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Abstract

Background: In genomic prediction, an important measure of accuracy is the correlation between the predicted
and the true breeding values. Direct computation of this quantity for real datasets is not possible, because the true
breeding value is unknown. Instead, the correlation between the predicted breeding values and the observed
phenotypic values, called predictive ability, is often computed. In order to indirectly estimate predictive accuracy,
this latter correlation is usually divided by an estimate of the square root of heritability. In this study we use
simulation to evaluate estimates of predictive accuracy for seven methods, four (1 to 4) of which use an estimate of
heritability to divide predictive ability computed by cross-validation. Between them the seven methods cover
balanced and unbalanced datasets as well as correlated and uncorrelated genotypes. We propose one new indirect
method (4) and two direct methods (5 and 6) for estimating predictive accuracy and compare their performances
and those of four other existing approaches (three indirect (1 to 3) and one direct (7)) with simulated true predictive
accuracy as the benchmark and with each other.

Results: The size of the estimated genetic variance and hence heritability exerted the strongest influence on the
variation in the estimated predictive accuracy. Increasing the number of genotypes considerably increases the time
required to compute predictive accuracy by all the seven methods, most notably for the five methods that require
cross-validation (Methods 1, 2, 3, 4 and 6). A new method that we propose (Method 5) and an existing method
(Method 7) used in animal breeding programs were the fastest and gave the least biased, most precise and stable
estimates of predictive accuracy. Of the methods that use cross-validation Methods 4 and 6 were often the best.

Conclusions: The estimated genetic variance and the number of genotypes had the greatest influence on
predictive accuracy. Methods 5 and 7 were the fastest and produced the least biased, the most precise, robust and
stable estimates of predictive accuracy. These properties argue for routinely using Methods 5 and 7 to assess
predictive accuracy in genomic selection studies.

Keywords: Genomic selection, Ridge-regression BLUP, Predictive accuracy, Predictive ability, Heritability, SNP
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Background
Genomic selection (GS) is a method for predicting gen-
omic breeding values using molecular markers covering
the whole genome [1-3]. GS is fast becoming popular in
plant and animal breeding [1,4,5], because of recent ad-
vances in high-throughput marker technologies and ac-
companying reduction in the costs of genotyping.
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The performance of genomic selection (GS) proce-
dures is often assessed by k-fold cross-validation (CV)
[6]. Accurate evaluation of the performance of genomic
selection is difficult in practice because true breeding
values are typically unknown. As result, simulation mod-
eling is often used to generate breeding values as a basis
for assessing the accuracy of genomic prediction [1].
Once the true breeding values are available, the accuracy
of genomic prediction can be expressed as the correlation
between the true and the predicted breeding values. In
this paper, we use simulated true breeding values to
directly compute the true correlation (accuracy) between
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the true and the predicted breeding values rg;ĝ
� �

as a
benchmark for evaluating the performance of seven con-
tending methods. Four of the seven methods (Methods 1
to 4) first estimate heritability H2 [7] and then divide the
cross-validation sample correlation between the predicted
breeding values ( ĝ ) and the observed phenotypic values
(p), predictive ability, by the square root of heritability H2

[8,9] to obtain an estimate of predictive accuracy rĝ ;p=H .
The remaining three methods (Methods 5 to 7) estimate
the predictive accuracy directly without having to first es-
timate heritability, even though Method 5 also estimates
heritability. Here, we investigate the relative merits of the
seven methods for estimating predictive accuracy using
simulated breeding values. For five of the seven methods
for estimating predictive accuracy (Methods 1, 2, 3, 4 and
6), we comparatively evaluate their predictive accuracies
using three-fold cross-validation. Of the seven methods,
two direct methods (Methods 5 and 6) and one indirect
method (Method 4) for estimating predictive accuracy are
proposed and described here for the first time whereas the
remaining four methods were obtained from the literature.
Methods 1 to 3 assume uncorrelated genotypes in the
model for estimating heritability but assume correlated ge-
notypes in the model for estimating predictive ability.
Methods
We denote the standard deviation of a sample with s
and that of a population with σ and the sample and
population variance of the true genetic breeding values g
with s2g and σ2g , respectively. Further, we denote with r,

rĝ ;p, ρ and ρg,p the sample correlation, the sample correl-
ation between the BLUP of g and the observed “pheno-
types” p, the population correlation and the population
correlation between the true genetic breeding values g
and the observed “phenotypes” p, respectively. Also, we
use rg;ĝ , sg;ĝ , s2ĝ and s2p to denote the sample correlation

between the true and the predicted genetic breeding
values, the sample covariance between the true and the
predicted breeding values, and the sample variance of
the predicted breeding value and the phenotypic sample
variance, respectively. In this paper, the sample will gen-
erally refer to a trial with n genotypes, real or simulated,
assumed to have been obtained from an infinite popula-
tion of genotypes.
True correlation
The true correlation is given by the correlation between
the true (g) and the predicted (ĝ ) breeding values

rg;ĝ ¼ sg;ĝffiffiffiffiffiffiffiffi
s2g s

2
ĝ

q ; ð1Þ
where

sg;ĝ ¼ 1
n−1

Xn
i¼1

gi−�g
� �

ĝ i−�̂g
� � ð2Þ

is the covariance between the true and the predicted
breeding values. Further,

s2g ¼

Xn
i¼1

gi−�g
� �2
n−1

; ð3Þ

where �g denotes the estimated mean of gi (i = 1,…, n) and

s2ĝ ¼

Xn
i¼1

ĝ i−�̂g
� �2
n−1

; ð4Þ

where �̂g denotes the estimated mean of ĝ i i ¼ 1;…; nð Þ ,
are sample variances of the true and the predicted breed-
ing values, respectively. We take the unobservable correl-
ation rg;ĝ to be the main quantity of interest to the
breeder or geneticist. Seven alternative procedures are
evaluated, by simulation, regarding the accuracy and pre-
cision with which they are able to estimate rg;ĝ :

Two-stage approaches
We consider the case of a trial conducted in a single lo-
cation. The analysis can be done in two stages [10]. The
model for the observed plot data can be written as

y ¼ X1μþ f ; ð5Þ
where y is the vector of the observed phenotypic values,
μ is a vector containing the adjusted genotype means to
be estimated from a model in which genotype enters as
a fixed effect and X1 is an associated design matrix and f
combines all the fixed, random design and error effects
(replicates, blocks, etc.).

The first stage of the two-stage approaches
At the first stage, means (μ) for the testcross genotypes
are estimated using model (5) and submitted to the sec-
ond stage. The adjusted means of the standard varieties
are excluded from the dataset before submission to the
second stage.

The second stage of the two-stage approaches
The adjusted means from the first stage are used in the
second stage to predict the true breeding values g. The
second stage model is given by

μ̂i ¼ φþ gi þ ei; ð6Þ
where μ̂i is the adjusted mean of the i-th genotype (esti-
mates of μi = φ + gi from the first stage), φ is the general



Table 1 The variance components for the AgReliant real
maize data set estimated by RR-BLUP models assuming
genotypes are correlated according to the linear variance
model

Variance components Scenario 1 Scenario 2

Marker (σ2u) 0.2019 0.2019/10

Block (σ2b) 69.9089 69.9089

Residual (σ2e ) 48.6728 48.6728
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effect or mean, gi is the random effect of the i-th geno-
type and ei is the residual error associated with μ̂i , e =
(e1,…, en)

T assumed to follow e eN 0;R ¼ Iσ2e
� �

. The ran-
dom vector g = (g1,…, gn)

T is modelled by a linear ran-
dom regression on the SNP markers with random
regression coefficients or marker effects u = (u1,…, up)

T as

g ¼ Zu ð7Þ

where Z is the matrix of SNP marker covariates, ueN
0; Ipσ2u
� �

, Ip is the p -dimensional identity matrix and σ2u
is the variance of marker effects.
Thus, we simulated the random SNP marker effects as

random draws from a normal distribution with zero
mean and variance σ2u . Genotyping of all the genotypes
was done by SNP markers (275 for the AgReliant dataset
and 11646 for the KWS Synbreed dataset, see below)
and the information stored in a matrix Zsnp = {zik}. The
marker covariate zik for the i−th genotype (i = 1, 2,…, n)
and the k−th marker (k = 1, 2,…, p) for biallelic SNP
markers with alleles A1 and A2 was set to 1 for A1A1, -1
for A2A2 and to 0 for A1A2, A2A1 and missing values.
Thus, the genotypic effect g has variance

var g ¼ Zuð Þ ¼ G ¼ ZZTσ2
u; ð8Þ

where ZT is the transpose of Z. Alternatively, for com-
puting some of the heritability measures, we also fitted
model (6) with var gð Þ ¼ G ¼ Inσ2g , i.e., assuming that

genotypic effects are uncorrelated for Methods 1
to 3, where σ2g is the genetic variance and In is the

n-dimensional identity matrix. In general, when fitting
model 6, assuming a linear variance-covariance model
for G as defined in (8) it can sometimes happen that the
estimated marker variance (σ̂ 2

u ) is negative, yet it should
not be. To ensure that the estimated σ̂ 2

u is nonnegative it
is necessary to specify a zero lower boundary constraint
for σ̂ 2

u . This can be accomplished using the lower
b=value-list option of the parms statement of the MIXED
procedure when using the SAS system.

Simulation of datasets
Assumed field design and model
To simulate block and plot effects using variance com-
ponents from the real maize (Zea mays) dataset pro-
vided by AgReliant we generated a dataset with 177
genotypes distributed over 10 incomplete blocks per rep-
licate, each with 18 plots according to an alpha-design
with two replicates. An appropriate model for this de-
sign must have an effect for the complete replicates, and
another effect for the incomplete blocks, nested within
replicates. We therefore simulated the field trial data ac-
cording to an alpha design [11] using the model:

yijk ¼ φþ γk þ bjk þ gi þ eijk ð9Þ

where yijk is the yield of the i-th genotype in the j-th
block nested within the k-th complete replicate, φ is the
general effect or mean, γk is the fixed effect of the k-th
complete replicate, bjk is the random effect of the j-th
block nested within the k-th complete replicate, gi is the
random effect of the i-th genotype, and eijk is the
residual plot error associated with yijk. We similarly sim-
ulated the block and plot effects using variance compo-
nents estimated from the real maize dataset with 698
genotypes provided by KWS according to an alpha-
design with two replicates based on model (9). The
complete simulated datasets contained true genetic,
block and plot effects. We used these datasets to com-
pute the true correlation between the predicted and the
true breeding values, true heritability as the square of
the correlation between the predicted and the true
breeding values and estimates of heritability for each
of four different indirect methods. We considered
four simulation scenarios defined by the parameters in
Tables 1 and 2.

Description of the real datasets and estimation of variance-
components
We used two real datasets to get marker information
and estimates of the marker, block and error variance
components, which we needed to simulate the true
breeding values and phenotypic data, assuming corre-
lated genotypes (Tables 1 and 2). For Scenarios 2 and 4
we divided the marker variance for Scenarios 1 and 3 by
10, respectively, to obtain smaller estimates of heritabil-
ity (Tables 1 and 2).

The AgReliant maize dataset
The first data set we used was a small dataset provided
by AgReliant Genetics. It consisted of 177 doubled hap-
loid maize lines derived from biparental crosses. The hy-
brid performance for kernel dry weight per plot of
testcross genotypes was assessed with the same common
tester using an unreplicated augmented trial design with



Table 2 The variance components for the KWS-Synbreed
real maize data set estimated by RR-BLUP models assuming
genotypes are correlated according to the linear variance
model

Variance components Scenario 3 Scenario 4

Marker (σ2u) 0.005892 0.005892/10

Trial (σ2l ) 11.8285 11.8285

Trial×Replicate (σ2r ) 3.3231 3.3231

Trial×Replicate×Block (σ2b) 6.3148 6.3148

Tester×Non-genotyped σ2g2

� �
lines×GRP (σ2g)

34.5717 34.5717

Residual (σ2e ) 53.8715 53.8715
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incomplete blocks. Although the testcross genotypes
were tested in six locations in one year, not all testcross
genotypes were tested in each location. Furthermore,
three to five incomplete blocks, each having one single
row of plots, were used per location. Standard varieties
connected the different blocks in the sense that they
allowed estimation of the inter-block variance and separ-
ation of the block from the error variance. The standard
varieties themselves were not used in predicting g but
were used merely to facilitate analysis of the testcross
genotypes. Markers with more than 20% missing values,
or more than 5% heterozygous genotypes, or with minor
allele frequency less than 2.5% were discarded [10]. We
used the data for only one of the six locations with the
RR-BLUP model to obtain variance components needed
to simulate the random marker, block and plot effects for
Scenarios 1 and 2. The selected location had a single unre-
plicated trial, 5 blocks, 2 checks and 177 lines, all of which
were genotyped. Since the two checks had markers, just
like all the other genotypes, they were treated in the exact
same way as the other genotypes in the RR-BLUP model.
The RR-BLUP model assumed a linear variance model

for the correlation between the genotypes:

yij ¼ φþ bj þ gi þ eij; ð10Þ

where yij is the yield of the i-th genotype in the j-th
block, φ is the general effect or mean, bj is the random
effect of the j-th block, the random vector g = (g1,…, gn)

T

is modeled as in equation 7 and also has variance var
g ¼ Zuð Þ ¼ ZZTσ2u . The terms Z, ZT, u and σ2u are de-
fined as in equations 7 and 8 whereas eij is the residual
plot error associated with yij.

The KWS-Synbreed maize dataset
The second data set was extracted for one location from
a larger data set provided by KWS for the Synbreed pro-
ject [12]. It had a total of 900 doubled haploid maize
lines of which 698 testcrosses were genotyped while the
remaining 202 were not, six hybrid checks and five line
checks. The genotypes were crossed with four testers
(Table 3). The testcross genotypes were tested using 9
trials each laid out according to a 10×10 lattice square
design with incomplete blocks. Each trial had two repli-
cates. There were a total of 1800 observations, 38 of
which had no yield measurements.
Fitting a linear variance model (7 and 8) to these data

requires using a variance-covariance matrix of dimension
n1 × n1, where n1 is the number of genotyped lines. The
vector of effects of genotyped lines must therefore be of
dimension n1. This presents a challenge for the KWS-
data set because the vector of random effects of all the ge-
notypes (g) contains both the vector of effects of the n1 ge-
notyped lines (g1) plus the vector of the effects of the n2
non-genotyped lines (g2) and so has a larger dimension
(n1+n2) than n1. To facilitate fitting the linear variance
model for the genotyped lines we proceed as follows. First,
we create a dummy variable in our dataset (Z1im, i =1,…,
n1, m=1,…, 11 groups) equal to one for genotyped lines
and zero otherwise. Second, we create a variable called
GENA in the dataset with a unique level for each of the
genotyped and the non-genotyped lines. Third, we create
a second variable called GENB equal to GENA for the ge-
notyped lines but equal to the level for any one of the ge-
notyped lines for all the non-genotyped lines. Thus, the
variable GENB has n1 levels, corresponding to the n1 ge-
notyped lines. For example in Table 3, the variable GENB,
whose effect is modelled by g1, has been set equal to 1, 2,
…, 698 for the 698 genotyped lines and to 1, the label for
the first genotyped line, for all the 202 ungenotyped lines.
The genetic effect g1i of the i-th genotyped line will be
represented in the mixed model by the term Z1img1i. This
term will become zero for all the records corresponding
to the non-genotyped lines, because for these records we
have set Z1im=0. This ensures that the number of random
genotypic effects to be predicted for g1 equals the dimen-
sion of the linear variance-covariance matrix (n1). The
non-genotyped lines therefore make no contribution at all
to the estimated variance-covariance matrix of the geno-
types. They are, in other words, switched off.
The vector of random effects for the genotyped

lines g1 is modelled by RR-BLUP as g1 = Zu with var
g1 ¼ Zuð Þ ¼ ZZTσ2u , where Z is the n1 × p design matrix
for SNP markers for the n1 genotyped lines and u = (u1,
…, up)

T is the vector of p random SNP marker effects,
with u eN 0; Ipσ2u

� �
. Ip is the p-dimensional identity

matrix and σ2
u is the variance of SNP marker effects.

We represent the genetic effects g2i of the i-th non-
genotyped line in a similar fashion as for g1i, i.e., we use
the term Z2img2i, where Z2i is a dummy variable that is
equal to one for all the non-genotyped lines and equal
to zero for all the genotyped lines. The effects g2i are as-
sumed to be independent normally and distributed with
variance σ2g2 .



Table 3 Definition of the variables in the KWS-Synbreed dataset used to compute covariance parameters used in the
simulations for Scenarios 3 and 4

Tester GRP Z1 Z2 GENA GENB Description of GENA

T0 C1-C6 0 0 C1-C6 1 Hybrid checks 1-6

T0 nT 0 1 nT1- nT4 1 4 lines, not genotyped, unknown tester

T0 fT 0 1 fT1- fT66 1 16 lines, not genotyped, tested with a foreign tester

T1 G0 0 1 T11-T166 1 66 lines, not genotyped and tested to T1

T2 G0 0 1 T21-T261 1 61 lines, not genotyped and tested to T2

T1 G1 1 0 1-682 1-682 682 lines, genotyped and tested to T1 in group G1

T1 G3 1 0 683-698 683-698 16 lines, genotyped and tested to T1 in group G3

GRP = grouping factor for checks (C1-C6), testers (nT, fT) and groups (G0-G3) of genotyped lines. Z1=1 for genotyped lines and 0 otherwise. Z2=1 for non-
genotyped lines and 0 otherwise. GENA denotes all the individual genotypes. GENB=GENA for genotyped lines and 1 otherwise. GENB helps specify the vector of
random effects of genotyped lines with a length that matches the dimension of the covariance matrix of genotypes.
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The following mixed model, assuming that the geno-
typed lines are correlated according to the RR-BLUP
model (10), was used to estimate the variance compo-
nents used in the simulations for Scenarios 3 and 4:

yijklmn ¼ φþ tl þ rkl þ bjkl þ δm þ τn
þ Z1img1im þ Z2img2im þ eijklmn; ð11Þ

where yijklmn is the response of the i-th genotype in the
j-th block nested within the k-th replicate in the l-th trial
in the m-th group tested against the n-th tester. φ is the
general effect, tl is the random effect of the l-th trial, as-
sumed iid N 0; σ2t

� �
, rkl is the random effect of the k-th

replicate nested within the l-th trial, assumed iid N

0; σ2r
� �

, bjkl is the random effect of the j-th block nested

within the k-th replicate in the l-th trial, assumed iid N

0; σ2b
� �

, δm is the fixed effect of the m-th group of
checks, testers and genotypes, τn denotes the effect of
the n-th tester (Table 3) and eijklmn is the residual plot
error associated with yijklmn and is assumed to be iid N

0; σ2e
� �

, where σ2e is the error variance.
To implement the model using the REML package

PROC MIXED of the SAS System [13], the random
genotypic effects were coded using the variables defined
in Table 3. The random genotypic effect of the i-th ge-
notyped line in the m-th group, Z1img1im, was coded as
(Z1*TS*GRP*GENB) using the variables tester (TS),
group (GRP), genotypes (GENB), and Z1, where the last
variable was specified as a quantitative variable, while the
first three variables were declared as categorical variables
(using the CLASS statement). The variable Z1 corre-
sponds to the switch variable Z1im in the model (11). The
random effect Z2img2im of the i-th non-genotyped line in
the m-th group was coded as (Z2*TS*GRP*GENA) using
the variables tester (TS), group (GRP) and genotypes
(GENA) described in Table 3. Z2 is a second quantitative
variable corresponding to the switch variable Z2im.
Estimating predictive accuracy from predictive ability and
heritability
Four of the seven approaches indirectly estimate predict-
ive accuracy rĝ ;p=H

� �
as the correlation between the

predicted genetic and phenotypic values rĝ ;p
� �

, called
predictive ability, divided by the square root of heritabil-
ity (H2) [14], separately for each of 15 three-fold cross-
validation replicates. Predictive ability can be estimated
from cross-validation as

rĝ ;p ¼
sĝ ;pffiffiffiffiffiffiffiffi
s2ĝ s

2
p

q : ð12Þ

A key assumption of the approach is that sĝ ;p ¼ sg;ĝ
[8], which implies that the genotypic effect estimate ĝ is
not correlated with environmental components in the
phenotypic value p. This suggests [8] that in practice we
can replace (1) with

rg;ĝ ¼ sĝ ;pffiffiffiffiffiffiffiffi
s2ĝ s

2
g

q : ð13Þ

The other assumption is that s2g ¼ H2s2p, so that

rg;ĝ ¼ sĝ ;pffiffiffiffiffiffiffiffi
s2ĝ s

2
g

q ¼ sĝ ;p

H
ffiffiffiffiffiffiffiffi
s2ĝ s

2
p

q ¼ rĝ ;p
H

: ð14Þ

An important question is how to estimate heritability
H2. The fact that the definition of ĝ used in rg;ĝ requires
a marker-based model for g suggests that the same
model should be used for defining heritability H2. The
problem in practice is that the true model is not known,
so that different methods for genomic selection (GS) are
usually applied and their predictions compared empiric-
ally via CV [15]. To make any progress, some model
must be chosen for defining predictive accuracy, and if
the chosen model is close to the model for some GS
method, then that same method would potentially be
preferred for the estimation of predictive accuracy.
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Moreover, some methods for GS do not have an explicit
underlying model. This is the case for some methods,
for example, in the machine learning realm.
The difficulty in choosing a model for heritability H2

makes it hard to devise an unambiguous definition for
H2. Thus, any estimate of predictive accuracy should be
taken only as a rough indication of precision. We sug-
gest that the model underlying ridge regression BLUP be
used to define heritability H2. This is because this
method is the most commonly used one for GS and has
been shown to have good properties. It is based on a
specific mixed model, so an estimate of H2 can be ob-
tained in various ways [16].
Cross-validation
We used cross-validation (CV) to obtain an estimate
of the correlation between the predicted breeding
values and the observed phenotypic values rĝ ;p

� �
, which

we needed to compute predictive accuracy rg;ĝ
� �

for
Methods 1, 2, 3, 4 and 6. We used a three-fold cross-
validation to evaluate predictive accuracy for both data-
sets because of the small number of genotypes (177) in
the AgReliant dataset. The dataset with the adjusted
means for the testcross genotypes was split into three
random subsamples, one of which was held out as a val-
idation set at a time. The remaining two subsamples
were combined into one training set. The three-fold CV
procedure was replicated five times, yielding a total of
15 replicate datasets. We then fitted a ridge regression
model (7) to each of the 15 replicate validation and
training sets. We next computed predictive ability, the cor-
relation between the predicted breeding values and the
phenotypic values rĝ ;p across all the genotypes. This pro-
cedure was repeated for each of the 1000 datasets simulated
for each of the four scenarios. The correlation between the
predicted and the true breeding values rg;ĝ , the predictive
accuracy, was computed by dividing predictive ability rĝ ;p
by the square root of estimated heritability for each of the
Table 4 Summary of the main properties of the seven metho

Method Estimates
heritability?

Requires heritability to
estimate predictive accuracy?

Model for herit
uncorrelated g

1 Yes Yes Yes

2 Yes Yes Yes

3 Yes Yes Yes

4 Yes Yes Yes

5 Yes No -

6 No No -

7 No No -

Methods 1 to 4 that require heritability to estimate predictive accuracy are called in
in the text. The symbol (−) means the question is not applicable for a particular mo
four indirect methods. The estimates of predictive accuracy
were compared using the simulated true breeding values.
Moreover, we directly computed predictive accuracy using
Methods 5, 6 and 7 as described below. Table 4 summarizes
the key properties of the seven methods.
Methods for estimating predictive accuracy
We used the following five methods (Methods 1 to 5) to
estimate heritability (Table 5). The first approach is the
standard method for estimating heritability that is com-
monly used by plant breeders [12]. The second and the
third approaches are modifications of the ad hoc meas-
ure based on BLUE and BLUP [16]. The fourth approach
is based on a new proposal for estimating heritability.
This approach uses the ratio of the expected value of the
genetic variance to the expected value of phenotypic
variance. The fifth approach is our second new method
for estimating heritability without cross-validation using
similar ideas to those used in computing the ad hoc
measures of H2 (Table 5). Methods 1 to 3 assume that
the genotypes are not correlated, while Methods 4 and 5
assume correlated effects according to the model under-
lying the RR-BLUP. We then used the quantity rĝ ;p=H to
compute predictive accuracy, where H is the square root
of heritability computed using each of the first four
methods (Methods 1 to 4) only. This is because even
though Method 5 also computes heritability, it calculates
predictive accuracy directly, similar to Methods 6 and 7.
The three Methods 5, 6 and 7 were thus used to esti-
mate predictive accuracy directly without first dividing
predictive ability by the square root of heritability. The
three direct methods assume correlated effects of geno-
types according to the model underlying RR-BLUP.
Method 1: Standard measure
Plant breeders often compute heritability for a single

trial using

H2
m1 ¼

σ2g
σ2g þ σ2e=r

; ð15Þ
ds

ability assumes
enotypes?

Model for predictive ability
assumes correlated genotypes?

Requires
cross
validation?

Yes Yes

Yes Yes

Yes Yes

Yes Yes

- No

Yes Yes

- No

direct methods whereas Methods 5 to 7 that do not are called direct methods
del.



Table 5 Descriptive statistics for the estimated true heritability for all the datasets out of a possible total of 1000 for
which an estimate of heritability was available for all the five methods in each scenario

Methods

M0 *M1(15) M2(16) M3(17) M4(21) M5(24)

Scenario †Statistic H2
true Ĥ2

m1 Ĥ2
m2 Ĥ2

m3 Ĥ2
m4 Ĥ2

m5

1 Ĥ2 ¼ 0 0 0 0 0 0 0

MIN 0.56 0.09 0.16 0.16 0.16 0.50

MAX 0.82 0.50 0.66 0.66 0.55 0.80

MEAN 0.71 0.32 0.48 0.48 0.34 0.67

STD 0.04 0.06 0.08 0.08 0.06 0.05

MSD 0.000 0.160 0.061 0.061 0.143 0.004

2 Ĥ2 ¼ 0 0 152 152 0 0 0

MIN 0.09 0.00 0.00 0.00 0.00 0.00

MAX 0.73 0.30 0.46 0.46 0.28 0.63

MEAN 0.42 0.09 0.15 0.18 0.08 0.33

STD 0.11 0.07 0.11 0.10 0.05 0.11
†MSD 0.000 0.128 0.094 0.083 0.128 0.025

3 Ĥ2 ¼ 0 0 0 0 0 0 0

MIN 0.66 0.35 0.33 0.34 0.28 0.64

MAX 0.79 0.62 0.61 0.61 0.53 0.78

MEAN 0.73 0.51 0.49 0.50 0.40 0.72

STD 0.02 0.04 0.04 0.04 0.03 0.02

MSD 0.000 0.051 0.057 0.055 0.110 0.001

4 Ĥ2 ¼ 0 0 0 0 0 0 0

MIN 0.36 0.00 0.00 −0.55 0.02 0.23

MAX 0.63 0.32 0.31 0.31 0.15 0.52

MEAN 0.52 0.14 0.13 0.13 0.07 0.39

STD 0.04 0.07 0.06 0.07 0.02 0.05

MSD 0.000 0.151 0.155 0.152 0.202 0.020

Methods 1 to 4 but not 5 use cross-validation. M0 is the square of the true correlation between the predicted and the true simulated breeding values used as the
benchmark for assessing the estimated heritability.
†MSD=Mean squared deviation and H2 = 0 is the number of datasets for which the estimated heritability was zero. *The number of the equation used in the text
is in parenthesis.
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where σ2g is the genetic variance, r is the number of rep-

licates and σ2e is the variance of plot error [12]. This esti-
mator is valid for randomized complete block designs,
but is an ad hoc approximation for incomplete block de-
signs. Also, the estimator is not applicable with spatial
methods of analysis [17].
Method 2: A measure proposed by [16] that uses the

BLUEs and is computed as

H2
m2 ¼

σg2

σg2 þ �υ=2
; ð16Þ

where �υ is the mean variance of a difference of two ad-
justed genotypic means (BLUE) and σ2

g is the genetic
variance estimated from (6) assuming independent geno-
typic effects.
Method 3: An ad hoc measure proposed by [18] that

is based on BLUP assuming independent genotypic ef-
fects and is computed as

H2
m3 ¼ 1−

�υBLUP
2σg2

; ð17Þ

where �υBLUP is the mean variance of a difference of the
BLUP of two genotypic effects ĝ i . We used the BLUP of
μi = φ + gi as the phenotypic data in the mixed model for
Method 3. Further details on the computation of �υBLUP

and �υ are in Additional file 1.
Method 4: A new proposed measure for estimating

heritability
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The sample variance s2g of the true genetic breeding

value g1 (3) can be written as

s2g ¼
1

n−1

Xn
i¼1

gi−�g
� �2 ¼ gTPug; ð18Þ

where Pu ¼ 1
n−1 In− 1

n Jn
� �

, In is the n-dimensional identity
matrix and Jn = n × n is a square matrix of ones. In a
similar way, we may represent the phenotypic sample
variance as

s2p ¼
1

n−1

Xn
i¼1

pi−�pð Þ2 ¼ pTPup; ð19Þ

where p ¼ μ̂ ¼ μ̂1; μ̂2;…; μ̂nð ÞT is the vector of observed
phenotypes. The observed phenotype μ̂i of the i-th geno-
type is the adjusted mean computed for this genotype
for a single location.
We cannot compute the sample variance of g for real

data because these are not observed. But if we assume a
mixed model with linear variance structure for g taking
the form var gð Þ ¼ G ¼ ZZTσ2

u , where g is the vector of
gi of all tested entries (i = 1,…, n), and σ2u is the SNP
marker variance, then we can compute the expected
value of the sample variance of gi in equation 18. From
standard results on the expected value of quadratic
forms [12] we have

E s2g
� �

¼ trace PuGð Þ: ð20Þ

Thus, we may define heritability as the expected gen-
etic sample variance s2g over the expected phenotypic

sample variance:

H2
m4 ¼

E s2g
� �

E s2p
� � : ð21Þ

The expected value E s2p
� �

is now derived. The vari-

ance of phenotypes (i.e., adjusted means p) is given by

var pð Þ ¼ V ¼ G þ R;

where R is the variance-covariance matrix of the error
term in equation (6). Therefore

E s2p
� �

¼ trace VPuð Þ ¼ E s2g
� �

þ trace RPuð Þ: ð22Þ

An estimate of this is easy to compute, as is an esti-

mate of s2g
� �

, by plugging in estimates for the variance-

components in G and R. For illustration of the new
Method 4, we consider three special cases in Additional
file 2.
Method 5: A new direct method for estimating rg;ĝ
This method uses the RR-BLUP of g as the “pheno-
type” to compute an alternative estimator of predict-
ive accuracy unlike that produced by the methods
that require cross-validation and use the adjusted
means as the phenotypes. Heritability can be com-
puted as the square root of the estimated predictive
accuracy.
Using equation 7, we have

BLUP g ¼ Zuð Þ ¼ ĝ ¼ GV −1 p−1φ̂ð Þ

and φ̂ ¼ 1TV −11
� �−1

1TV −1p: Thus, BLUP(g = Zu) =
GV− 1Qp, where Q = I − 1(1TV− 11)− 11TV− 1. Or in an
even more compact form BLUP g ¼ Zuð Þ ¼ ĝ ¼ Cp with
C =GV− 1Q.
Now consider the sample correlation of the true geno-

typic value g = Zu and its estimator ĝ , the BLUP of g.
The sample covariance sg;ĝ is given by

sg;ĝ ¼ gTPuĝ ¼ gTPuCp;

where Pu is defined as in equation 18. We cannot com-
pute this sample covariance directly, because g is not ob-
servable. But we can compute its expected value as
follows:

E sg;ĝ
� � ¼ E gTPuCpð Þ ¼ E gTPuCgð Þ

¼ E trace gTPuCgð Þ½ � ¼ E trace PuCggTð Þ½ �
¼ trace E PuCggTð Þ½ � ¼ trace PuCGð Þ

In the same vein, we find for the sample variances of
the true (g) and the predicted (ĝ ) breeding values:

s2g ¼ gTPug

E s2g
� �

¼ trace PuGð Þ

s2ĝ ¼ pTCTPuPuCp ¼ pTCTPuCp

E s2ĝ
� �

¼ trace CTPuCV
� �

The sample true correlation from equation 1 is then
given by

rg;ĝ ¼ sg;ĝffiffiffiffiffiffiffiffi
s2g s

2
ĝ

q :



Table 6 Descriptive statistics for predictive accuracy (estimates less than 0 were set to 0 whereas estimates greater
than 1 were set to 1) by scenario

Methods

Scenario †Statistic M0 *M1(15) M2(16) M3(17) M4(21) M5(24) M6(25) M7(35)

rg;ĝ
rĝ ;p
Ĥm1

rĝ ;p
Ĥm2

rĝ ;p
Ĥm3

rĝ ;p
Ĥm4

Ĥm5 rg;ĝ ;m6 ρ̂m7

1 N 1000 1000 1000 1000 1000 1000 1000 1000

MIN 0.750 0.327 0.265 0.265 0.384 0.707 0.316 0.750

MEAN 0.843c 0.877a 0.727 e 0.727e 0.858b 0.819d 0.663f 0.840c

MAX 0.908 1.000 1.000 1.000 1.000 0.893 0.884 0.899

STD 0.024 0.109 0.104 0.104 0.093 0.028 0.084 0.023

MSD 0.000 0.013 0.025 0.025 0.009 0.002 0.040 0.001

Q1 0.829 0.807 0.661 0.661 0.802 0.803 0.612 0.826

Median 0.846 0.890 0.723 0.724 0.862 0.822 0.665 0.841

Q3 0.860 0.983 0.793 0.793 0.923 0.839 0.716 0.856

2 N 839 839 839 839 839 839 839 839

MIN 0.31 0.00 0.00 0.00 0.00 0.06 0.00 0.08

MEAN 0.65a 0.63c 0.50e 0.50e 0.64ab 0.58d 0.46f 0.64bc

MAX 0.85 1.00 1.00 1.00 1.00 0.79 1.00 0.82

STD 0.09 0.29 0.26 0.26 0.26 0.10 0.20 0.09

MSD 0.000 0.083 0.092 0.092 0.069 0.02 0.081 0.011

Q1 0.61 0.42 0.31 0.31 0.47 0.53 0.33 0.59

Median 0.66 0.64 0.48 0.48 0.68 0.59 0.47 0.65

Q3 0.71 0.91 0.67 0.67 0.85 0.64 0.59 0.70

3 N 1000 1000 1000 1000 1000 1000 1000 1000

MIN 0.81 0.60 0.61 0.61 0.69 0.80 0.54 0.78

MEAN 0.85a 0.72c 0.73c 0.73c 0.81b 0.85a 0.64d 0.81b

MAX 0.89 0.88 0.90 0.89 0.96 0.88 0.78 0.84

STD 0.01 0.04 0.04 0.04 0.04 0.01 0.04 0.01

MSD 0.0000 0.0193 0.0169 0.0176 0.0036 0.0002 0.0477 0.0017

Q1 0.85 0.69 0.70 0.70 0.79 0.84 0.61 0.81

Median 0.85 0.72 0.73 0.73 0.81 0.85 0.64 0.81

Q3 0.86 0.75 0.76 0.76 0.84 0.85 0.66 0.82

4 N 955 955 955 955 955 955 955 955

MIN 0.60 0.14 0.14 0.14 0.15 0.48 0.24 0.52

MEAN 0.72a 0.32e 0.33e 0.33e 0.36d 0.62c 0.63b 0.64b

MAX 0.79 0.52 0.53 0.52 0.56 0.72 0.93 0.72

STD 0.03 0.06 0.06 0.06 0.07 0.04 0.09 0.03

MSD 0.000 0.160 0.157 0.158 0.130 0.012 0.015 0.007

Q1 0.70 0.29 0.29 0.29 0.32 0.60 0.57 0.62

Median 0.72 0.32 0.33 0.33 0.37 0.62 0.64 0.64

Q3 0.74 0.36 0.37 0.37 0.41 0.65 0.70 0.66

All the methods except 5 and 7 use cross-validation. M0 is the correlation between the predicted and the true simulated breeding values used as the benchmark
for assessing the estimated predictive accuracy. N is the number of data sets out of a possible total of 1000 for which estimates were available for all the seven
methods. Means for pairs of methods within each scenario with the same superscript letter are not significantly different at the 5% level of significance based on
the t-test.
†MSD=Mean squared deviation, Q1 is the lower quartile and Q3 is the upper quartile. * The number of the equation used in the text is in parenthesis.
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We want to estimate the expected value of this correl-
ation. Approximately, we have

E rg;ĝ
� �

≈
E sg;ĝ
� �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E s2g
� �

E s2ĝ

� �r : ð23Þ

Note that the correlation involves a function of three
correlated random variables (sĝ ;g ; s2g ; s

2
ĝ ) and we must ac-

knowledge that the expected value of a function of ran-
dom variables is not usually exactly equal to the same
function evaluated at the expected values of the random
variables [19]. Some improvement of the approximation
may be possible using the delta method, but we will not
pursue this here. Instead, the closeness of the approxi-
mation (23) will be investigated in our simulations. From
a practical point of view, the advantage of (23) is its sim-
plicity. With this approximation, we may replace the ex-
pected values with their explicit expressions to yield the
estimated predictive accuracy:

E rg;ĝ
� �

≈Hm5 ¼ trace PuCGð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trace PuGð Þtrace CTPuCV

� �q : ð24Þ

Method 6: A further new direct method for estimating
rg;ĝ
Our objective is to estimate rg;ĝ by evaluating (14). It

is straightforward to compute sĝ ;p and s2ĝ in (14) directly

from the data (p) and the predicted breeding values (ĝ ).
The only difficulty is the estimation of s2g . If we could

observe the g of all entries, we would compute their
sample variance s2g , just as we compute the sample vari-

ance s2ĝ and the sample covariance sĝ ;p . Note that we

similarly computed the sample correlation between the
predicted breeding values ĝ and the observed phenotypic
values p for each cross-validation replicates. Our pro-
posed estimator becomes

r̂ g;ĝ ;m6 ¼
sĝ ;pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2ĝ � E s2g
� �r ; ð25Þ

where E s2g
� �

was computed using equation 23. A Prob-

lem with this method as well as with Methods 1, 2, 3
and 4 is that r̂ g;ĝ ;m6 can exceed one. We have therefore
presented values of r̂ g;ĝ ;m6 truncated at 1 in the main
body of the paper and the untruncated values in Add-
itional file 3 (Table 6 and Additional file 3: Table S1).
Method 7: This method is commonly used in animal

breeding [20-22]
We used the linear mixed model:

y ¼ Χβþ Ζuþ e; ð26Þ
where X is the design matrix for the fixed effects, β is
the vector of regression coefficients for the fixed effects,
ueN 0; ~G ¼ Ιpσ2u

� �
is the random marker effects with

variance σ2u , the residual errors e = (e1,…, en)
T are as-

sumed to follow eeN 0;R ¼ Inσ2
e

� �
with variance σ2e and

Z is the marker matrix. The random vector g = (g1,…, gn)
T

is obtained from a linear regression on the random
marker (SNP) effects uk, i.e. u = (u1,…, up)

T as

g ¼ Zu: ð27Þ

A common approach to the evaluation of predictive
accuracy (ρ) in animal breeding is the use of the squared
correlation between the true and the predicted breeding
values (ρ2), called reliability [20]. We used the approach
of [20] as implemented by [16]. The calculation of ρ2 re-
quires a solution to the mixed model equations [21]
given by [16]

β̂
û

� �
¼ ΧTR−1Χ ΧTR−1Ζ

ΖTR−1Χ ΖTR−1Ζ þ G−1

� �−
ΧTR−1y
ΖTR−1y

� �

¼ C11 C12

C21 C22

� �
ΧTR−1y
ΖTR−1y

� �
;

ð28Þ

where ()− denotes a generalized inverse of the coefficient
matrix of the MME [23]. If the variance-covariance
matrix of the random effects u and the genetic effects
g = Zu is given by

var
g
u

� �
¼ D F

FT G

� �
; ð29Þ

where D ¼ ZZTσ2u and F ¼ Zσ2u; then it follows that [24]

BLUP gð Þ ¼ FG−1û ¼ Zû; ð30Þ

where û ¼ BLUP uð Þ:
The distribution of g and ĝ is then multivariate normal

with zero mean and variance-covariance matrix

var
g
ĝ

� �
¼ ZZTσ2u ZMG−1ZTσ2u

ZMG−1ZTσ2u ZMG−1ZTσ2u

� �
; ð31Þ

where M ¼ var ûð Þ [25]. The REML estimate of M can be
computed from a mixed model package by noting that

var ûð Þ ¼ M ¼ G−C22: ð32Þ

After substituting for M, equation 32 reduces to

var
g
ĝ

� �
¼ ΖΖTσ2u ΖΖTσ2

u−ZC22ZT

ΖΖTσ2u−ZC22ZT ΖΖTσ2
u−ZC22ZT

� �
;

ð33Þ
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from which the reliability ρ2i for each genotype is calcu-
lated as

ρ̂2i ¼
cov gi; ĝ i

� �� �2
var gi

� �
: var ĝ i

� �; ð34Þ

where we extract only the corresponding diagonal ele-
ments from the block matrices var(g), var ĝð Þ and cov
g; ĝð Þ . The reliability of all genotypes in each dataset is
then estimated by

ρ̂2m7 ¼ 1
n

Xn
i¼1

ρ̂2i ð35Þ

and the accuracy by its square root, where n is the total
number of genotypes in the data set. The SAS (version
9.3) code used to simulate the phenotypic data and fit all
the seven models is provided in Additional file 4.

Evaluation of simulated data
We used the two-stage analysis and the methods de-
scribed above to estimate the correlations between the
predicted and the true breeding values rg;ĝ . We com-
puted the true heritability as the square of the correl-
ation between the predicted and the true breeding
values and estimated heritability using the five different
approaches. We then computed the ratio of the expected
value of the genetic variance to the expected value of the
phenotypic variance and used this to compute heritabil-
ity based on the new proposed method (Method 4) for
estimating heritability. Moreover, we estimated the ad-
justed least square means of genotypes from the first
stage using simulated data. The adjusted least square
means were used in the second stage in cross-validations
as the phenotypic data. Also, the variance-covariance
matrix of the adjusted means was used to compute an
ad hoc measure of heritability according to equation 16.
Because the KWS maize dataset had many genotypes
(n = 698) the mixed models were computationally very
demanding to fit. So, for example, the slowest method,
Method 6, took only 17.5 hrs to fit all the 1000 small
data sets in one scenario in SAS Version 9.3 running on
a 64-bit Windows 7 workstation with 8 GB RAM and an
Intel Core Quad 2.66, but it took 192 hrs to fit the same
model to 1000 large data sets. Hence, we first estimated
the start values for the variance-components of the
mixed models using the hpmixed procedure of SAS to
enhance computational efficiency.

Comparing heritabilities
We computed true heritability as the square of the cor-
relation between the predicted and the simulated true
breeding values:

H2
true ¼ rg;ĝ

� �2 ð36Þ
To compare the true heritabilities H2 with their esti-

mates computed using each of the four different indirect
methods (Methods 1, 2, 3, and 4) and Method 5 we
computed the mean squared deviation (MSD) of each
estimate from the true heritability for each simulated
dataset and method combination as

MSD ¼
XN
j¼1

Ĥ 2
j − rg;ĝ ;j
� �2� �2

N
ð37Þ

where N is the total number of the simulated datasets
and j= (1, 2, …, N) denotes the j-th simulated data set.
Moreover, we computed descriptive statistics for the true
and estimated heritabilities.

Comparing predictive accuracies
For each simulated dataset we computed the “true” cor-
relation rg;ĝ (accuracy) as the correlation between the
predicted and the simulated true breeding values and
compared this with estimates of the same correlation
computed using each of the seven different methods. To
compare the true correlation rg;ĝ with its seven estimates
r̂ g;ĝ we computed the mean squared deviation (MSD) of
each estimate from the true correlation for each simu-
lated dataset and method combination

MSD ¼
XN
j¼1

r̂ g;ĝ ;j−rg;ĝ ;j
� �2

N
; ð38Þ

where N is the total number of the simulated datasets
and j= (1, 2, …, N) denotes the j-th simulated dataset.
We recall here that MSD integrates information on (i)
the correlation between the predicted and the true ac-
curacy, (ii) the slope of the regression of the predicted
against the true accuracy and (iii) the bias between the
predicted and the true accuracy [26]. Nevertheless, the
correlation and bias between the predicted and the sim-
ulated true accuracies are displayed or can readily be in-
ferred from Figures 1, 2 and 3 and Additional file 3:
Figures S1-S3 in the supplementary materials. Further,
we calculated descriptive statistics for the true correl-
ation and all its seven estimates. We also compared the
estimated predictive accuracies between pairs of the
seven methods.
For each scenario we compared the simulated true and

the estimated predictive accuracies for the seven
methods using t-tests (α = 5%) adjusted for multiplicity
using simulation adjustment. The t-tests were derived
from a mixed model with fixed effects for method and
scenario and their interaction and a random effect for
simulation replicates nested within scenarios [6].

Results
Heritability
Heritability was estimated by Methods 1 to 5 only. The
estimated heritability was closer to its true simulated



Figure 1 Box Whisker plot for predictive accuracy (estimates less than 0 were set to 0 whereas estimates greater than 1 were set to 1)
for all the seven methods in each of the four scenarios.
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value for Methods 2, 3 and 5 than for Methods 1 and 4
in terms of its minimum, maximum, mean, standard devi-
ation and mean squared deviation for all the four scenar-
ios. All the five methods (Methods 1 to 5) underestimate
the minimum, maximum and the mean true heritability in
all the scenarios. Method 5 produced estimates closest to
the true heritability for all the four scenarios. Across sce-
narios based on the same data set, the estimated heritabil-
ity tended to be closer to its true value in Scenario 1 than
in 2 and in Scenario 3 than in 4 (Table 5), implying that
reducing the genetic variance by a factor of 10 in scenarios
2 and 4 reduced the accuracy of estimated heritability.

Predictive accuracy
In general, all the seven methods produced reasonable
estimates of predictive accuracy across all the four sce-
narios. The estimated predictive accuracy was more pre-
cise for Scenarios 3 and 4, based on the large dataset,
than for Scenarios 1 and 2, for all the seven methods
(Table 6, Figures 1, 2 and 3). Reducing the genetic vari-
ance by a factor of 10 while leaving all the other variance
components unchanged degrades the precision of the es-
timated predictive accuracy more for the smaller of the
two datasets (Table 6, Figures 1, 2 and 3 and Additional
file 3: Figures S1-S4). Methods 5 and 7 were the best
overall and gave the least biased and most precise esti-
mates of predictive accuracy, most notably for Scenarios
1, 3 and 4 (Table 6 and Figures 1, 2 and 3). Even so,
Method 5 tended to be more precise than Method 7 for
both the scenarios (3 and 4) based on the larger dataset.
All estimates of predictive accuracy for Methods 5 and
7 were between 0 and 1 for all scenarios. Also, the
models for Methods 5 and 7 converged for all the 1000
simulated datasets in all the scenarios (Tables 5 and 6,
Additional file 3: Figures S1-S2). Unlike Methods 5 and 7,
the performances of the other methods were more varied
across scenarios. In particular, there was a greater ten-
dency for the estimated predictive accuracy to exceed one
(“overshooting”) or to be smaller than zero (“undershoot-
ing”) and a higher frequency of failure of the algorithms
used to fit the RR-BLUP models to converge (Additional
file 3: Table S1, Additional file 3: Figures S1-S8).



Figure 2 Frequency histograms for the true accuracy versus the estimated predictive accuracy (estimates less than 0 were set to 0
whereas estimates greater than 1 were set to 1) for all the seven methods in each of the four scenarios.
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For Scenario 1 overshooting was most frequent and
severe (greater in magnitude) for Method 1 (21.8%,
n=1000, range 1.0004-1.8960) followed by Methods 4
(6.8%, range 1.0015-1.1917), 2 (1.5%, range 1.0022-
1.4152) and 3 (1.5%, range 1.0018-1.4153). In contrast,
all estimates of predictive accuracy for Methods 5, 6 and
7 fell between 0 and 1. Moreover, all the seven models
converged for all the 1000 simulated datasets (Table 6
and Additional file 3: Table S1).
Compared to Scenario 1, overshooting and under-

shooting were more common for Methods 1, 2, 3, 4 and
6 in Scenario 2. Generally, overshooting was more ser-
ious (greater in absolute magnitude) than undershoot-
ing, particularly for Methods 1 (n=164 datasets), 2
(n=65), 3 (n=65) and 4 (n=113) (Table 6, Additional
file 3: Figures S1, S4 and S6). The problem of overshoot-
ing or undershooting did not occur for any method in
Scenario 3. Although the problem of overshooting still
persisted for Methods 1 (n=95), 2 (n=104), 3 (n=87) and 4
(n=163) in Scenario 4, these methods had three further
drawbacks in Scenario 4. The first was the breakdown of
the method for computing predictive accuracy because es-
timated heritability was zero, most especially for Methods
1 (n=27) and 2 (n=27). The second was that the genetic
variance estimate was zero for Method 3 (n=27). The third
was the failure of the mixed model used to compute pre-
dictive ability required by Methods 1, 2, 3, 4 and 6 to con-
verge (n=18). As a result, predictive accuracy could not be
computed for 45 datasets for each of the Methods 1, 2
and 3 in Scenario 4. Undershooting was rather rare by
comparison and was noted only for Method 3 (n=17) in
Scenario 4 (Additional file 3: Figures S2, S4 and S8). Aside
from overshooting and undershooting, deviation of the
predictive accuracy from its expected values was also
caused by overestimation and underestimation. Consider-
ing only the values of predictive accuracy between 0 and
1, the seven methods tended to underestimate the true ac-
curacy across all the four scenarios. Underestimation
tended to be more severe for Methods 1, 2, 3, 4 and 6 than
Methods 5 and 7. This was most evident in Scenario 4. By
comparison, overestimation was far less common (Table 6,
Figures 2 and 3, Additional file 3: Figure S2-S4).



Figure 3 Scatter plots of estimated predictive accuracy against the true simulated accuracy (estimates less than 0 were set to 0
whereas estimates greater than 1 were set to 1) for all the methods in each scenario. The 1:1 (y = x) line is superimposed for comparison.
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For 11 datasets from Scenario 2 the estimated true ac-
curacy was smaller than zero because the estimated vari-
ances of the BLUPs were zero and the estimated genetic
variances were nearly zero. We expect plant breeders to
discard genotypes for which the estimated genetic vari-
ance is nearly zero in making selection decisions in real
applications. Consequently, we excluded the 11 simu-
lated datasets with negative true accuracies from all the
comparisons to mimic what plant breeders do in prac-
tice. There was therefore no estimated true accuracy to
compare with the corresponding estimated predictive ac-
curacy for all the seven methods. Similarly excluded
from all the comparisons were four further datasets in
Scenario 2 for which the mixed models for estimating
the true accuracy did not converge.
A comparison of the performances of the methods

showed that methods with similar performances clustered
into two distinct groups in each of the four scenarios.
One of the two groups identified by regressing the es-
timated predictive accuracies for each pair of the seven
methods on each other comprised Methods 1, 2, 3, 4, and
6 whereas the other consisted of Methods 5 and 7 (Table 6
and Additional file 3: Table S2, Figures 4, 5, 6 and 7 and
Additional file 3: Figures S5-S8). Results of the t-tests reaf-
firmed this general pattern besides showing that the esti-
mated true accuracies for Methods 5 and 7 are generally
closer to the true predictive accuracy than the estimates
for the other methods, especially for the two scenarios
based on the large data set (Table 6 and Additional file 3:
Table S1).
We expected the predictive accuracies of pairs of

methods that accurately estimate the true predictive
accuracy to be positively and not negatively correlated
with each other. However, correlations between esti-
mated predictive accuracies for some pairs of the seven
methods were, surprisingly, negative even though the
predictive accuracies for the individual methods were
themselves high and positive (Table 7 and Additional
file 3: Table S2, Figures 4, 5, 6 and 7 and Additional
file 3: Figure S5-S8). This was the case, for example,
for Method 4 versus 5 and 7 in Scenario 1, and for
Method 5 versus 6 in Scenarios 2 and 3. This is due to the



Figure 4 Scatter plots comparing all the estimated predictive accuracies for pairs of the seven tested methods for Scenario 1.
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fact that some Methods (e.g., 5 and 7) tended to produce
large values of predictive accuracy while others (e.g.,
Methods 4 and 6) tended to produce small values when
the estimated genetic variance was very small because of
the way the genetic variance enters the denominators of
the estimators used by these methods to compute predict-
ive accuracy.

Discussion
Heritability
One possible definition of heritability [27] is based on the
squared correlation between “genotype” and “phenotype”.
In our current work, we use various ad hoc measures of
heritability. The one proposed by [18] assesses the squared
correlations between BLUPs of genotypic values and the
true genotypic values using Method 3. Another measure,
proposed by [16], considers the correlation between ad-
justed means (BLUEs of genotypic values) and the true
genotypic values using Method 2. So, one may argue that
these different measures use different definitions of “the
phenotype”.
In this paper, we use estimates of heritability to com-
pute “predictive accuracy” as rĝ ;p=H , where rĝ ;p is the
correlation between genomic selection estimators of
the true breeding values g and the “phenotypic values”
in the validation set and H is the square root of herit-
ability. In this application, the “phenotypes” are adjusted
means (BLUEs), so estimators of the square root of
heritability H that take BLUEs to be the phenotype
are appropriate.
It is important to note that rĝ ;p=H is itself an estimator

of the square root of heritability if we take the RR-
BLUPs as the “phenotypes”. An important property of
the procedures we consider (this provides estimators of
H by taking RR-BLUPs to be the phenotypes) is that rĝ ;p
is obtained from cross-validation. Alternatively, we also
estimate heritability H2 (or H) without cross-validation
using similar ideas to those used for the ad hoc mea-
sures of heritability H2 and for the “direct method”
(Method 5). The quantity H2

m5 (24) provides an alterna-
tive estimator of heritability when the RR-BLUP of the
genetic variance (g) is considered as the “phenotype”.



Figure 5 Scatter plots comparing all the estimated predictive accuracies for pairs of the seven tested methods for Scenario 2.
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This estimator (H2
m5 ) was the most accurate of the five

we used to compute heritability. But in our cross-
validations, the phenotypes are always the adjusted
means. So, we just use (24) as an alternative estimator of
predictive accuracy.
The strikingly poor performances of Methods 1 to 3 as

indicated by all the estimated mean heritabilities falling
below the minimum of the true heritability may seem
surprising at first sight but in the case of Methods 1 to 3
may reflect the fact that these three methods assume
that genotypes are uncorrelated. If this is true then we
would expect the performance of these methods to im-
prove considerably if the true heritability used as the
benchmark were also estimated using a model that as-
sumes uncorrelated genotypes. To test this expectation,
we re-calculated the true heritability assuming that the
genotypes are uncorrelated for each of the four scenarios
by setting all the covariances in the variance-covariance
matrix of genotypes to zero. Using the new benchmark
led, as expected, to a much better agreement between
the new true heritability and its estimates by Methods
1 to 3 (Additional file 3: Table S2). This demonstrates
compellingly that Methods 1 to 3 are all reasonably good
at estimating heritability when genotypes are not corre-
lated but are severely biased downwards when they are.
The downward bias implies, furthermore, that Methods
1 to 3 are not suited for estimating heritability used to
divide predictive ability to obtain predictive accuracy in
genomic prediction for which genotypes are typically as-
sumed to be correlated. By contrast, Method 5 that as-
sumes correlated genotypes performs much better at
estimating heritability even though the estimated herit-
ability is merely a by-product and not needed for esti-
mating predictive accuracy.
Method 4 differs from Methods 1 to 3 in assuming

that the genotypes are correlated, unlike the latter
methods that assume that genotypes are independent.
This suggest that there must be yet another reason that
the estimated mean heritability for Method 4 falls below
the minimum expected true heritability estimated as-
suming that the genotypes are correlated. We can think
of two plausible explanations for this discrepancy both
of which apply equally to all Methods 1 to 4. The first is
that all the heritability estimators for Methods 1 to 4 are



Figure 6 Scatter plots comparing all the estimated predictive accuracies for pairs of the seven tested methods for Scenario 3.
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constructed as ratios of the genetic and the phenotypic
variances such that the greater is the phenotypic vari-
ance the smaller is the estimated heritability, whereas we
defined the true heritability in terms of the squared cor-
relation between true and estimated genotypic effect.
The second relates to the observation that despite its
poor estimates of heritability relative to those for
Methods 1 to 3, the estimated predictive accuracy for
Method 4 is generally closer to the estimated true accur-
acy than the estimates for Methods 1 to 3. This is quite
intriguing because Methods 1 to 4 calculate predictive
accuracy as the ratio of predictive ability to heritability.
Since all the four methods use the exact same values of
predictive ability and since Method 4 yields somewhat
poorer estimates of heritability than Methods 1 to 3, we
would not logically expect Method 4 to produce better
estimates of predictive accuracy. That it actually did sug-
gests that the reliability of approximating predictive ac-
curacy by dividing predictive ability by the square root
of heritability is questionable, at the very least for the
specific configurations of the phenotypic and genotypic
variances we used in our simulation scenarios.
Predictive accuracy
We compared the performances of seven methods for
estimating predictive accuracy in genomic selection
using 1000 datasets simulated according to an alpha-
design for each of four scenarios based on genetic and
residual variance estimates calculated from two real
datasets. The results show that, of the seven methods, a
new proposed method (Method 5) and a method which
is well established in animal breeding programs (Method 7,
[18]), consistently gave the least biased, most precise and
stable estimates of predictive accuracy across all the four
scenarios. Method 5 was at least as good as or better than
Method 7 for estimating predictive accuracy. The other
methods performed somewhat inconsistently across
scenarios and suffered varying degrees of overshoot-
ing, undershooting and convergence problems. All the
methods were more likely to underestimate than over-
estimate the true predictive accuracy when only data-
sets for which the estimated predictive accuracies fell
between 0 and 1 were considered. The 0–1 truncation
of the estimated predictive accuracy reflects the fact
that we should not use the ratio of predictive ability



Figure 7 Scatter plots comparing all the estimated predictive accuracies for pairs of the seven tested methods for Scenario 4.
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to heritability ( rĝ ;p=H ) in practice if it does not fall
within the interval [0, 1].
In summary, Methods 5 and 7 had the best perform-

ance followed by Method 4. Method 6 was the third
best whereas Methods 1, 2 and 3 had rather similar
and the worst performance. Methods 5 and 7 had ra-
ther similar performance in all scenarios despite the
theoretical expectation that Method 5 should do bet-
ter than Method 7 for the scenarios with small sample
size. This expectation arises from the fact that whereas
Method 7 assumes that the focal genotypes are derived
from an infinite target population, Method 5 assumes that
the sampled genotypes arise from a finite population.
Consequently, the two methods may be expected to per-
form well for large sample sizes and Method 5 to perform
better than Method 7 in small sample situations. The
similar performance of Methods 5 and 7 is therefore ten-
tative and its generality will be explored for a wider range
of sample sizes in a sequel to this paper focusing on the
influence of sample size on the predictive performance of
the seven methods.
Although their empirical performances in the simula-
tions were often reasonable, Methods 1, 2 and 3 involve
dividing two quantities computed using two different
models with conflicting assumptions. Specifically, they in-
volve dividing predictive ability computed from an RR-
BLUP model, assuming that genotypes are correlated, by
the square root of heritability computed from a model as-
suming that genotypes are uncorrelated. The computation
of predictive ability using the model assuming that the ge-
notypes are correlated, when heritability is computed as-
suming uncorrelated genotypes, would seem unavoidable
when using RR-BLUP. This is because genomic breeding
values cannot be predicted using RR-BLUP if the geno-
types are assumed to be independent. This theoretical in-
consistency undermined the performance of these three
methods in several instances when the genetic variance
estimated assuming uncorrelated genotypes was zero or
nearly zero. This rendered predictive accuracy inestimable
for Methods 1, 2 and 3 in these cases.
Despite the inferior performance of Methods 1 to 3,

linked to the inconsistency in the definitions of their



Table 7 Correlation between predictive accuracies
(estimates less than 0 were set to 0 whereas estimates
greater than 1 were set to 1) for pairs of the seven
methods by scenario

Scenario Method M1 M2 M3 M4 M5 M6 M7

1 M1 1.00

M2 0.94 1.00

M3 0.94 1.00 1.00

M4 0.90 0.89 0.89 1.00

M5 −0.02 0.04 0.04 −0.18 1.00

M6 0.81 0.84 0.84 0.96 −0.06 1.00

M7 −0.02 0.04 0.04 −0.18 1.00 −0.07 1.00

2 M1 1.00

M2 0.97 1.00

M3 0.97 1.00 1.00

M4 0.82 0.78 0.78 1.00

M5 0.21 0.17 0.17 0.04 1.00

M6 0.70 0.67 0.67 0.91 −0.02 1.00

M7 0.26 0.22 0.22 0.11 0.95 0.03 1.00

3 M1 1.00

M2 1.00 1.00

M3 1.00 1.00 1.00

M4 0.91 0.91 0.91 1.00

M5 −0.11 −0.12 −0.12 −0.32 1.00

M6 0.83 0.83 0.83 0.98 −0.28 1.00

M7 −0.11 −0.12 −0.12 −0.32 1.00 −0.28 1.00

4 M1 1.00

M2 1.00 1.00

M3 1.00 1.00 1.00

M4 0.99 0.99 0.99 1.00

M5 0.59 0.59 0.59 0.58 1.00

M6 0.77 0.77 0.77 0.79 0.04 1.00

M7 0.59 0.59 0.59 0.58 1.00 0.05 1.00

The number of simulated datasets out of a possible total of 1000 for which
estimates of predictive were available for each pair of methods was taken as
the minimum for the pair.
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numerators and denominators, relative to the methods
that estimate predictive accuracy directly, this theoretical
inconsistency has not deterred plant breeders from using
these approaches. In fact, Methods 1 to 3 are the most
frequently used by plant breeders. These three methods
are not very similar by construction, despite the similar-
ity of their performance. Hence, the similar performance
could not necessarily have been anticipated a priori. Ac-
cordingly, by studying the properties of these methods
alongside those of the other contending methods, we
have ascertained whether and when their theoretical in-
consistency may lead to inferior performance. Our find-
ings suggest that these methods should be used with
care, especially when the genetic variance is very small,
so that predictive accuracy is likely to be either inestim-
able or overestimated.
Although rare and probably relatively simple, there are

instances in which the theoretical inconsistency is imma-
terial. For example, an independent model can be ob-
tained in such simple special cases as a doubled haploid
population, resulting from a single cross [2], if the
dependent model is a conditional model that considers
genetic variance-covariance conditioning on the marker
genotypes whereas the marker genotypes are taken as
random variables. In complex pedigrees, however, the
unconditional model will also involve correlations, so
that the impact of the theoretical inconsistency is more
likely to be consequential.
We emphasize also that while our simulation results

hold for the RR-BLUP model, their applicability to other
models than RR-BLUP remains to be investigated.
Influence of the size of genetic variance
The size of the estimated genetic variance and hence
heritability exerted the strongest influence on the vari-
ation in estimates of predictive accuracy. The estimated
predictive accuracy was closer to its true value for all the
methods in Scenarios 1 and 3 than in Scenarios 2 and 4
for all the 1000 datasets, because the simulated genetic
variances for Scenarios 1 and 3 were 10 times larger
than those for Scenarios 2 and 4. When the simulated
genetic variance was small (Scenarios 2 and 4), there
was a higher likelihood of obtaining extremely high
values of estimated genetic variances than when a higher
genetic variance was simulated (Scenarios 1 and 3).
Methods 1, 2 and 3 were the most sensitive to variation
in the estimated genetic variance because they all divide
predictive ability by the square root of heritability to ob-
tain predictive accuracy and hence break down when
genetic variance estimate is zero, since the estimated
heritability is then also zero. For Method 3, in particular,
predictive accuracy becomes infinitely large when the es-
timated genetic variance is zero and extremely large
when this variance is very small. Since Method 4 also
computes predictive accuracy in the same way as
Methods 1, 2 and 3 do, it also breaks down when the es-
timated genetic variance and hence estimated heritability
is zero.
Influence of the number of genotypes
Increasing the number of genotypes, for example from
177 for Scenarios 1 and 2, to 698 for Scenarios 3 and 4,
increased the time required to compute predictive accur-
acy by all the seven methods from a few minutes to sev-
eral days, most notably for the methods that require
cross-validation (Methods 1, 2, 3, 4 and 6).
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Simplicity of implementation of methods
Methods 1, 2, 3, 4 and 6 that use cross-validation are com-
putationally much more intensive to implement than
Methods 5 and 7 that do not involve cross-validation. As
a result, Methods 5 and 7 are the simplest and computa-
tionally most efficient to implement of the seven methods.
This argues for their routine use in assessing predictive
accuracy in genomic selection studies.
Considering only estimated correlations between zero

and one, Methods 4 and 6 gave the best estimates of pre-
dictive accuracy among the five methods that use cross-
validation, followed by Methods 3, 2 and 1, in that order.

Design considerations
We considered a single trial laid out as an alpha-design
in a single location for simplicity. Hence, a more exten-
sive simulation with more trials, locations and trial de-
signs would be required to establish the generality of our
results. Further, we considered only two data sets with dif-
ferent numbers of genotypes (177 and 698) and markers
(275 and 11646). However, variation in the number of
genotypes and markers probably also affects the estimated
predictive accuracy and thus also merit further investi-
gation. Some breeders compute heritability using methods
assuming that the datasets are balanced and that the
genotypes are independent. Four of the seven methods
(Methods 4, 5, 6 and 7) relax these restrictive assumptions
by allowing for both balanced and unbalanced datasets as
well as for independent and correlated genotypes.

Conclusions
Methods 5 and 7 were the most computationally efficient
to implement and gave consistently the most accurate,
robust and stable estimates of predictive accuracy of the
seven methods across all the four scenarios. These proper-
ties argue for their routine use in assessing predictive
accuracy in genomic selection studies. Among the five
methods that use cross-validation, Methods 4 and 6 per-
formed better than Methods 1, 2 and 3 but were clearly
inferior to Methods 5 and 7. Both the genetic variance
and the number of genotypes exerted strong influences on
predictive accuracy. Thus, predictive accuracy was higher
for the larger data set. Furthermore, reducing the genetic
variance degraded predictive accuracy much more for the
smaller of the two data sets. We are investigating the
influences of genetic variance and the number of genotypes
on predictive accuracy in genomic selection in greater
detail in a sequel to this paper.
Additional files

Additional file 1: How to compute the average variance of a
difference from the variance-covariance matrix of adjusted means.
Additional file 2: Three special cases for the new Method 4.

Additional file 3: Descriptive statistics for predictive accuracy by
scenario (Table S1), Descriptive statistics for the estimated true
heritability assuming that genotypes are not correlated for each of
the four scenarios (Table S2), Box Whisker plot of all the predictive
accuracies for scenario 2 (Figure S1), Box Whisker plot of all the
predictive accuracies for scenario 4 (Figure S2), Frequency
histograms for the true (green) versus the estimated (white)
predictive accuracy for all the seven methods and four scenarios
(Figure S3), Scatter plots of estimated predictive accuracy against
the true accuracy for all the seven methods and four scenarios
(Figure S4), Scatter plots comparing the estimated predictive
accuracies for pairs of the seven tested methods for scenario 1
(Figure S5), Scatter plots comparing the estimated predictive
accuracies for pairs of the seven tested methods for scenario 2
(Figure S6), Scatter plots comparing the estimated predictive
accuracies for pairs of the seven tested methods for scenario 3
(Figure S7) and Scatter plots comparing the estimated predictive
accuracies for pairs of the seven tested methods for scenario 4
(Figure S8).

Additional file 4: SAS (version 9.3) code used to simulate
phenotypic data and implement all the seven methods.

Abbreviations
GS: Genomic selection; RR-BLUP: Ridge-regression BLUP; BLUE: Best linear
unbiased estimation; BLUP: Best linear unbiased prediction; REML: Restricted
maximum likelihood; SNP: Single nucleotide polymorphism; CV: Cross-
validation; H2: Heritability; MME: Mixed model equations; ĝ : BLUP of the
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