
Schweikert et al. BMC Genomics 2013, 14:826
http://www.biomedcentral.com/1471-2164/14/826

METHODOLOGY ARTICLE Open Access

MMDiff: quantitative testing for shape changes
in ChIP-Seq data sets
Gabriele Schweikert1,2*, Botond Cseke1, Thomas Clouaire2,3, Adrian Bird2 and Guido Sanguinetti1*

Abstract

Background: Cell-specific gene expression is controlled by epigenetic modifications and transcription factor
binding. While genome-wide maps for these protein-DNA interactions have become widely available, quantitative
comparison of the resulting ChIP-Seq data sets remains challenging. Current approaches to detect differentially
bound or modified regions are mainly borrowed from RNA-Seq data analysis, thus focusing on total counts of
fragments mapped to a region, ignoring any information encoded in the shape of the peaks.

Results: Here, we present MMDiff, a robust, broadly applicable method for detecting differences between sequence
count data sets. Based on quantifying shape changes in signal profiles, it overcomes challenges imposed by the
highly structured nature of the data and the paucity of replicates.
We first use a simulated data set to compare the performance of MMDiff with results obtained by four alternative
methods. We demonstrate that MMDiff excels when peak profiles change between samples. We next use MMDiff to
re-analyse a recent data set of the histone modification H3K4me3 elucidating the establishment of this prominent
epigenomic marker. Our empirical analysis shows that the method yields reproducible results across experiments, and
is able to detect functional important changes in histone modifications. To further explore the broader applicability of
MMDiff, we apply it to two ENCODE data sets: one investigating the histone modification H3K27ac and one measuring
the genome-wide binding of the transcription factor CTCF. In both cases, MMDiff proves to be complementary to
count-based methods. In addition, we can show that MMDiff is capable of directly detecting changes of homotypic
binding events at neighbouring binding sites. MMDiff is readily available as a Bioconductor package.

Conclusions: Our results demonstrate that higher order features of ChIP-Seq peaks carry relevant and often
complementary information to total counts, and hence are important in assessing differential histone modifications
and transcription factor binding. We have developed a new computational method, MMDiff, that is capable of
exploring these features and therefore closes an existing gap in the analysis of ChIP-Seq data sets.

Keywords: Chip-Seq, Differential peak detection, Kernel methods, Maximummean discrepancy,
Histone modifications, H3K4me3, Cfp1

Background
Chromatin immunoprecipitation followed by deep se-
quencing (ChIP-Seq) is rapidly becoming the main
experimental technique in functional genomic and epige-
nomic studies. ChIP-Seq’s ability to profile genome-wide
patterns of transcription factor binding and histone mod-
ifications has led to its extensive use by the ENCODE
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consortium [1] in an endeavour to identify and char-
acterise all functional elements encoded in the human
genome.
Despite the widespread use of ChIP-Seq, data analysis

is still a challenging task [2] and a typical computational
pipeline includes a number of steps, each posing its own
difficulties. An initial crucial step is the identification of
regions with significant signal enrichment relative to a
control sample in a process called peak calling. Over the
last years, several tools for this task have been suggested
and they have recently been compared in [3]. As a result of
peak calling, genome-wide catalogues are obtained, which
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provide valuable snapshots of protein binding or histone
modifications in a given cell or tissue.
However, to understand the dynamics of histone modi-

fications and TF binding and their effects on cell-specific
gene regulation it is necessary to quantitatively compare
different ChIP-Seq samples. This is a surprisingly difficult
task as the statistical assessment of differences is hindered
by a number of factors: on the one hand, the data is digital,
consisting of counts of DNA fragments (reads) mapped
onto regions of the genome. This feature, common to all
sequencing-based methods, raises the immediate issue of
choosing a suitable noise model for both technical and
biological noise. On the other hand, in most studies, only
a very small number of replicate experiments are per-
formed, making statistical testing an intrinsically difficult
task. To compound both of these problems, ChIP-Seq pro-
duces spatially distributed patterns of binding or histone
modifications localised to specific regions of the genome
(peaks); this feature, in particular, renders standard dif-
ferential testing methods unsuited for the comparison of
ChIP-Seq data sets.
Currently, two strategies are predominantly followed

for the differential analysis of ChIP-Seq data sets: The
most naive approach is to identify overlaps in the sets
of genomic peak intervals detected in the different sam-
ples, e.g., [4-6]. This simplifies the problem to a basic
occupancy analysis which is insensitive to changes in the
affinity of TF binding or in the prevalence of histone
modifications. In addition, the results are strongly depen-
dent on the thresholds which are set heuristically in the
peak calling step and differences in the noise background
may further confound the outcome of this analysis. An
alternative strategy is to compute the total number of
reads mapping to each peak in each data set and to
test for significant fold-changes across multiple tissues or
conditions, e.g., [7]. These count-based approaches have
mostly advocated the adaptation of methods for RNA-
Seq data analysis to the more structured ChIP-Seq data.
For example, the frequently used methods DBChIP [8]
and DiffBind [7] are based on the RNA-Seq methods
DESeq [9] and EdgeR [10]. They employ a negative bino-
mial distribution to model both biological and technical
noise in the total counts of expressed genes. To circum-
vent the problems of low experimental replication, they
apply an elegant approach in which information is shared
across genes, effectively pooling together genes with simi-
lar total counts. An immediate problem arising for count-
based methods is finding the right normalisation. Initially,
data sets were rescaled according to the observed library
size, which corresponds to the total number of reads in
the whole data set [11-13]. However, it has been shown
that this strategy is inadequate in most situations, and
a number of alternatives have been suggested, including
rescaling to the median of the ratios of observed counts

[9,14], locally weighted regression (LOWESS) [15] and
more recently rescaling using common peaks across data
sets (MANorm, [16]). All these methods make strong a
priori assumptions about the relationship of the data sets
that are to be compared. The choice of the normalisa-
tion method can therefore greatly influences the results of
count-based differential analysis [14,17,18].
Perhaps a more severe limitation of count-based meth-

ods is the information loss inherent in representing a peak
by a single integer (the total counts of reads mapping
into the given peak region). Any higher order informa-
tion that is conveyed in the peaks is ignored. However,
a spatial structure of the ChIP-Seq signal is particularly
evident in the case of peaks associated with epigenomic
marks. For example, trimethylation of lysine 4 on histone
H3 (H3K4me3) is known to form distinct bimodal peaks
at transcription start sites (TSS), e.g. [19]. Interestingly, at
a given genomic location the shape of observed enrich-
ment peaks tend to be highly reproducible across bio-
logical replicates and increasing evidence hints towards a
functional role of these profile structures [1,20]. Focus-
ing exclusively on total counts of reads associated with
a peak might therefore be insufficient when investigating
differences of epigenomic modifications between differ-
ent samples and higher order features associated with the
shape of an enrichment peak should also be taken into
account.
In this paper, we introduce MMDiff, a multivariate non-

parametric approach to testing significant differences in
profile patterns between peaks in different conditions.
In contrast to count-based methods, which make their
decision by comparing a single number, i.e. counts,MMD-
iff exploits higher order features in the peak shapes. By
focusing on shape differences, MMDiff accounts explicitly
for the spatial structure of ChIP-Seq peaks; this alsomakes
it more robust to normalisation effects and independent
of the explicit definition of a noise model. The underly-
ing idea is to treat each peak as a distribution over a finite
space given by the starting positions of all reads. The prob-
lem of testing for differential binding is then reduced to
testing whether two samples are generated by the same
probability distribution (albeit unknown). In this context
a sample consists of all the reads mapping to a given peak
region in one data set. As there is a large variability of
observed peak profiles at different genomic locations -
some may weakly resemble a Gaussian distribution, how-
ever most are strongly skewed and/or multi-modal (see
Figure 1) - we cannot make any assumption about the
type of distribution. We therefore adopt recent advances
in machine learning research [21,22], which enable us
to include features of any order in the prediction of
differential binding without making assumptions of the
underlying distributions. MMDiff is specifically designed
to detect differences between different ChIP-Seq data sets,
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Figure 1 H3K4me3 profiles at three different transcription start sites. Profiles in A and B show a typical bimoodal structure, while the peak
displayed in C is more complex. Data from three different samples (WT, Resc, Cfp1-/-) and measured in two repeat experiments (AB.1: upper panel
and AB.2: lower panel) are shown. Arrows indicate transcription starts sites and direction of transcription. Shown are normalised read counts. Note,
that in contrast to coverage plots, reads are here only represented by their estimated mid points. The patterns for WT and Resc strongly resemble
each other and while the signal in experiment AB.2 is noisier than in AB.1, the overall shapes are very similar. In the Cfp1-/- sample read coverage
appears to be reduced in parts of the regions. However, the second example shows that a decrease in one part of the region can be compensated
for by a gain of signal in an upstream region. All three examples were consistently called by MMDiff in both experiments, but not called by any other
method.

however, its main idea can also be used to address the
more general problem of detecting differences in other
sequencing based experiments, for example in DNase-
Seq or CAGE-Seq data sets. Recently, a similar approach
has been employed for the detection of differential RNA
isoforms from RNA-Seq data [23].
We illustrate and compare our method on a simulation

study, and on three independent ChIP-seq data sets of
both transcription factor binding and epigenomic mod-
ifications. Our results show that MMDiff can capture
biologically meaningful changes and is highly comple-
mentary to count-based approaches. We propose that
MMDiff provides an important new tool for bioinfor-
maticians and biologists interested in epigenomic data
analysis, conveniently available as a Bioconductor tool.
The rest of the paper is organised as follows: we start

with a discription of the statistical foundations of our
method and a discussion on how the MMD statistic of
[21] is modified to account for biological variability. We
complete theMethods section with a thorough simulation
study which compares the results of our method to four
different competitors in a controlled environment. This
enables us to discuss the strengths and weaknesses of the

various methods, and in particular highlights the com-
plementarity of the MMDiff approach w.r.t. count-based
methods. We then present results on three different data
sets: we start with an in-depth analysis on the H3K4me3
data set of [24]. As this study constitutes our main bio-
logical motivation, we present multiple complementary
analyses that demonstrate the functional significance of
our results. To establish the broad applicability of our
method, we also present results on two ENCODE data
sets: a comparison of the histone mark H3K27ac across
different human cell lines (K562 and GM12878), and a
comparison of binding patterns of the transcription factor
CTCF across different mouse tissues (cortex, cerebellum
and liver). We conclude the paper with a broader discus-
sion of the method in the context of NGS data analysis.

Methods
Kernel-based statistical tests
In order to incorporate shape features in a statistical test-
ing procedure, we adopt a kernel-based non-parametric
test, which allows us to retain information of any order
within the testing procedure [21,22]. We briefly review
here the mathematical foundations of this procedure.
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The statistical testing question we wish to address is the
following: Suppose for a peak l we are givenm = nsl obser-
vations (i.e. reads) in data set s, Xs := (xs1, . . . , xsm) and
n = ns′l observations in data set s′, Xs′ := (xs′1 , . . . , xs

′
n ),

where xs and xs′ are random variables with respective
probability measures p and p′, and Xs and Xs′ are inde-
pendently and identically distributed (i.i.d.) from p and p′,
respectively. Can we decide at a given significance level to
reject the null hypothesis p = p′?
In order to decide this question, we will first define a

proper test statistic that summarise the observations while
at the same time retaining higher order information of the
distributions. We will therefore employ Kernel methods,
and use positive definite kernels to capture non-linearity
of the original data through the higher-ordermoments. As
with all kernel-based methods, the starting point for this
approach is to define a feature map φ(x) which maps the
data into a high dimensional reproducing Kernel Hilbert
Space (RKHS). While the dimension of the RKHS is usu-
ally very high (or even infinite), all relevant quantities
are determined in terms of inner products (in the RKHS)
between feature vectors, and can be efficiently computed
in terms of a finite number of evaluations of the kernel
function

k(x, x′) = 〈φ(x),φ(x′)〉.
In the RKHS, the mean element of a distribution p con-
tains the information of all higher-order moments and we
can compute the empirical estimates (μ̃s, μ̃s′ ) of the mean
elements for Xs,Xs′ as

μ̃s = 1
m

m∑
i=1

φ(xsi), (1)

and μ̃s′ respectively. Furthermore, we can use the distance
between the mean elements of two distributions p, p′,
(the maximummean discrepancy, MMD) as test statistics.
Intuitively, the greater the distance, the more different the
two distributions are. For a given peak l, the dissimilar-
ity between data set s and s′ can therefore be expressed in
terms of the MMD value:

MMDs,s′
l =

⎡
⎣ 1
m2

m∑
i,j=1

k(xsi , xsj ) − 2
m · n

m,n∑
i,j=1

k(xsi , xs
′
j )

+ 1
n2

n∑
i,j=1

k(xs
′
i , xs

′
j )

⎤
⎦

1
2

.

(2)

A modelling issue of central importance is the choice
of the features and the kernel function k. In our case,
we wish to preserve the spatial information contained
in the peak profile. We therefore used the estimated
mid positions of the mapped reads as observed features
and the radial basis function (RBF) as kernel k(x, x′) =

exp
[−(x − x′)2/(2σ 2)

]
. The (hyper)-parameter σ con-

trols the length scale of the kernel, i.e. the distance (along
the genome) at which fragment counts decorrelate. In our
experiments, we used a heuristic suggested in [22] such
that σ 2 = 1/2 · x̄2, where x̄ is the median distance of all
observations in Xs and Xs′ .

Accounting for biological variability
The bootstrap procedure for computing MMD statistics
proposed in [21] has strong theoretical guarantees for
discriminating between different distributions, given suf-
ficient number of samples (i.e. reads mapped to a peak).
A simulation study shows that the procedure appears to
be well calibrated when comparing technical replicates of
ChIP-Seq data (see Additional file 1). However, biological
variability implies that the histogram distributions of the
same peak in different biological replicates will be more
different than expected. This turns out to be true, and
the testing procedure of [21] rejects the null hypothesis in
almost all comparisons between biological replicates (see
Additional file 1).
In order to avoid this problem, we adopt a data-driven

method to estimate biological variability from biological
replicates. In general, this is a difficult task, as for most
experiments only very few replicates are available; for
example the ENCODE consortium set a standard of two
independent biological replicates per ChIP-Seq measure-
ment [25]. A reliable estimate of biological variability on
a peak by peak basis is therefore rarely possible. To obvi-
ate this problem, we pool peaks with similar total counts
to generate robust estimates of p-values (this information
sharing is similar in spirit to the regression approach of
DESeq, [9]). Specifically, for each peak l we determine
the number n̄l of reads mapping to it averaged across all
considered samples. Peaks are then binned into quantiles
determined on the averaged counts per peak. To obtain
empirical p-values we compute the probability of observ-
ing an MMD value between biological replicates in the
given bin, which is at least as large as the one observed for
a given peak in the comparison between conditions. Raw
p-values are subsequently corrected for multiple testing
using the method of Benjamini and Hochberg [26].

Simulation study
To benchmark the performance of our method in a quan-
titative manner we initially resort to simulations. While
simulations are necessarily limited in their biological real-
ism, we think the availability of a ground truth is impor-
tant for fair assessments, and the possibility of varying
simulation parameters provides an excellent opportunity
to explore the method’s strengths and limitations. The
strategy we follow to generate an artificial set of ChIP-
Seq peaks is illustrated in Figure 2: we consider a control
set of 10,000 simulated peaks. To assign a total count
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Figure 2 Simulated ChIP-Seq experiment. A:MA-plots for simulated peaks; Each dot corresponds to a single peak. Black dots, green circles and
purple crosses indicate unchanged sites, sites with changed profiles and sites with affinity changes, respectively. The left plot shows changes in base
affinity in treatment vs control as a function of mean peak affinity, no biological variability and no sequencing effects are considered. In contrast, the
right panel results if biological variance (Gamma distributed) and sampling of reads (Poisson distributed) are simulated. In this case, sites with
unchanged base affinity may still show substantial fold changes, which hampers the detection of true differential sites. The filled green circle
marked by an arrow corresponds to the profile depicted in detail in B: Simulated example profiles (mixtures of two Gaussian curves) with profile
change simulated as a change in the mixing parameter. Left panels correspond to the control condition, right panels to the treatment condition.
First row shows three peak profiles for each condition and the area under the curves integrates to 1. Within each condition there is a small degree of
variability regarding the position and width of the two sub-peaks and also their relative strength. Between conditions the mixing parameter
changes substantially. In the middle row, each of the six profiles is weighted with the sample specific affinity value for the given peak. The areas
under the curves now vary between samples. In the bottom row, the sequencing process is simulated with a Poisson distribution resulting in
histograms of reads mapping along the extend of the peak. C: Receiver operator characteristic (ROC) curves for various methods. Left: only
unchanged sites and sites with profile changes are considered; Right: only unchanged sites and sites with affinity changes are used. Circles indicate
the considered operating point (FDR=0.05).

to each peak, we follow the negative binomial (NB) gen-
erative model, as suggested elsewhere [9,27]. This com-
monly used hierarchical model effectively assumes that
the between-sample variation follows a gamma distri-
bution while the sequencing process leads to a Poisson
distribution. We start by assigning a true base affinity
value to each peak. These ‘genomewide’ affinity values are
sampled according to the distribution of total counts in
an ENCODE CTCF data set [28]. To simulate biological
replicates, we generate sample-specific affinity values for
each peak according to a Gamma distribution with mean
value given by the true base affinity for that peak. The spa-
tial structure of the peaks (peak profiles) is assumed to
be bimodal, modelled as a mixture of two Gaussians with
varying base means, variances and mixing parameters.
The ‘biological noise’ in the peak profiles is modelled by
sampling means, variances and mixing parameters from
Gaussian distributions with means given by the true base
values. To generate a ‘treatment’ set, we randomly chose
100 peaks and introduce changes in their base affinity val-
ues (Figure 2A). Likewise, we chose 100 peaks to change
their base profile by varying the base mixing parameter
(Figure 2B). We again create ‘biological replicates’ for the
treatment condition. To obtain resulting ‘affinity profiles’
for a given peak, we have to multiply the local distribu-
tions given by the peak profile with the peak’s affinity
value. To simulate the sequencing process, reads mapping
to a peak are then sampled according to a Poisson dis-
tribution. For simplicity, we assume the same library size
for each sample and also that the overall enrichment of
all peaks relative to the genomic background is identical
in all samples. To assess the robustness of the methods’
predictions, we repeated this procedure 10 times.
As competitors for our method, we selected three

count-based methods, DESeq [9], DBChip [8] and DIME
[15]. Additionally, we investigate another shape-based
method, where we suggest to replace theMMDdistance in
our method with the Generalised Mover Distance (GMD)
which was recently suggested as a measure of the distance

between histograms [29]. In Table 1, we report results
on the affinity changes and on the profile changes sepa-
rately. We summarize performances at false discovery rate
(FDR) of 0.05, and also report the area under the Receiver
Operating Characteristic (auROC) curve (Figure 2C). As
expected, count-based methods cannot capture shape-
based changes, with DESeq, DBChip and DIME all calling
very few peaks essentially at random. On the contrary,
MMDiff ’s performance is overall very good, with a very
low number of false positives. Interestingly, GMD is seen
to perform globally as well as MMDiff, however its per-
formance at the selected operating point (very high speci-
ficity) is considerably worse. When we consider affinity
changes all three count-based methods achieve very good
results (particularly so for DIME and DBChip). MMDiff ’s
performance is considerably worse, while still significantly
better than random; in particular, the number of false pos-
itives called is very limited (c.f. GMD’s high number of
false positives). Therefore, MMDiff appears to be well cal-
ibrated, with good power to capture profile changes and
avoiding type I errors when dealing with count changes.
In summary, MMDiff proves to be complementary to
count-based methods, as expected. For a most exhausted
analysis of differential regions that captures both types of
changes we therefore suggest to combine MMDiff with a
count-based method.

Results and discussion
Application 1: H3K4me3 data set
We first used our method MMDiff to examine a ChIP-
Seq data set investigating the epigenetic mark H3K4me3
[24]. This study particularly focused on the question of
how profiles of this mark are shaped by Cfp1, which is
known to be a conserved DNA-binding subunit of the
H3K4 histone methyltransferase (HMT) Set1 complex.
The experiment presented consists of ChIP-Seq measure-
ments from three different cell lines: (1) a wild-typemouse
ES cell line (WT), (2) a mutant ES line lacking Cfp1 (Cfp1-/-)
[30,31], and (3) a rescue cell line obtained by stable
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Table 1 Differential peak calling on simulated data

Profile changes

TP FP FN TN eFDR (%) SN (%) SP (%) auROC (%)

DESeq 0 + 0.0 0.7 + 0.8 100 + 0.0 9799.3 + 0.8 NaN 0 + 0.0 100 + 0 50 + 0

DBChIP 0.1 + 0.3 2.4 + 1.7 99.9 + 0.3 9797.6 + 1.7 NaN 0.1 + 0.3 100 + 0 50 + 0

DIME 0 + 0.0 1.4 + 1.0 100 + 0.0 9798.6 + 1.0 NaN 0 + 0 100 + 0 50 + 0

GMD 17.8 + 9.1 5.5 + 2.9 82.2 + 9.1 9794.5 + 2.9 26 + 10 17.8 + 9.1 99.9 + 0 83 + 0

MMDiff 34.6 + 4.1 0.7 + 0.8 65.4 + 4.1 9799.3 + 0.8 2 + 0 34.6 + 4.1 100 + 0 83 + 0

Affinity changes

TP FP FN TN eFDR (%) SN (%) SP (%) auROC (%)

DESeq 27.0 + 5.6 0.7 + 0.8 73.0 + 5.6 9799.3 + 0.8 2 + 0 27.0 + 5.6 100 + 0 81 + 0

DBChIP 50.1 + 3.8 2.4 + 1.7 49.9 + 3.8 9797.6 + 1.7 4 + 0 50.1 + 3.8 100 + 0 94 + 0

DIME 45.3 + 4.1 1.4 + 1.0 54.7 + 4.1 9798.6 + 1.0 3 + 0 45.3 + 4.1 100 + 0 95 + 0

GMD 2.1 + 2.1 5.5 + 2.9 97.9 + 2.1 9794.5 + 2.9 73 + 30 2.1 + 2.1 99.9 + 0 60 + 10

MMDiff 2.5 + 1.5 0.7 + 0.8 97.5 + 1.5 9799.3 + 0.8 NaN 2.5 + 1.5 100 + 0 70 + 0

Performance summary of five different methods on ten runs of simulated data sets. In the upper panel unchanged sites and sites with profile changes are considered,
in the lower panel unchanged sites and sites with affinity changes. FDR threshold: 0.05; TP: true positives, FP: false positives, FN: false negatives, TN: true negatives,
eFDR: empirical FDR (FP/(FP+TP)), SN: sensitivity, SP: specificity, auROC: area under ROC.

transfection of a human Cfp1 cDNA into Cfp1-/- ES cells
(Resc) [32,33]. We expected that H3K4me3 is reduced in
the Cfp1-/- cells. However, as the H3K4 specific HMT
activity is redundantly encoded in at least six different
complexes in mammals, the precise target regions of Cfp1
were unknown [34]. In addition, under the assumption
that the different enzymes potentially act cooperatively
at the same target regions, we expected that this his-
tone modification would not be completely abolished at
these regions but rather reduced, potentially leading to
altered peak profiles. In [24], it was confirmed that Cfp1
is expressed at near endogenous levels in the rescue cell
line and that the H3K4me3 levels are comparable to the
levels observed in WT. To detect changes that are pri-
marily due to the absence of Cfp1, we will thus contrast
the variability between WT and Resc with the observed
changes between WT and Cfp1-/-. Effectively using the
Resc sample as a biological replicate for the control group
will lead to a potential over-estimation of biological vari-
ation resulting in a conservative estimate of differential
H3K4me3 patterns.
Clouaire et al. repeated the complete experiment on

biological replicates [24]. The antibodies used (here
abbreviated with AB.1 and AB.2) have slightly differ-
ent specificities, plausibly resulting in different signal to
noise ratios and the two experiments were therefore anal-
ysed independently as two repeat experiments. We report
results obtained by MMDiff and compare them with
results obtained using DESeq as it is the most widely used
count-based methods.

Peak finding
We started our analysis by identifying genomic regions
that are significantly enriched for H3K4me3 modifica-
tions. We used the software package MACS on each
of the data sets [11] and subsequently created a set of
67,035 MACS consensus peaks from regions overlapping
in at least three data sets. We found that only 24% of
these peaks overlapped with 4kb windows around TSSs.
However, around 70% of reads mapping to peaks in WT
were found in these promoter proximal peaks. This is in
good agreement with the fact that H3K4me3 is known
to localise around transcription start sites [19]. We con-
clude that in addition to the promoter proximal regions,
MACS calls a large number of narrower, low coverage
peaks, which are potentially more likely to be spurious.
We therefore complement our analysis by investigating
27,807 promoter regions defined by known annotated
genes. Note that in WT about half of these promoters
show only small enrichment for H3K4me3.
To ensure comparability of the data sets, we corrected

for different sampling depths using the normalisation
method suggested in [9]. For simplicity, we will refer to the
normalised number of reads mapping to peak l in sample
s as the total counts, nsl . The full pre-processing pipeline is
described in detail in the Additional file 1 which also con-
tains further initial analysis demonstrating that the data
sets are only weakly affected by input biases and other
biases such as GC content [35].
Resulting ChIP-Seq signals at three promoter regions

are shown in Figure 1. The shapes of the peaks are
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remarkably well conserved between WT and Resc and
also between the two experiments, confirming our moti-
vation to exploit shape conservation between replicates
to increase the sensitivity of differential tests. In general,
we see a signal decrease in the Cfp1-/- cells as com-
pared to WT/Resc, as expected. However, these changes
often appear to be highly spatially dependent: for exam-
ple the profiles in Figure 1A and C are only affected
downstream of the promoter. Interestingly, the profiles
in Figure 1B show similar total counts in WT/Resc and
Cfp1-/- ES cells, as the massive decrease in the region
downstream of the promoter is partially compensated for
by an increase in the upstream part of the peak. This high-
lights the importance of considering shape based features
when testing for statistically significant differences as all
three promoter regions are consistently called by MMDiff
in both experiments, but none is called by DESeq in any
of the experiments.

Differential peak calling
We used MMDiff to find peaks and promoter regions
that are significantly different in the Cfp1-/- cell line ver-
sus WT and Resc. To elucidate the working principles of
MMDiff, we show in Figure 3 MMD values versus mean
total counts for the 27,807 promoter regions. In Figure 3A,
MMD values between Cfp1-/- and WT are shown. For
comparison, MMD distances between Resc and WT are
overlayed in Figure 3B. As expected from equation 2, the
MMD value between replicates strongly depends on the
coverage of the peak, with high enriched peaks showing
smaller MMD values. In contrast, there is a large number
of promoters with high coverage that have been assigned a
large MMD value in the Cfp1-/- vs WT comparison. This
leads to a clear separation of a group of differentially mod-
ified promoters (DMPs) with enrichment profiles that are
more different between Cfp1-/- and WT/Resc than can
be explained by experimental and biological variation. In
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Figure 3 Differential calling and reproducibility in H3K4me3 ChIP-Seq data sets. A-CMMD-based distances as a function of mean total counts
in experiment AB.1. Each dot represents one examined promoter. AMMD values computed between Cfp1-/- and WT. BMMD determined between
Resc and WT overlayed in black. These provide a measure of the biological and experimental variability. C Plots are overlayed and promoters that are
significantly different in Cfp1-/- versus WT/Resc (FDR < 0.05) are shown in red. D-EMA plot representations of the same data showing smooth
scatter plots of log2 fold changes versus mean normalised counts. The red dots mark promoters detected as differentially modified (DMPs) at a 5%
false discovery rate. D DMPs according to MMDiff and E according to DESeq. F Reproducibility of differential calling across experiments AB.1 and
AB.2. DESeq and MMDiff are compared both for differentially called promoters (left) and for MACS consensus peaks.
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Figure 3C 2022 promoters with a FDR < 0.05 are marked
in red.
The fact that most DMPs appear to have large mean

total counts may partly be due to the fact that most
changes appear at promoters that are strongly enriched
in H3K4me3 under normal conditions [24], and partly
because the peaks with low total counts are more dom-
inated by noise and do not exhibit a conserved shape
betweenWT and Resc. While total counts are not used as
a discriminating feature byMMDiff, it is also interesting to
see that most DMPs exhibit a change in total counts as is
elucidated in an MA-plot (Figure 3D), where fold change
is plotted versus mean total counts. As expected, the great
majority of DMPs lose H3K4me3 as a consequence of
Cfp1 depletion.
DESeq calls 1491 promoters to be significantly different

between Cfp1-/- and WT/Resc. Interestingly, the overlap
betweenDMPs called byMMDiff andDESeq is small; only
584 promoters are called by both methods and the dif-
ference between these methods becomes apparent when
comparing the respective MA-plots: To call a region dif-
ferential, DESeq requires a large fold change even for
promoters with large coverage (Figure 3E). On the con-
trary MMDiff is confident in calling regions differential
based on different shapes even when the fold change is
small, provided that shapes are conserved between repli-
cates. Examples for those promoters are given in Figure 1,
which have all been called by MMDiff but not DESeq. On
the other hand, DESeq calls a number of DMPs which
have relative low coverage (between 50 and 1000 counts
in a 4kb window) but relatively high fold change. These
promoters are practically bare of H3K4me3 in WT and
Resc, however they appear to gain a small amount of
H3K4me3 upon Cfp1 depletion as can be seen in the
example in Figure 4A. Overall, this analysis demonstrates
that MMDiff has a high sensitivity to detect differen-
tial modified promoters when a reproducible profile is
observed betweenWT and Resc. The low overlap between
peaks called by MMDiff and DESeq further illustrates on
a real data set the complementary nature of MMDiff to
count-based methods.

Reproducibility
In the absence of a ground truth it is particularly difficult
to evaluate and compare the results obtained from dif-
ferent methods. To approach an answer to the question
whether the called DMPs are genuine or false positives,
we are particularly interested in two aspects: the repro-
ducibility of the differentially called regions, and their
biological significance. To test the first aspect, we run
independent analyses on the data sets obtained with the
two different antibodies, and report the overlap of peaks
called between the two experiments. Figure 3F shows bar
charts of promoters and MACS consensus peaks called

by DESeq and MMDiff in the two experiments; MMD-
iff is seen to call more promoters than DESeq, and also
to have a larger fraction of promoters called consistently
in both experiments. In the case of MACS consensus
peaks, the numbers of regions called consistently in both
experiments appear to be relatively low for both meth-
ods (15% for DESeq and 26% for MMDiff ). However,
MMDiff again is more consistent across experiments than
DESeq.
This analysis demonstrates that the outcome of dif-

ferential peak calling can vary when experimental data
sets obtained with different antibodies are considered.
Also, uncertainties introduced in the peak calling step
can propagate to the differential peak calling procedure.
To increase both, sensitivity and specificity, it is highly
advisable to increase the number of considered replicates.
The analysis also shows that employing shape features as
done withMMDiff can lead to improved robustness of the
results.

Changes of Pol II occupancy at Cfp1 target genes
In order to assess the biological significance of the
observed changes, we analysed a Pol II ChIP-Seq data
set from the same Cfp1 study [24]. We now restrict
our analysis to the promoter regions, in order to avoid
the ambiguous assignment of peaks to genes. Using the
pipeline described above, we investigated whether there
are changes in Pol II binding - and thus gene transcription -
associated with the called H3K4me3 DMPs.
As previously reported, changes in Pol II binding fol-

lowing Cfp1 deletion appear to be modest [24] and only
very few promoters are detected to be differentially bound
by Pol II (9 and 24 called by DESeq and MMDiff, respec-
tively). This is surprising given the widely accepted role of
H3K4me3 as epigenetic mark at active promoters. A pos-
sible explanation is that at most promoters residual levels
of H3K4me3 remain and these basal levels may be suffi-
cient to partially retain Pol II binding, so that changes are
difficult to detect (see Figure 4B). A remarkable excep-
tion is shown in Figure 4C where the H3K4me3 signal is
completely lost at the promoter of Jade-1 which is accom-
panied with the complete removal of Pol II binding. We
next investigated whether there was a small but system-
atic shift of Pol II binding associated with other H3K4me3
DMPs. Figure 4D and E showMA-plots for the Pol II data
set, with DMPs determined on the H3K4me3 set shown in
red, and Figure 4F shows the distribution of fold changes
in Pol II binding between Cfp1-/- and WT/Resc. We see
a clear down-regulation of genes associated with DMPs
called by MMDiff (p < 10−10, Wilcoxon rank sum testa).
In the case of DMPs called by DESeq, the distribution also
has a mean significantly different from zero, but appears
highly non-Gaussian. This is consistent with the finding
that DESeq calls a number of small ‘ectopic’ promoters
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Figure 4 Changes of H3K4me3 levels are correlated with changes in Pol II binding. A-C Example DMPs at three annotated genes, showing
H3K4me3 patterns and Pol II binding profiles. Input is shown as dashed, black lines. A Promoter called by DESeq but not MMDiff showing an
increased H3K4me3 peak in the Cfp1-/- sample. B Promoter called by MMDiff but not DESeq with substantial decrease in H3K4me3 and modest
change in Pol II binding. C Promoter of Jade-1 showing complete loss of H3K4me3 accompanied with elimination of Pol II binding (called by both).
D, EMA-plots of Pol II binding. Promoters with significant differential H3K4me3 patterns are marked with red dots: D DMPs according to DESeq and
E DMPs according to MMDiff. F Distribution of observed fold changes in Pol II binding (Cfp1-/- versus WT/Resc). black: all promoters, red: DMPs
detected by MMDiff (Wilcoxon rank sum test, p-value < 10−15). blue: DMPs detected by DESeq: p-value < 10−13.

which are bare of H3K4me3 in WT but gain H3K4me3 in
the absence of Cfp1 which is accompanied with very low
levels of Pol II binding in Cfp1-/- cells (see Figure 4A).
This analysis demonstrates that differences in H3K4me3
detected by MMDiff correlate well and consistently with
subtle changes of Pol II binding, lending further evidence
to the high quality of MMDiff results. It also shows that
the relationship between H3K4me3 modifications and Pol
II binding is more complex than expected, showing highly
non-linear behaviour.

Functional annotation of Cfp1 target genes
We have observed that Cfp1 substantially affects the
H3K4me3 levels at a large number of promoters and we
next asked whether it specifically targets genes which
share particular functional pathways. We performed an
enrichment analysis for gene ontology (GO) terms using
the Ontologizer package [36]. As a study set we used a
set of 759 genes associated with differential promoters
detected byMMDiff in both experiments (AB.1 and AB.2)
and which showed a decrease in H3K4me3 upon deple-
tion of Cfp1-/- and similarly for DESeq (322 genes). These
two sets were contrasted with a population set consist-
ing of 11,459 genes that showed substantial enrichment
for H3K4me3 inWT and Resc in both experiments. Inter-
estingly, despite the small overlap between the MMDiff
set and the DESeq set (only 18% of the combined set
are shared), 9 out of the 10 most enriched GO terms
are consistent between the two sets: These GO terms
include ‘RNA processing’, ‘RNA binding’, ‘ribonucleopro-
tein complex biogenesis’, ‘structural constituents of ribo-
somes’ and ‘ribonucleoprotein complex’, which were all
highly enriched in the downregulated DMP sets (adjusted
p-values < 10−6). In the MMDiff set, genes annotated
with ‘translation’ are also highly overrepresented. These
findings are in very good agreement with the phenotype
of Cfp1 depletion in ES cells, where global protein syn-
thesis is strongly affected by a reduced abundance of free
ribosomes [37]. To avoid detection biases, we illustrate
the clustering of functionally related genes graphically by
annotating genes in the H3K4me3 MA-plot (Figure 5A).
We find that indeed the majority of promoter regions
of 928 genes associated with RNA binding and process-
ing, translation and structural constituents of ribosomes
are clustering together showing a substantial decrease
of H3K4me3 levels. The most drastic changes can be

observed in genes which are structural constituents of
ribosomes. This trend is also observable in the Pol II
MA-plot (Figure 5B). In this case, individual fold changes
are much smaller, as discussed above, however, a large
number of ribosomal RNAs or proteins are affected. The
cooperative impact of a large number of small effects on
genes involved in the same functional mechanisms may
well explain the phenotype of reduced protein synthesis
in Cfp1-/- ES cell lines [37]. We conclude that changes in
the H3K4me3 level detected by MMDiff are likely to play
functionally important biological roles.

Co-occurring transcription factor binding sites
We next examined the sequence composition of promot-
ers with H3K4me3 profile changes in order to improve
our understanding of the Cfp1 binding mechanisms. We
used the MEME suite to find overrepresented sequence
motifs in putative Cfp1 target promoters as detected by
MMDiff [38]. Again, we used the subset of 11,458 pro-
moters with significant H3K4me3 enrichment to create a
backgroundmodel (Markovmodel of order 6). Among the
top ten discovered motifs we found four binding motifs
of the activating E2F family transcription factors, E2F2
and E2F3, with p-values < 10−80 (see Figure 5C). This
finding is in good agreement with recent data suggest-
ing that the HMTs MLL2 and Set1 directly associate with
E2F transcription factors [39,40] and indirect DNA bind-
ing of Cfp1 via E2F TFs might be the explanation to why
a DNA binding deficient Cfp1 mutant has been shown
to be able to rescue reduced levels of H3K4me3 at most
affected promoter regions [24]. We conclude that MMDiff
is a powerful tool to promote the identification of tran-
scription factor motifs and potential co-factors which play
important roles in targeting HMTs to gene promoters.

Cluster analysis of peaks
Next, we set out to identify common patterns inH3K4me3
profiles and asked whether promoters with similar profiles
were also affected in a comparable way by Cfp1 deple-
tion. This approach is motivated by the idea that different
clusters encoding different shapes might reflect differ-
ent binding mechanisms or different control functions. In
addition, we asked if Cfp1 depletion had a homogeneous
effect on all TSS sites, or if differences might depend on
the shape observed in WT itself. Similar to [41], we per-
formed a cluster analysis on the peak histograms derived
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Figure 5 Functional annotation of DMPs.MA-plots for A H3K4me3modifications and B Pol II binding. All genes annotated with specific GO Terms
are marked with the corresponding colour. Ribosomal RNAs and proteins, as well as genes involved in translation and RNA binding and processing
seem to be most affected by loss of Cfp1. C enriched sequence motifs found in DMPs, showing the binding motifs of E2F family transcription factors.

from the WT sample, using a Gaussian Mixture Model
(GMM) with covariances constrained to be diagonal in
order not to overfitb. We ran GMM multiple times for
different cluster numbers and used the Bayesian Informa-
tion Criterion (BIC) to determine the appropriate number
of clusters. We observed a minimum of BIC at k = 18
clusters, which proved to be robust against different ini-
tialisations of the algorithm, and the same minimum was
found both in the WT and Resc data sets.
Figure 6A presents a heat map visualisation of the clus-

tering results. Average H3K4me3 and Pol II profiles for
three clusters are shown in Figure 6B and C. Remarkably,
genes within the same H3K4me3 cluster also appear to
have distinctive Pol II profiles and wider H3K4me3 peaks
are reflected in broader binding of Pol II.
We further investigated the relationship between dif-

ferential histone modification and shape clustering by
analysing how the detected DMPs are distributed over the
clusters, see Table 2. We find that clusters 12, 14-16, and
18 are highly significantly (p<0.001) enriched for DMPs.
In contrast, we detected far fewer differential peaks than

expected under the null hypothesis in clusters 1-6 and
8. To assess the significance of this clustering, we report
the mean fold change in Pol II counts for genes within
each cluster. We see that clusters which are enriched
for differential H3K4me3 patterns systematically have a
decrease in Pol II, while clusters which are unaffected by
the Cfp1 deletion seem to have rather stable Pol II levels.
Again, it can be observed that H3K4me3 profile shapes are
highly informative and differences in these shapes likely
encode different mechanisms for the establishment of this
important epigenomic marker.

Application 2: H3K27ac
To further explore the broader applicability of MMD-
iff, we applied it to a H3K27ac ENCODE data set.
This epigenomic mark is known to localize around
enhancer elements and distinguishes active enhancers
from poised ones [42]. Here we compare two human
cell lines, K562, an immortalised myelogenous leukemia
line, and GM12878, a lymphoblastoid cell line. We use
two replicates per cell line and analyzed 69,577 regions
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Figure 6 H3K4me3 clusters at promoters. A: Heat map representation of H3K4me3 enrichment in WT, each line represents a single promoter.
X-axis shows distance from TSS in bp and regions are aligned such that the direction of transcription is from left to right. Promoters are sorted by
cluster membership. B Averaged H3K4m3 profiles for cluster 10, 11 and 18. C Averaged Pol II profiles for the same clusters.

derived from the respective ENCODE broadPeak files [43]
after merging overlapping peaks [7]. Using DESeq, 25%
(18,080) of all peaks appear to be differential between the
two cell lines. With MMDiff we only detect 5631 changes,
of which 1827 are unique to MMDiff. Figure 7A shows
a typical example region which was detected by DESeq
but not MMDiff. It is apparent that, despite a large fold
change, the shapes of the peaks are very similar in the
two cell lines. In contrast Figure 7B and 7C show exam-
ple regions detected by MMDiff and not DESeq. In this
case the number of reads mapping to the whole region
is very similar in the two cell lines. However, there are

sharp, well localized peaks in the K562 cell line, while
broad regions of low enrichment in the GM12878 cell line.
In summary, large fold changes seem to be prevalent in
this comparison, however some profile changes are also
present which can be picked up by MMDiff.

Application 3: CTCF binding
Finally, we tested MMDiff on a ChIP-Seq data set measur-
ing the genome-wide binding of the transcription factor
CTCF. CTCF is a transcriptional repressor which also
plays a fundamental role in regulating the 3-D structure
of chromatin [44]. As such, it has been widely studied in
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Table 2 DMPs by cluster membership

Cluster 1 2 3 4 5 6 7 8 9 10

NP 362 275 264 352 363 250 84 176 128 232

N� 9 2 7 18 24 14 4 4 12 40

p − value ooo ooo ooo ooo ooo ooo ooo

Pol II log2 FC 0.04 0.03 -0.03 -0.07 -0.01 -0.05 -0.19 -0.08 -0.22 -0.13

Cluster 11 12 13 14 15 16 17 18

NP 226 291 228 209 241 167 145 155

N� 24 67 23 78 54 61 28 70

p − value *** *** *** *** ***

Pol II log2 FC -0.13 -0.16 -0.11 -0.23 -0.18 -0.23 -0.23 -0.30

NP : number of promoters associated with the given cluster in WT, N� : number of DMPs called by MMDiff, p-values: significance of enrichment/depletion with DMPs by
cluster. (***,ooo corresponds to p-values ≤0.001, where two-sided binomial tests are computed for each cluster. ooo Clusters contain fewer, *** clusters contain more
DMPs than expected by chance. Pol II log2 FC: log2 fold change in Pol II binding averaged over all promoters per cluster.)

recent years, with several ChIP-Seq experiments identify-
ing thousands of binding sites across the genome.
Here we used an ENCODE CTCF ChIP-Seq data set

consisting of two replicates from three mouse tissues; cor-
tex, cerebellum and liver [28]. The choice of tissues was
deliberately heterogeneous to check the ability of MMDiff
to identify both subtle changes (as expected between cor-
tex and cerebellum) and more marked changes between
brain tissues and liver. We used the provided broadPeaks
files and after merging overlapping peaks we obtained
49,762 sites for further analysis. Once again, we compared
the results ofMMDiff and DESeq across pairwise compar-
isons between tissue types: cortex vs liver (CL) and cortex
vs cerebellum (CC). Using a threshold of p < 0.05 for dif-
ferential peak calling, MMDiff identified 2145 differential
peaks in CL and 442 in CC, with DESeq identifying 2052
in CL and 46 in CC respectively. The overlap between
peaks called by the two methods is limited, with 606
peaks called by both in CL and only 15 in CC, further
demonstrating the complementarity of the two methods.
As expected, fewer differences were called by both meth-
ods in CC as opposed to CL; Figure 7D shows an example
of a peak detected by DESeq in both CL and CC and
not called by MMDiff. Again, the peak has a very similar
profile in all samples while the total counts vary greatly
between tissues. In contrast, two example peaks called by
MMDiff and not by DESeq are shown in Figure 7E and
F. In Figure 7E, CTCF seems to be bound at two dis-
tinct binding sites in the cortex and liver. However, in the
cerebellum, one of these sites appears to be vacant. It is
noteworthy, that this change might have been detected
by count-based methods if more stringent regions around
the two binding sites had been considered. These meth-
ods are therefore more depending on the peak calling and
peak merging processesc. Figure 7F shows two binding
sites which are less than 200bp apart. In this case, CTCF
is bound at both sites in cerebellum and liver and occupies

only one binding site in the cortex sample. As illustrated
by this example, MMDiff is capable of directly detecting
changes at homotypic binding events at neighbouring
binding sites.

The R package MMDiff
These applications show that our method is generic
enough to be used in the analysis of a wide range
of ChIP-Seq data sets which capture other epigenomic
marks or (broad) binding patterns of DNA-associated
proteins. It is now available as a Bioconductor R pack-
age (package MMDiff ), with complete documentation
and examples. Additional updates are also available
from the project webpage [http://homepages.inf.ed.ac.uk/
gschweik/MMDiff.html] .

Conclusions
ChIP-Seq is one of the most widely employed experi-
mental techniques in functional genomic and epigenomic
studies, yet statistical analysis of ChIP-Seq data still poses
many challenges. In this paper, we address the prob-
lem of statistical testing in ChIP-Seq data sets, and pro-
pose a non-parametric methodology which is capable of
accounting for the highly structured nature of this type
of data. Compared with techniques based on total counts,
MMDiff can identify localised changes which alter the
shape of a peak. The identification of such changes is
particularly relevant in the light of recent findings that
suggest a functional significance of the shape of histone
modifications. For example, an analysis of H3K27me3 pat-
terns around CTCF peaks, carried out as part of the
ENCODE project, reported that the observed asymmet-
ric shapes of H3K27me3 support the role of CTCF sites
in delimiting active and polycomb-silenced domains [1].
Furthermore, chromatin signatures have recently been
associated with other biologically relevant features such as
first exon length [20]. MMDiff ’s ability to capture shape

http://homepages.inf.ed.ac.uk/gschweik/MMDiff.html
http://homepages.inf.ed.ac.uk/gschweik/MMDiff.html
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Figure 7 Differential peak calling in H3K27ac and CTCF data sets. A-C: Three example H3K27ac peaks called as differential when comparing
human K562 and GM12878 cell lines (data from ENCODE consortium). D-F Three example CTCF peaks in samples derived from mouse cortex,
cerebellum and liver. Peaks are called differential in the cortex vs cerebellum comparison. Black and red bars demark CTCF motifs on the forward
and reverse strand, respectively. Peaks shown in A, D) are called by DESeq only; peaks in B, C, E, F are called by MMDiff only.

changes in peaks may therefore enable the analysts to cap-
ture functionally significant changes in patterns of histone
modifications or transcription factor binding which would
not be retained bymethods which only use total counts for
testing. From the practical point of view, focusing on peak
shape largely circumvents problems arising from choosing
the right normalisation, and MMDiff is also independent
of the definition of a suitable noise model.
Methodologically, MMDiff belongs to the family of

Kernel based methods; these have a long history in bioin-
formatics, and have had a considerable influence in the

analysis of high throughput sequencing data. An approach
which is related to ours has been recently proposed for
the purpose of alternative isoform detection from RNA-
Seq data [23]. While the methodology proposed in that
paper also relies on MMD, the application domain is
significantly different, as is the treatment of biological
noise.
In the context of ChIP-Seq data, our empirical results,

both on simulations and on three independent data
sets, demonstrate that our approach is complementary
to count-based methods such as DESeq. A practically
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advisable strategy may be to couple the two methods
within an analysis pipeline, allowing analysts to detect
both peaks that change in shape and peaks that only
exhibit changes in total counts of reads, while maintaining
the overall shape of the peak. As for all statistical testing
methods, it is worthwhile to emphasize that multiple bio-
logical replicates are necessary to get a reliable estimate of
the biological variance.
To strengthen our claim that our approach can provide

a different perspective in the analysis of ChIP-Seq data,
and can be an effective tool for hypothesis generation, we
have carried out an in-depth analysis of results of using
MMDiff on the data presented in [24]. We demonstrated
that MMDiff reproducibly yields biologically meaningful
results. We were able to suggest mechanisms that link
molecular observations of altered H3K4me3 patterns to
phenotypes observed in Cfp1-/- ES cells [37]. In particular,
we find that a large number of genes playing a functional
role in protein synthesis are potentially targeted by Cfp1.
Effects on Pol II binding - and thus potentially transcrip-
tion - at each individual affected gene seem to be very
small; however, taking all affected genes together, we find
a significant decrease of Pol II binding at these genes
which is in agreement with the observation that Cfp1-/-
ES cells show a reduction in translation initiation. Further-
more, the mild effect of Cfp1 deletion on Pol II binding
at most promoters is in strong contrast to the observation
at the promoter of Jade-1. Here, the lack of H3K4me3 in
the Cfp1 depleted cell leads to a complete abolishment of
Pol II binding. In this specific case, H3K4me3 seems to
act as a switch directly regulating primary transcriptional
mechanisms. Jade-1 is of particular interest as it is a key
player in H4 acetylation at active genes [45]. It was earlier
shown that in the presence of the human tumour suppres-
sor proteins ING4 and ING5, Jade-1 targets the chromatin
through interaction with H3K4me3 modifications [46].
Our finding may therefore hint to an epigenomic feed-
forward loop based on cross-talk between H4 acetylation
and H3K4 methylation.
Our results demonstrate the potential of non-

parametric kernel methods to lead to novel biological
insights from the analysis of ChIP-Seq data. It is an inter-
esting direction for further research to investigate how
the structured nature of NGS data can be exploited in
predictive models for more general tasks than statistical
testing.

Endnotes
a alternative hypothesis “true location �= to 0”.
b About half of the TSSs were discarded prior to the

analysis due to the absence of H3K4me3 enrichment.
Additionally, regions overlapping with more than one
TSS were excluded resulting in a set of 4148 promoter
regions.

c Also note, that the high spatial resolution of the peaks
is achieved by showing histograms of the corrected
midpoints of the reads as opposed to coverage plots.
Corresponding UCSC Genome Browser views are shown
in the Additional file 1.
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Additional file 1: Supplementary information. Contains all
supplementary notes and supplementary figures.
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