and plant pathogens [3]. Significant
Pfam domain hits are found for only 6 of the 110
proteins, i. e. for a WSC domain involved in carbohydrate
binding (FGSG_09755, FGSG_10335, FGSG_11313,
FGSG_11507), a pectate lyase domain (FGSG_13834) and
a CFEM domain (FGSG_02109). Phyre2 returns confident
structure predictions for 22 of the 110 proteins, e.g. a
putative cellulose 1,4-beta-cellobiosidase fold (FGSG_02999)
or a putative pectin lyase-like fold (FGSG_13834). For
37 of the proteins in this cluster, MEME returns a
[SG]-P-C-[KR]-P motif (e-value 3.4e-091) adjacent to
the predicted signal peptide cleavage site followed by a
clear stretch of serines/threonines (Figure 5). We ran an
iterative HMM search (jackhmmer) on the NR database
with a MUSCLE alignment of the first 50 amino acids
of a core set of well-aligned 31 sequences to look for
the prevalence of this motif. After five iterations, we
find 88 significant hits of the motif to proteins in only
F. graminearum, F. pseudograminearum, F. oxysporum
and F. solani. Subsets of these proteins share a common
domain structure, however with no functional annotation
for the majority of hits. A “G-P-C-R-P” motif was initially
reported for F. graminearum in the Supplementary Mater-
ial of Ma et al. [36], however it has not been functionally
characterized. Zhang et al. [58] refer to this particular
F. graminearum protein group as “CPGRP-anchored”
(sic) and report transient induction at 16 h after inoculation
during wheat coleoptile infection and at 2 to 8 h during
in vitro germination. We suggest that this intriguing
Fusarium-specific motif should be referred to as the
[SG]-P-C-[KR]-P motif and that functional testing is neces-
sary to reveal its role in the host-pathogen interaction.

For seven of the proteins lacking the [SG]-P-C-[KR]-P
motif in Cluster C8, MEME predicts an alternative motif
[WYF]-C-x-T-Y-x-S-T-Y-L about ten amino acids after
the predicted N-terminal signal peptide (Figure 6). These
7 proteins are around 600 aas in length, have low average
charge, and lack a functional annotation and confident
3D structure prediction. An iterative HMM search
(jackhmmer) on the NR database with a MUSCLE
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alignment of the first 60 amino acids converged after
three iterations. We collected 20 hits which are re-
stricted to F. graminearum, F. pseudograminearum, F.
oxysporum, F. solani and the cereal pathogen Colleto-
trichum graminicola. MEME predicts a highly con-
served domain structure in the N-terminal region for
these proteins (Additional file 5).

In summary, we have identified three protein clusters
with an enrichment in the signal peptide prediction score
for F. graminearum. These three clusters have distinct mo-
lecular features. Cluster C1 contains a high number of
aliphatic amino acids and transmembrane proteins. The
presence of extracellular domains and enriched cysteine
content in cluster C7 indicates the occurrence of potential
effectors in the set of 150 proteins. Cluster C8 has enriched
threonine content, depleted leucine content and features
proteins with high molecular weight and low charge. For
proteins in this cluster, we predict two distinct conserved
N-terminal motifs ([SG]-P-C-[KR]-P and [WYF]-C-x-T-Y-
x-S-T-Y-L) which will be our prime candidates for func-
tional characterisation in future work.

F. graminearum putative effector clusters sit in regions of
genome innovation

Subtelomeric and ancient sub-telomeric regions of the
E. graminearum genome have been previously described
as regions of genome innovation and are characterised
by higher levels of genetic diversity between strains and
other Fusarium compared to the rest of the genome,
higher density of secreted and in planta expressed proteins
and higher genetic recombination rates per unit length
of DNA [43,59]. Pathogenicity genes from the Pathogen-
Host Interactions database (PHI-base [60]) have been
negatively associated with these regions [61]. However,
these pathogenicity genes are dominated by highly con-
served components of fungal biology such as signalling
cascades which when mutated render the fungus with
many pleiotropic phenotypes. Genes associated with
virulence may have different distributions across the
genome compared to pathogenicity genes. Analysis of
the clusters of genes identified in this work reveals distinct
distributions across the F. graminearum chromosomes
(Figure 7). Members of cluster C1, which is enriched in
secretion signals and features a number of proteins
with transmembrane regions, are found throughout the
genome (data not shown). In contrast, members of
putative effector clusters C7 and C8 and especially
proteins containing the [SG]-P-C-[KR]-P motif are found
in regions of genome innovation as depicted in Figure 7.

De novo motif search reveals potential signalling,
targeting or uptake motifs in F. graminearum

The aims of our study were to find the set of pathogen-
associated proteins in F. graminearum and to dissect
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Figure 5 A highly conserved N-terminal [SG]-P-C-[KR]-P motif in a subset of F. graminearum proteins. MEME returns a [SG]-P-C-[KR]-P
motif (e-value 3.4e-091) adjacent to the predicted signal peptide cleavage site for 37 of the 110 proteins in cluster C8. A MUSCLE alignment of
the N-terminal region of a core set of well-aligned 31 of those proteins is visualized by Jalview. The MEME logos are shown with the [SG]-P-C-[KR]-P
motif followed by a serine-/threonine-rich stretch. An iterative public database search of these aligned sequences (jackhmmer) returned additional
members of this putative protein family in F. graminearum, F. pseudograminearum, F. oxysporum and F. solani.
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them in terms of their pathogenicity and virulence
potential as well as their effector potential in an unbiased
way. In this section, we applied de novo motif search to
look for novel effector sequence signatures in the set of

pathogen-associated proteins. Effector proteins are active
outside the fungal cell and can be expected to carry
a secretion signal. Bioinformatics signal peptide pre-
diction programs such as SignalP [63] use neural
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networks and HMMs for predictions and thus rely on
the quality of the training data. Especially for fungal
pathogens, the data on known secretion signals or
host-translocation motifs is scarce and thus, we applied
de novo motif search to look for novel sequence signatures.
We expect sequence signatures comprising potential se-
cretion signals and host-translocation motifs to occur
within the 150 N-terminal residues of a protein. We
apply the motif search tool MEME to each predicted clus-
ter and report motifs which occur on average within the
first 150 residues of the proteins and are present in more
than five proteins.

To validate our approach for finding conserved N-
terminal sequence signatures with potential function in
signalling, targeting or uptake, we applied our pipeline
to the powdery mildew fungus Blumeria graminis f. sp.
hordei which infects barley [64]. An N-terminal Y/F/
WxC-motif has been described in powdery mildew fun-
gal effector candidates [65]. We applied MEME to the
pathogen-associated protein clusters predicted by our
pipeline in B. graminis f. sp. hordei (Additional file 6). We
find that only one of the clusters has a significantly higher
secretion signal than the other clusters and for 98 of
the proteins in this cluster, MEME predicts an N-
terminal Y/F/WxC-motif (Additional files 7 and 8). Our
set of 98 proteins predicted from the B. graminis f. sp.
hordei is of similar size to the set of 107 proteins identified
by Godfrey et al. [65] from a set of around 3000 genes
from sequenced ESTs. After positive validation of our
motif search approach in the space of pathogen-associated
protein clusters in B. graminis f. sp. hordei, we applied
it to F. graminearum.

For F. graminearum, the de novo sequence motif
prediction results for the protein N-terminal regions
within the 12 clusters are shown in Table 3. For each
of the motifs found in the clusters, we built a HMM
from the multiple alignment computed by MUSCLE
and used an iterative, sensitive jackhmmer search
against the non-redundant protein databank (NR), with a
maximum of five rounds, to record the prevalence of
the motifs. As reported in the previous section, we find
two motifs in cluster 8 which are largely restricted to
pathogenic Fusarium and occur, on average, within the
first 50 residues of the proteins and after a predicted
signal peptide. Another motif sits in cluster C12 and
shares resemblance to the L-P-x-E motif which occurs
in F-box like domains. An iterative jackhammer search
finds that this motif is exclusive to Ascomycota with
hits predominantly to fungal pathogens, for example most
prominently to S. nodorum or Pyrenophora tritici-repentis.
In future work we will experimentally test these motifs for
their functional role in the host-pathogen interaction.

Conclusions

The bioinformatics search for fungal pathogen proteins
involved in attack on the host plant has thus far focussed
on finding small and cysteine-rich peptides in the pre-
dicted fungal secretome [20]. Therefore, such methods
have been limited in their ability to return putative effec-
tors with those previously recognized features. How-
ever, there is growing evidence in the literature that
effectors can have unconventional characteristics, such
as no predicted signal peptide, a low number of cyst-
eine residues or a large size [21-23,25]. Here, we take
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Figure 7 Distribution of predicted protein clusters across the F. graminearum genome. A Circos plot [62] is shown which visualizes the
four F. graminearum chromosomes with ticks in kilobase (Kop) units. The following bands for F. graminearum are visualized: (I) Recombination
frequency (blue bars) and SNP density (line), (1) gene density, (Ill) GC content, (IV) set of 2830 pathogen-associated proteins, (V) protein cluster
C7, (V1) protein cluster C8, (VII) proteins with the [SG]-P-C-[KR]-P motif. For each gene set, the location of the genes on the chromosomes and a
heatmap in red shading for the gene count in 500 Kbp bins are shown. It can be seen that proteins from putative effector clusters C7 and C8

advantage of the availability of sequenced fungal ge-
nomes and present a novel and unbiased method for
isolating genes strongly associated with pathogenic spe-
cies using comparative genomics analysis followed by
an unsupervised clustering step using multiple protein
properties. This type of approach allows us to predict
putative pathogen-associated proteins or effectors with

previously unrecognized characteristics. The main con-
tributions of our method are as follows.

Beyond BLAST: protein comparisons in fast-evolving
genome regions

For finding proteins in a query pathogen genome which
are conserved across other pathogens and predominantly



Table 3 De novo N-terminal motif search results for the pathogen-associated protein clusters in F. graminearum

Motif logo and regular expression

Prevalence in cluster

E-value

Average start
position in protein

Comments

Cluster C4
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Cluster C5
Cluster C8
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LTSRS

WCITY[LEISTYLIVA][PA]VIISN

10 sites

13 sites

6 sites

6 sites

37 sites

8 sites

3.5e-31

8.0e-24

5.1e-03

9.2e-03

9.3e-91

1.6e-29

143

56

48

47

Domain seems widespread throughout eukaryotic kingdom.

Domain seems restricted to fungal kingdom, large number
of hits predominantly to the Ascomycota. Some protein hits
are annotated as fungal transcriptional regulatory proteins
or GTP binding protein.

Domain seems restricted to fungal kingdom, large number
of hits predominantly to the Ascomycota. Some protein hits

are annotated with fungal transcriptional regulatory function.

Weak Pfam domain annotation as zinc cluster.

Domain seems widespread throughout eukaryotic kingdom.
There are weak similarities to zinc-finger protein domain.

Motif is adjacent to predicted signal peptide cleavage site.
Domain is restricted to pathogenic Fusarium genomes in
our search.

Search converged after three iterations. Domain is restricted
to F. graminearum, F. oxysporum, F. solani and the cereal
pathogen G. graminicola.
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Table 3 De novo N-terminal motif search results for the pathogen-associated protein clusters in F. graminearum (Continued)

Cluster C12 11 sites 24e-16 11 Domain restricted to fungal kingdom, hits are predominantly

to Ascomycota including a large number of pathogens,
eg. S. nodorum. Weak hit to PRANC domain, which is found
at the C-terminus of Pox virus proteins. L-P-x-E motif is also
found in F-box like domains.

FHIPLIF[SLIRLPPE[LIVIRLIMQII[WYIRHALT

We report motifs in F. graminearum which are distinct from convential signal peptides and which are conserved in more than 5 sequences and occur within the first 150 amino acids to identify potential novel
signalling, subcellular targetting or uptake motifs.
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absent from non-pathogens, we use a HMM methodology
[32] as a sensitive method for finding pathogen-associated
proteins. Sensitive HMM methods are particularly well-
suited for comparative analysis in fast-evolving genome
regions, such as pathogenicity islands or dispensable
chromosomes. Unlike previous studies which made use
of the stringent reciprocal best BLAST hit method
[28,29], our pipeline is able to detect remote sequence
similarity relationships across a large number of genomes
and protein clusters sharing domains and common
structural features derived from their peptide sequences.
The reciprocal best BLAST hit method and the triangular
extension of clusters of orthologous groups (COGs) are
efficient tools for deriving orthology across genomic
sequences, however they are inadequate for large evolu-
tionary distances as found in fast-evolving genome regions
[66]. Orthology is a powerful concept, however ideally
phylogenetic methods should be used in fast-evolving
pathogen genomes instead of reciprocal best BLAST
hits and COGs and for these, a resolved fungal tree of
life would be a prerequisite.

F-measure ranking for finding virulence mechanisms
common and exclusive to pathogens

We introduce a novel way for ranking pathogen-associated
proteins in a query genome according to their degree
of conservation across other fungal pathogens, with and
without a cereal host, using the F-measure. This allows
for the identification of fungal pathogen proteins that
are widely distributed across other pathogenic fungi
and at the same time predominantly absent from non-
pathogenic fungi. Using this methodology, we were able
to identify a highly ranked putative secreted phosphor-
ylcholine phosphatase in F. graminearum for which a
phylogenetic analysis suggests that it is characteristic
of necrotrophic and hemibiotrophic pathogens and has
undergone a shared selection process with bacterial
plant pathogens. Proteins which are highly ranked ac-
cording to our F-measure method are prime candi-
dates for proteins essential for a pathogenic lifestyle
and virulence.

Clustering approach returns known effectors and novel
effector candidates

We use a k-means unsupervised clustering approach to
divide the space of pathogen-associated proteins into
natural groups with shared sequence-derived features.
This is a step towards finding structural similarities
within the pathogen-associated proteins in the twilight
zone of sequence similarity. By using an unsupervised
clustering approach on the set of pathogenic proteins
without the use of heuristic thresholds, we can predict
putative effectors which would have gone undetected
with pipeline approaches that rely on heuristic
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assumptions. We demonstrate that our pipeline returns
known effectors in S. nodorum and F. oxysporum. For F.
graminearum, we predict three clusters with a high se-
cretion signal that contain prime candidates for effector
proteins. We found that the proteins of two of these pu-
tative effector clusters are found predominantly in re-
gions of genome innovation. One of the clusters is
enriched in threonines and molecular weight as well as
depleted in leucines and protein charge. Enrichment of
threonines and depletion of leucines is a characteristic of
type III secreted proteins in animals and plants [3].
Within this cluster, we identified two putative protein
families that each have a distinct conserved sequence
motif adjacent to the predicted signal peptide cleavage
site. One of them is a highly conserved N-terminal [SG]-
P-C-[KR]-P motif exclusive to Fusarium with unknown
function. We found several other N-terminal motifs con-
served in proteins lacking a predicted secretion signal, e.
g. a L-P-x-E-R motif with remote homology to F-box do-
mains that is highly conserved in pathogenic Ascomy-
cota such as S nodorum. In future work we will
experimentally test these motifs for their functional role, i.
e. whether they might be signalling, subcellular targetting
or uptake motifs in the host-pathogen interaction.

Quality of genomic data and application to other
genomic data sets

Our bioinformatics pipeline can be applied to any patho-
genic genome for which a contrasting set of non-
pathogenic relatives is available, such as publicly available
fungal or bacterial genomes. It should be emphasized
that accuracy and sensitivity of any comparative genom-
ics analysis relies heavily on the quality of genome assem-
bly and subsequent gene prediction and annotation.
Databases housing a large number of genome pro-
jects such as the JGI MycoCosm will inevitably feature
entries of diverse annotation quality. Gene boundary
prediction errors are of particular concern for effector
candidates which are expected to harbour N-terminal
motifs such as signal peptides. However, unlike fungal
effector prediction pipelines that strictly select effector
candidates based on a predicted signal peptide, our
clustering approach can to some extent compensate for
incorrect gene boundaries. For example, the F. oxy-
sporum SIX2 effector for which the software SIGNALP
4.0 does not predict a signal peptide is still placed in
the same cluster as the secreted SIX1, SIX6, SIX9 and
SIX10 effectors based on its sequence-derived features.
This might indicate that our clustering approach suc-
cessfully recognizes structural similarities amongst the
pathogen-associated proteins and can offset sporadic
gene boundary prediction errors. However, improve-
ments in gene assembly tools and automated gene pre-
diction pipelines are of utmost importance and our
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method will naturally be able to take advantage of the
increasing number of fungal genomes available and of
improved genome annotation quality.

Before taking promising effector candidates to experi-
mental validation, one can incorporate expression data
of in planta infection such as microarray or RNAseq
data. The pipeline scripts are available from the authors
on request. With regard to the cereal pathogen genome
set, already pre-processed datasets are available for fur-
ther analysis.

Methods

Fungal genomes and proteomes

Predicted protein sets from 172 fungal genomes were
downloaded from the DOE Joint Genome Institute
MycoCosm web site [33] and supplemented with the
B. graminis f. sp. hordei genome [64] and our in-house
genome assembly for F. pseudograminearum CS3096
(GenBank: AFN'W00000000.1, [29]). The majority of
MycoCosm genomes are of non-pathogenic fungi. More
specifically, 56 of the 174 fungal genomes belong to patho-
genic fungi and 19 are fungal pathogens of a cereal host
(Table 4).

One-against-all proteome HMM comparisons
Sensitive proteome comparisons are used to identify
proteins in the query genome of interest which are
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conserved across other fungal genomes and share a
similar protein domain structure. One of the patho-
genic fungal genomes is set as the query genome of
interest. For the protein set of the query genome, the
set of significant protein hits across the 174 fungal ge-
nomes is calculated using the profile HMM search
tool phmmer [32]. This returns a list of hits with full-
sequence E-values for each protein from the query
genome. Proteins are composed of one or more do-
mains. There can be multiple matches across a query,
i.e. protein domain hits, and these are returned by
phmmer as a table of per-domain hits. A query protein
is said to have a significant match in another fungal gen-
ome if there is a full-sequence hit with E-value < 10 and
if the combined domain hits cover more than 60% of
the query and target sequences, respectively. For each
query protein, its significant fungal genome matches
are recorded.

Comparative analysis: pathogen-associated proteins

As a result of the phmmer searches, each protein in the
query genome has a number of protein hits across the
list of 174 fungal genomes, including to itself. To decide
if a query protein x; is specific to fungal pathogens and
highly conserved across fungal pathogens, four measure-
ments of the relevance of the phylogenetic distribution

Table 4 The set of 19 fungal pathogen genomes used in our comparative study which have a cereal host

Genus Fungal genome Cereal host range Lifestyle Reference
Fusarium Fusarium graminearum Wheat, barley, maize Hemibiotroph [43]
Fusarium pseudograminearum Wheat, barley, maize Hemibiotroph [29]
Magnaporthe Magnaporthe grisea Rice, barley Hemibiotroph [67]
Puccinia Puccinia graminis f. sp. tritici Wheat Biotroph [17]
Ustilago Ustilago maydis Maize Biotroph [68]
Cercospora Cercospora zeae-maydis Maize Necrotroph -
Cochliobolus Cochliobolus carbonum 26-R-13 Maize Necrotroph -
Cochliobolus heterostrophus C4 Maize Necrotroph [69]
Cochliobolus heterostrophus C5 Maize Necrotroph [69]
Cochliobolus lunatus m118 Sorghum Necrotroph -
Cochliobolus miyabeanus ATCC 44560 Rice Necrotroph -
Cochliobolus sativus ND9OPr Cereal generalist Hemibiotroph [69]
Cochliobolus victoriae FI3 Oat Necrotroph -
Mycosphaerella Mycosphaerella graminicola Wheat Hemibiotroph [70]
Pyrenophora Pyrenophora teres f. teres Barley Necrotroph [71]
Pyrenophora tritici-repentis Wheat Necrotroph [69]
Setosphaeria Setosphaeria turcica Et28A Maize Hemibiotroph [69]
Stagonospora Stagonospora nodorum SN15 Wheat Necrotroph [35]
Blumeria Blumeria graminis f.sp. hordei Barley Biotroph [64]

{TC “ 1 The set of 19 fungal pathogen genomes from the MycoCosm tree which have a cereal hots."\f t}.
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of the phmmer hits with respect to pathogenicity are
calculated: cereal-recall R (i), pathogen-recall R’ (i),
cereal-precision P (i) and pathogen-precision P (i). These
values are defined as follows:

hits to cereal pathogens

R(i) = 100 1
(@) X T cereal pathogens (1)
R2(i) = 100 hits to fungal pathogens 2)
fungal pathogens
hits to cereal pathogens
Pr(i)y=1
(£) = 100 x hits ’ (3)
hi 1
PP(i) = 100 its to funﬁi pathogens' ()
its

A high recall means that a method returns the major-
ity of relevant results. High precision means that a
method returns more relevant results than irrelevant re-
sults. If a protein has high cereal- or pathogen-recall it
means that its phmmer hits cover the majority of fungal
pathogens with or without a cereal host, respectively.
If a protein has high cereal- or pathogen-precision it
means that its phmmer hits mostly contain fungal patho-
gens with or without a cereal host, respectively. Precision
and recall can be combined into one measurement, the
F-measure:

precision x recall
X

F=2 (5)

precision + recall
For each query protein x; recall and precision for its
hits across the 174 fungal genomes are recorded. Proteins
x; are kept with pathogen-precision of P’ (i) > 80%, i.e. at
least 80% of its phmmer hits are to other pathogenic fungi,
and we call these pathogen-associated proteins. These
pathogen-associated proteins are ranked according to their
F-measure in terms of cereal and fungal pathogen hits.

Clustering of pathogen-associated proteins
Centroid-based clustering with the k-means method was
used to find clusters of similar query proteins in the set of
pathogen-associated proteins S. Each protein x;€ S has a
35-dimensional feature vector based on its sequence infor-
mation. Let the feature vector v; for protein be given as

_ 1 9 1 20
Vi = <|Vi|asivei7miahiyliapiv"',piaﬂi y ooy A >7

where |v;| is the protein length. Let s; be the D-score
returned by SIGNALP 4.0, which corresponds to the pre-
diction whether the sequence contains a signal peptide or
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not [63]. Let ¢; be the score for extracellular localization
site prediction calculated by WoLF PSORT [72]. The mo-
lecular weight of a protein is given by m; the charge of a
protein is given by /; and the isoelectric point is given by /;.
Furthermore, the chemical properties of the amino acids in
the protein are used as a first step to detect structural ho-
mologues with little sequence identity [73]. Let p},...,p]
be the percentage of amino acids in a protein which are
classified as tiny, small, aliphatic, aromatic, non-polar,
polar, charged, basic and acidic, respectively. These features
are calculated using pepstats from the EMBOSS package
[74]. Let al,...,a” be the percentage of amino acid resi-
dues in a protein. The entries in the 35-dimensional feature
vectors are numerical and were normalized to avoid a bias
towards a feature with higher range. Centroid-based clus-
tering with the k-means method requires the number of
clusters to be specified in advance and we use the heuristic
elbow plot method for this purpose. For each feature in the
35-dimensional feature vector, Mann—Whitney U tests
were used to test whether the distribution within a cluster
is identical to the full background distribution, i.e. all clus-
ters, and highly significant p-values for both directions
(lesser and greater, p-value < 2.2e-16) are recorded.

Functional annotation and motif search

3D protein structure predictions were obtained using
the remote homology recognition technique Phyre2 [45].
Phyre2 is able to predict 3D structure similarities in cases
when sequence similarity search tools fail. For Phyre2, a
confidence threshold of 95% was used. For selected pro-
teins, the computationally more demanding I-TASSER ser-
ver was used [47]. The TM-score returned by I-TASSER
measures the structural similarity between two structures.
A TM-score < 0.17 means that the result is of random simi-
larity. A TM-score > 0.5 indicates that the model is of cor-
rect topology. The C-score returned by [-TASSER is a
confidence score for estimating the quality of predicted
models by and is typically in the range of from -5 to 2. A
high C-score relates to a model with a high confidence.
Protein domain searches were performed using a local
Pfam search for each query protein against Pfam’s library
of profile HMMs [32]. Hits with E-value < 10 are consid-
ered as significant hits. The tool MEME was used for se-
quence motif discovery [75]. MEME was run with a
minimum and maximum motif width of 4 and 50, respect-
ively, and set to return the best 30 motifs.

Implementation of the comparative HMM analysis pipeline
All analyses described above were conducted with cus-
tom Python and R scripts. The k-means clustering was
performed using SciPy and the Mann—Whitney U tests
were carried out using R.
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Availability of supporting data

The following additional data are available with the on-
line version of this paper. Additional file 1 is a table list-
ing the properties of the predicted pathogen-associated
proteins in S. nodorum. Additional file 2 is a table listing
the properties of the predicted pathogen-associated pro-
teins in F. oxysporum. Additional file 3 is a table listing
the properties of the predicted pathogen-associated pro-
teins in F. graminearum as well as the individual clusters
and predicted motifs. Additional file 4 contains box plots
for the 12 clusters in F. graminearum and the 35 protein
features used for the clustering. Additional file 5 con-
tains the full sequence alignment for the proteins con-
taining the motif [WYF]-C-x-T-Y-x-S-T-Y-L. Additional
file 6 is a table listing the properties of the predicted
pathogen-associated proteins in B. graminis. Additional
files 7 and 8 contain information about the predicted
Y/E/WxC-motif proteins B. graminis.

Additional files

Additional file 1: Table listing the properties of the predicted
pathogen-associated proteins in S. nodorum.

Additional file 2: Table listing the properties of the predicted
pathogen-associated proteins in F. oxysporum.
Additional file 3: Table listing the properties of the predicted

pathogen-associated proteins in F. graminearum as well as the
individual clusters and predicted motifs.

Additional file 4: Box plots for the 12 clusters in F. graminearum
and the 35 protein features used for the clustering.

Additional file 5: Contains the full sequence alignment for the
proteins containing the motif [WYF]-C-x-T-Y-x-S-T-Y-L.
Additional file 6: Table listing the properties of the predicted
pathogen-associated proteins in B. graminis.

Additional file 7: Contain information about the predicted Y/F/
WxC-motif proteins B. graminis.

Additional file 8: Contain information about the predicted Y/F/
WxC-motif proteins B. graminis.
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