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Abstract

for this species.

Background: Rice false smut caused by Villosiclava virens is a devastating fungal disease that spreads in major
rice-growing regions throughout the world. However, the genomic information for this fungal pathogen is limited
and the pathogenic mechanism of this disease is still not clear. To facilitate genetic, molecular and genomic studies
of this fungal pathogen, we constructed the first BAC-based physical map and performed the first genome survey

Results: High molecular weight genomic DNA was isolated from young mycelia of the Villosiclava virens strain
UV-8b and a high-quality, large-insert and deep-coverage Bacterial Artificial Chromosome (BAC) library was
constructed with the restriction enzyme Hindlll. The BAC library consisted of 5,760 clones, which covers 22.7-fold of
the UV-8b genome, with an average insert size of 140 kb and an empty clone rate of lower than 1%. BAC
fingerprinting generated successful fingerprints for 2,290 BAC clones. Using the fingerprints, a whole genome-wide
BAC physical map was constructed that contained 194 contigs (2,035 clones) spanning 51.2 Mb in physical length.
Bidirectional-end sequencing of 4,512 BAC clones generated 6,560 high quality BAC end sequences (BESs), with a
total length of 3,030,658 bp, representing 8.54% of the genome sequence. Analysis of the BESs revealed general
genome information, including 51.52% GC content, 22.51% repetitive sequences, 376.12/Mb simple sequence
repeat (SSR) density and approximately 36.01% coding regions. Sequence comparisons to other available fungal
genome sequences through BESs showed high similarities to Metarhizium anisopliae, Trichoderma reesei, Nectria
haematococca and Cordyceps militaris, which were generally in agreement with the 185 rRNA gene analysis results.

Conclusion: This study provides the first BAC-based physical map and genome information for the important
rice fungal pathogen Villosiclava virens. The BAC clones, physical map and genome information will serve as
fundamental resources to accelerate the genetic, molecular and genomic studies of this pathogen, including
positional cloning, comparative genomic analysis and whole genome sequencing. The BAC library and physical map
have been opened to researchers as public genomic resources (http://gresource hzau.edu.cn/resource/resource. html).
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Background

Rice false smut caused by Villosiclava virens (Cooke Tak)
(anamorph Ustilaginoidea virens) [1,2] has emerged as a
devastating disease in rice, due to the intense application
of nitrogen and phosphorus fertilizers and the cultivation
of high-yielding semi-dwarf rice cultivars worldwide [3].
Previously, rice false smut was considered as a minor rice
disease because of its rare occurrence in limited regions,
but this disease has spread widely in the last 20 years and
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has become a severely devastating disease in many major
rice-growing regions, including Asia, Africa, the United
States, South America and Italy [3,4]. Rice false smut
dramatically damaged rice production in 1988 and has
continued to occur frequently [5]. The ustiloxin produced
by this pathogen in infected plant tissues is a kind of
cyclopeptide mycotoxins, which inhibits the growth of
microtubules and is toxic to humans and livestock [6].

To date, the knowledge of V. virens is still very limited.
Ashizawa et al. reported a sensitive method to quantify
V. virens pathogens in soil samples using real-time PCR
[4]. Ladhalakshmi et al. studied the intensity of rice false
smut in India and found that the percentage of false
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smut-infected tillers ranged from 5% to 85% in the south-
ern states, and 2% to 75% in northern states [7]. Atia et al.
first investigated rice false smut in Egypt and reported that
the production loss caused by this pathogen ranged from
1.0% to 10.9% [8]. Tanaka et al. established a simple trans-
formation system of this pathogen using electroporation
of intact conidial cells [2]. Fu et al. described the morpho-
logic characteristics more precisely [3].

At present, the effect of rice false smut control is far
from ideal. For searching the effective and environment-
friendly methods, more morphological, molecular, gen-
omic and genetic data of V. virens are required to reveal
the infection process, the interaction mechanism between
host and pathogen, the genetic variety and diversity, and
the genome composition of this specie.

BAC libraries, physical maps and BESs serve as
important tools in genetic, molecular and genomic
studies. BAC libraries are used as templates in targeted
or whole genome sequencing, physical map construction
and functional complementation of genes in positional
cloning. Physical maps provide frames for genome se-
quencing and physical positions of genes and markers.
BESs are accurate and inexpensive genome samples [9],
from which initial insights into the genome composition
and candidates of molecular markers can be obtained
[10,11]. The combined resources of BAC library, physical
map and BESs of a genome play even more powerful
roles synergistically in the above mentioned and exten-
ded research fields. BAC clones will largely increase the
value and utility in targeted genome sequencing and
positional cloning when mapped on a physical map.
BESs embedded in physical map can be used as anchors
in genome comparisons to detect sequence assembly
errors of the same source genome and large structural
changes of phylogenetically close genomes [12,13].

BAC libraries and physical maps have been construc-
ted for several agriculturally important fungal organisms,
such as Magnaporthe oryzae [14,15], Blumeria graminis
[16], Fusarium graminearum [17], Cryptococcus neofor-
mans [18], Trichoderma reesei [19] and Ustilago maydis
[20]. We recently constructed a BAC library for a V.
virens strain, UV-2 [21]. The BAC library contains
10,368 clones and has an average insert size of 124.4 kb.
However, no physical map was constructed and no BESs
were produced with this BAC library. Here we report
the construction of a BAC-based physical map and gen-
ome survey of the V. virens strain UV-8b. To our know-
ledge, this is the first physical map and genome
sequence information developed for V. virens.

Results

Phylogenetic analysis of strain UV-8b

The V. virens strain UV-8b was a single spore isolated from
Japonica rice Zhonghua 11. To analyze the phylogenetic
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relationship between this strain and other fungal patho-
gens, we sequenced its 185 rRNA gene and compared it
with other fungal 18S rRNA gene sequences. The 18S
rRNA gene sequence of UV-8b showed a 99% identity to
those of other V. virens strains and the phylogenetic tree
constructed with the NJ algorithm clustered UV-8b into
V. virens clade (Additional file 1: Figure S1). The UV-8b
strain is also related to the members of Metarhizium,
Trichoderma and Cordyceps (about 98% identities among
18S rRNA gene sequences).

BAC library construction, fingerprinting and contig
assembly

To obtain basic genome resources for V. virens, we
constructed a BAC library and a BAC-based physical
map of the V. virens strain UV-8b. The BAC library
consists of 5,760 clones arrayed in 15 384-well plates.
Analysis of 180 random BAC clones showed that the
library had an average insert size of 140 kb with a size
range from 25 to 190 kb and an empty-vector rate of
lower than 1% (Table 1; Additional file 2: Figure S2).
The library was calculated to cover 22.7-fold of the
UV-8b genome (based on a genome size of 35.5 Mb,
Dr. Shaojie Li, personal communication).

Table 1 Statistics of the BAC Library, fingerprints and
BESs of V. virens strain UV-8b

Category Value
Clone number 5760
Empty rate < 0.1%
Average insert size 140 kb
Genome coverage' 22.7X
Clones end-sequenced 4512
Clones with BESs 3722
Paired-end BESs 2838
Single-end BESs 884
Average BES length 462 bp
GC content 51.52%
Clones fingerprinted 2688
Clones with fingerprints data® 2290
Assembled into FPC contigs 2035
With paired-end BESs 1557
With single-end BESs 407
As singletons 255
With paired-end BESs 194
With single-end BESs 48
Average bands per clone® 124

"The genome size of V. virens was estimated as 35.5 Mb.

2The clones that contained 50-200 bands were imported into FPC for
contig assembly.

3The total bands of all successfully fingerprinted clones were 283391.
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We fingerprinted 2,688 BAC clones using five restric-
tion enzymes (BamHI, EcoRl, Xbal, Xhol, Haelll). After
quality filtering as described in the methods, fingerprint
profiles of 2,290 BAC clones were qualified for FPC
assembly. The 2,290 BAC clones covered 9-fold genome
equivalents and contained an average of 124 bands
(consensus bands; CBs) per clone. Based on the average
insert size of 140 kb, one CB was estimated to be
1.13 kb (Table 1).

The fingerprint data of the 2,290 clones were imported
into FPC V9.4 for contig assembly. A series of tests were
performed to find optimal parameters for the assembly.
Table 2 displayed the results of assembly with tolerance
4 and different cutoff values. Based on these tests, we
chose 10 as the initial cutoff value for contig assem-
bly. This condition setting assembled 2,035 clones into
196 contigs containing 111 (4.85%) Q clones, and left 255
(11.14%) clones as singletons. The contiglO1 (4 clones)
was end-merged to contig76 (18 clones), and contig193
(29 clones) was end-merged to contigl (3 clones), by the
“End to End” function at terminal cutoff 10"* and match
value 2. This result was referred as PhaselA and used as
standard version. The PhaselA contigs covered 51.2 Mb in
physical length. The discrepancy between the genome
length and the physical length of all contigs might be
generated by the potential redundancy of contigs, which
could be detected and merged with more evidences. Using
“End to End” function at terminal cutoff 10°® and match
value 1, we merged another 74 contigs. This result
was referred as PhaselB. The BAC library and two
versions of physical map have been opened to researchers
as public genomic resources (http://gresource.hzau.edu.
cn/resource/resource.html).

To evaluate the PhaselA contig quality, we used PCR
with primers from repeat masked BESs to verify the
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overlaps of clones in contigs. We randomly picked
contigl84 (2 clones), contigl55 (3 clones), contigl49
(4 clones), contig70 (7 clones), contig50 (12 clones),
contig36 (20 clones) and contigl7 (28 clones), and
designed 3, 3, 4, 7, 8, 7 and 8 pairs of primers for
PCR, respectively. As a result, only one clone (U08J21
located in the contigl7) could not be distinctly confirmed
(Figure 1; Additional file 3).

BAC end sequencing

To perform a genome survey and provide anchor
sequences on the physical map for genome comparisons,
we sequenced 4,512 BAC clones that included those
clones used in fingerprinting at both ends. A total of
6,560 high quality BESs were generated after quality
trimming, of which 5,676 were paired-end (86.52%)
sequences and 884 were single-end sequences (13.48%)
(Table 1). The maximal and the average length of the
BESs were 798 bp and 462 bp (Figure 2), respectively.
The total length of the BESs was 3,030,658 bp represent-
ing 8.54% of the whole genome. The GC content was
51.52%. The 6,560 high quality BESs are available in
GenBank [GenBank:JY267549 to GenBank:JY274108].

Analysis of repetitive DNA in BESs

Repeat sequences are usually a major component of
eukaryotic genomes. To gain an initial insight into the
composition of repeat elements contained in UV-8b
BESs, RepeatMasker was used to identify the known
repeat elements from existing databases. The result
indicated that a total length of 138,502 bp (4.57%) of the
known repeat sequences was identified and contained in
1,273 (19.41%) reads, among which only one read was
completely recognized as repeat sequence. In the terms
of the repeat category, retroelements were dominant and

Table 2 Summary of the UV-8b physical maps autobuilt from assembly of the 2,290 BAC clones at different stringencies

Cutoff  Contigs Avr contig Longest Physical Q contigs/  No. contigs containing different clone numbers Singletons
length (kb)' contig (kb)' length (Mb)' Q clones (%)* 50 5026 25-10 o3 - (%)3
10°° 314 184 287 58.2 0/0 (0.00) 0 0 18 180 116 991 (433)
0% 305 196 376 60.0 7/7 (031) 0 0 43 168 94 653 (28.5)
10%° 255 217 774 555 36/49 (2.14) 0 4 57 136 58 428(187)
1078 231 230 774 534 41/63 (2.75) 0 9 61 112 49 357 (15.6)
10" 196 261 774 513 63/111 (4.85) 1 15 61 78 41 255 (11.1)
102 161 302 1032 487 74/164 (7.16) 3 20 53 62 23 177 (7.7)
1071° 142 335 1585 47.7 77/174 (7.60) 5 20 51 48 18 160 (7.0)
1098 135 340 1585 460 80/204 (891) 5 22 50 44 14 134 (59)
Phase IA* 194 263 774 512 63/111 (4.85) 1 15 61 76 41 255 (11.1)

"Each fingerprint band was estimated to be 1.13 kb based on the average insert size 140 kb and an average 124 bands per clone.

2The percentage of Q clones to total clones 2290.

3The percentage of single clones to total clones 2290.

“*The cutoff value of 10"° was chosen, then contig10Twas end-merged to contig76, and contig193 was end-merged to contigl by “End to End” function at cutoff
1072, respectively.
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Figure 1 Verification of the overlaps between clones in contig155. Section A: Location of the clones in contig155; In section B, C and D, the
templates used in PCR, from left to right, are: no template, host cells, empty vector, U13J12 (contig6), UO3HO1 (contig133), U03J10 (contig53),
U03A03 (contig100), U12J05, U08KO5 and U15M06. B: The pair primers were derived from BES of U12J05.f; C: The pair primers were derived from
BES of UT15M06.f; D: The pair primers were derived from BES of U15MO06.r.

represented 3.07% of the total BES length, of which the
LTR elements Tyl/Copia and Gypsy/DIRS1 accounted
for 2.05% and 1.01%, respectively, while the LINE
elements accounted for only 0.01% of the total BES
length. Small RNA and simple repeats accounted for
0.04% and 0.95% of the total BES length, respectively
(Table 3). It is interesting that few DNA transposons
were identified in BESs in contrast to retroelements.
RepeatScout was used to de movo scan the repeat
sequences contained in UV-8b BESs with the criterion
described in the methods. A cumulative 682,351 bp
(22.51%) were marked as repeat sequences with this
pipeline, and were contained in 2,642 (40.27%) reads.
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Figure 2 Distribution of BAC end sequence lengths.

Among these reads, 163 (2.48%) were marked as
complete repeat sequences. The 1,384 reads in this
result were not contained in the RepeatMasker result
and 15 reads in the RepeatMasker result were not
contained in this result. After repeat-masked, the BESs
were self-BLASTed as described in the methods and no
reads showed more than three matches to others,
proving the high sensitivity of the RepeatScout pipeline.

Comparative analysis of UV-8b with other fungal
pathogens through BESs

For functional genomics comparison and evolutionary
studies of the UV-8b genome, the following 10 well-
characterized fungal pathogen genomes were chosen:
Magnaporthe oryzae, Botrytis cinerea, Puccinia spp,
Fusarium graminearum, Fusarium oxysporum, Blumeria
graminis, Mycosphaerella graminicola, Colletotrichum
spp, Ustilago maydis and Melampsora lini. They were
voted as the most scientifically/economically important
fungal pathogens by plant mycologists [22]. Four other
tungi, Metarhizium anisopliae, Trichoderma reesei, Nectria
haematococca and Cordyceps militaris, were also chosen as
related species for this study, because they were close to
V. virens in evolution distance and their whole genome
sequences were available.

To identify the microsynteny regions of UV-8b to the
above genomes, the repeat-masked UV-8b BESs were
used in BLAST analysis with the above genome sequen-
ces. As shown in Table 4, 0.18-8.34% of masked BESs
matched to the top 10 plant fungal pathogen genomes.
In ascomycetes pathogens, F. oxysporum (8.34%) and
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Table 3 Composition of known repetitive sequence types
in the UV-8b BESs

Type Number of Length occupied Sequence
elements (bp) (%)’
Retroelements 314 93126 307
LINEs 3 306 0.01
LTR elements 3N 92820 3.06
Ty1/Copia 208 62218 205
Gypsy/DIRS1 103 30602 1.01
DNA transposons 1 43 0.00
Hobo-activator 1 43 0.00
Small RNA 5 1199 0.04
Simple repeats 723 28868 0.95
Low complexity 366 15336 0.51

"The percentage of the length of each type to the total length of UV-8b BESs.

F. graminearum (8.19%) showed the most hits, followed
by C. graminicola (8.13%), and B. graminis (1.07%) showed
the least hits. In basidiomycetes pathogens, U. maydis
(0.95%) has the smallest genome size but the highest num-
ber of hits; P. graminis (0.18%) and Melampsora laricis
(0.24%) showed less hits. Among masked BESs, 18.81%,
11.88%, 10.50% and 10.35% matched to M. anisopliae, T.
reesei, N. haematococca and C. militar, respectively,
and 326 masked BESs matched to all of those species
(Figure 3). The similarity results were generally in
agreement with the 18S rRNA gene analysis.

Among the BLAST hits, if paired-ends hit to target
genomes with the criteria described in [9], the regions
were considered to be collinear between UV-8b and the
target genomes. The results (Table 4) showed that F.
oxysporum and F. graminearum have more collinear
regions than the others in the top 10 pathogen genomes.
In the four related genomes, an insect fungal pathogen
M. anisopliae had the most collinear regions. The higher
degree of synteny between UV-8b and M. anisopliae was
consistent with the results of the species distribution in
the gene annotation step. Since most of the target
genomes were not assembled completely (Table 4), the
numbers of paired-end BESs potentially collinear with
target genomes could be higher than detected.

In order to detect large syntenic regions, we used the
SyMAP [23] program based on the BESs embedded in
the contigs to anchor UV-8b PhaselA contigs to the ge-
nomes of M. anisopliae, T. reesei, N. haematococca and
C. militaris. Under the SYMAP default criteria, M. aniso-
pliae had most anchored contigs, followed by T. reesei
(Table 5), consistent with the comparative analysis
results mentioned above (Table 4). Figure 4 shows an
example of the graphical representation of the collinear
regions.
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Analysis of simple sequence repeats (SSRs)

SSRs are potential genetic markers due to their high rate
of polymorphisms. To investigate the SSR contents and
their distribution in UV-8b BESs, we scanned the BES
dataset with SciRoko3.4 [24]. First, the CAP3 [25] pro-
gram was used to reduce the redundancy of BESs; it
clustered 1,821 BESs into 803 contigs and left 4,739
reads as singletons. The total length of these reads was
2,719,880 bp. Among these random genome sequences,
a total of 1,023 SSR loci were identified from 849 reads
with the criterion described in the methods. The SSRs
had an average length of 25.17 bp, an average standard
deviation of 10.55 bp and a density of 376.12/Mb.

Of these SSRs, 339 (33.14%), 57 (5.57%), 223 (21.80%),
113 (11.05%), 158 (15.44%), and 133 (13.00%) re-
presented mononucleotide, dinucleotide, trinucleotide,
tetranucleotide, pentanucleotide, and hexanucleotide
types, that were composed of 2, 3, 10, 23, 53 and 85 SSR
motifs, respectively (Table 6). The most abundant SSR
types are mononucleotide and trinucleotide, in which
the most abundant SSR motifs are A (268) and AGC
(42), respectively. The dinucleotide (29.40 bp) and hexa-
nucleotide (29.28 bp) SSR types had the longest average
lengths among the different SSR types. The AACC motif
(42.33 bp) had the longest length among the different
SSR motifs. With the SSRs and their flanking sequences
as input, a total of 836 pairs primers were designed for
SSR loci by the Primer3 [26] program. Information on
the SSRs and the primers was showed in an additional
file (Additional file 4: Table S1).

To compare the SSR contents and distribution pat-
terns, the GSS sequences of B. graminis, Fusarium virgu-
liforme, M. oryzae and T. reesei were downloaded from
NCBI and scanned for SSRs using the same parameters
of CAP3 and SciRoKo programs. The SSR contents and
distribution patterns varied obviously (Figure 5). The
SSR densities of the above species were 96.27/Mb,
107.71/Mb, 173.60/Mb and 234.06/Mb, respectively, in
contrast to 376.12/Mb in UV-8b. The result indicated
that UV-8b and T. reesei, which were closest in phylo-
genetic distance among the four species, had the highest
SSR densities. The frequencies of the SSR types were also
different among the above species. Mononucleotide types
were dominant in UV-8b and M. oryzae, whereas the
trinucleotide was most common in 7. reesei. It is
interesting that dinucleotides had the lowest frequency in
all of the species. As for the frequencies of individual SSR
motifs, SSR motif A was the most common motif in UV-
8b, M. oryzae and B. graminis, AG was most common in
T. reesei, and AGC was most common in F. virguliforme.

Gene annotation
Before gene annotation, the repeat-masked BESs were
pre-processed by the CAP3 [25] program to reduce



Table 4 Comparative analysis of UV-8b BESs with the top ten fungal pathogens and four related fungal genomes

Fungus genome No. of masked BESs No. of BES pairs On the same In correct Within Correct orientation
with BLAST hits'  with BLAST hits  chromosome, orientation? 50-500 kb and within
scaffold or contig 50-500 kb
Species® Length (Mb)  Scaffold or contig of No. of No. of No. of No. of
(GC content)  more than 300 kb* mapping loci mapping loci mapping loci mapping loci
Magnaporthe oryzae 41.73 (51.55%) 40.87 (97.94%) 344 (5.24%) 7 5 6 2 2 1 1 0 0
Botrytis cinerea 42.66 (43.07%) 18.00 (42.19%) 118 (1.80%) 0 0 0 0 0 0 0 0 0
Puccinia graminis 88.72 (43.35%) 72.98 (82.25%) 2 (0.18%) 0 0 0 0 0 0 0 0 0
Fusarium graminearum 36.55 (48.28%) 36.09 (98.74%) 537 (8.19%) 30 14 21 6 8 7 8 2 2
Fusarium oxysporum 61.44 (48.38%) 57.76 (94.01%) 547 (8.34%) 27 12 15 7 9 6 7 3 4
Blumeria graminis 128.76 (43.97%) 20.65 (16.04%) 70 (1.07%) 0 0 0 0 0 0 0 0 0
Mycosphaerella graminicola  39.69 (52.14%) 39.69 (100.0%) 154 (2.35%) 0 0 0 0 0 0 0 0 0
Colletotrichum graminicola ~ 51.64 (49.11%) 38.53 (74.60%) 533 (8.13%) 32 8 11 5 7 4 5 1 1
Ustilago maydis 19.68 (54.03%) 2.03 (10.34%) 62 (0.95%) 1 0 0 0 0 0 0 0 0
Melampsora laricis 101.13 (41.0%) 90.04 (89.04%) 16 (0.24%) 0 0 0 0 0 0 0 0 0
Metarhizium anisopliae 39.15 (51.49%) 32.46 (82.93%) 1234 (18.81%) 121 48 63 32 36 27 34 20 24
Trichoderma reesei 33.40 (52.83%) 30.50 (91.33%) 779 (11.88%) 55 15 25 5 7 7 15 2 4
Nectria haematococca 51.29 (50.79%) 42.25 (82.38%) 689 (10.50%) 41 19 27 8 1 13 18 5 7
Cordyceps militaris 32.27 (51.42%) 32.21 (99.82%) 679 (10.35%) 41 18 24 4 4 10 13 1 1

"Percentage relative to the total number of masked BESs (6,560).
2The two end sequences of the same clone hit to the “+” and “-" strand, respectively.

3Except that the Puccinia graminis, Ustilago maydis and Melampsora laricis were basidiomycetes, the other 7 of the top 10 pathogens all are ascomycetes.

“The accumulative length of scaffolds or contigs of more than 300 kb and percentage relative to the total length of assembled sequences.
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Figure 3 The BLAST hit distribution of UV-8b repeat-masked
BESs in four related fungal genomes. The repeat-masked BESs
were BLASTed against the four related fungal genomes using
BLASTN program. A total of 1234, 779, 689 and 679 BESs hit to M. ani-
sopliae, T. reesei, N. haematococca and C. militaris genome sequences,
respectively. The shared BES hits are illustrated here; for example, 326
repeat-masked BESs hit to the four genomes simultaneously.

sequence redundancy. A total of 640 contigs were formed
by the CAP3 program and 5,215 reads were left as single-
tons. The cumulative length of the processed sequences
was 2,797,772 bp. An additional 876 (398,742 bp) reads,
whose effective lengths were shorter than 100 bp, were
removed to improve the result accuracy. The final 4,979
(contigs + singletons) reads, whose total length was
2,399,048 bp, were compared with the EST and NR data-
bases of NCBI to identify coding regions. A total of 1,592
(31.97%) reads with a cumulative length of 835,095 bp
(34.81%) were identified as homologous to ESTs (E-value
cutoff of < 10°). Found to match to NR database (E-value
cutoff of < 10°°), were 2,219 (44.57%) reads with a cumula-
tive length of 1,149,495 bp (47.91%), of which 1,492 reads
were homologous to both the EST and the NR database.
Taken together, 2,319 (46.58%) reads (1,592 + 2,219-1,492)
with a cumulative length of 1,194,135 bp (49.78%)
were identified to contain coding regions, and the

Table 5 The summary of the SyMAP results
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cumulative length of coding regions was 863,826 bp,
representing 36.01% of the total sequences (2,399,048 bp).
Figure 6 shows the target species distribution in the NR
database. M. anisopliae and M. acridum had the most
BLASTX hits.

A total of 928 unique GO terms were assigned to 1,324
reads, and each read was associated with 3.37 GO num-
bers on average. The genes showed a wide range of func-
tional categories (Figure 7; Additional file 5: Table S2).
The binding and catalytic activities were most abundant in
the molecular function category, whereas the cellular and
metabolic processes were most common in the biological
process category. A total of 971 reads matched to the
InterProScan database provided a reliable dataset to
understand gene function. On the other hand, 171 unique
EC (Enzyme Code) annotations were assigned to 387
reads, and 74 pathways in which these enzymes par-
ticipated were identified by the KEGG map module of
BLAST2GO [27], such as the tricarboxylic acid cycle
(TCA cycle). Six enzymes (from 7 reads) of the 171 unique
EC were involved in the TCA cycle.

Discussion

Rice is the staple food of more than 50% of people
worldwide, and the problem of food deficiency is more
and more severe with the expanding human population
[28,29]. Rice false smut caused by V. virens has emerged
as a devastating disease in rice, and the ustiloxin pro-
duced by the pathogen is toxic to humans and livestock
[6]. However, little is known about this fungal pathogen
to date. In this study, we constructed the first BAC-
based physical map and generated a large set of BESs for
V. virens. These resources will serve as fundamental
tools for molecular, genetic and genomic studies of this
pathogen.

Due to the lack of reference sequences and effective
molecular markers, the contigs could not be edited. We
used PCR with the primers derived from the masked
BESs to evaluate the contig quality. From a total of 76
clones analyzed, only one clone was not verified by the
PCR experiment, indicating that the contig assembly is

Category Metarhizium anisopliae Trichoderma reesei Nectria haematococca Cordyceps militaris
BESs with hits 551 (8%) 381 (5%) 332 (5%) 335 (5%)
In blocks’ 300 (54%) 144 (37%) 130 (39%) 116 (34%)
Paired BESs® 18 5 5
Anchored contigs 60 30 29
Map coverage® 21% 11% 11%

"The syntenic regions identified by SyMAP.
2The distance between the two hits of one clone in reference is within 500 kb.
3The CB percentage of the anchored contigs to total contigs.
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reliable. The control samples and several pairs of
primers in one contig helped to discriminate the false
positive PCR bands.

Transposable elements (TEs) contribute largely to the
evolution of fungal genomes [30,31]. In UV-8b, we found
that the known repeat elements represented 4.57% of
the total BESs and are mainly LTR elements. Few DNA
transposons were identified. This may be because the
percentage of retroelements is higher than DNA trans-
posons in the V. virens repeat family or because DNA
transposons of V. virens are less homologous with the
available repetitive sequences in the Fungi sub-database of
RepeatMasker. In the M. oryzae genome, the retroelements
were also more common than DNA transposons [32,33].

By de novo searching the repetitive sequences con-
tained in the UV-8b BES dataset with RepeatScout, a
total of 682,351 bp (22.51%) sequences distributed in
2,642 reads (40.27%), were marked as repeat sequences.
In our results, the core-repetitive sequences that were
identified by RepeatScout were identified in 4 to 156
BESs, while the fragments which have lower occurrence
may be false positives or lowly repetitive sequences.
However, the percentage of repeat sequences reduced
from 22.51% to 16.25% if the criterion threshold for hits
in BESs was set as >5 instead of >3 times (please note
that the BES sequences accounted for only 8.54% of the
genome sequence). There was 10.3% genome sequences
that were identified as repetitive sequences in the M.
oryzae p131 assembly [32].

A total of 1,384 reads identified by RepeatScout were
not identified by RepeatMasker, indicating that they are
new repeat elements that have not been collected in the
database. Fifteen known repeat element-containing reads
identified by RepeatMasker were not identified by
RepeatScout. It is possible that these elements have
high-copy numbers in other fungi but low-copy numbers
in the UV-8b genome or that they were under-represented
in the BESs.

Bischoff et al. analyzed the phylogenetic placement of
Villosiclavae and claimed that it is related to, but distinct
from, the Clavicipitaceae and Hypocreaceae clades [34].
This is in agreement with our phylogenetic analysis that
most of the strains closely related to V. virens UV-8b
belong to Clavicipitaceae and Hypocreaceae. In the
processes of both genome comparison (Figure 3; Table 4)
and gene annotation (Figure 6), the BLAST hit distribu-
tions were also consistent with the result of the phylo-
genetic tree, except for with T. reesei. This result could
be due to the fact that the genome sequences used for
genome comparison were draft sequences, and less gen-
omic resources of 7. reesei were deposited in GenBank
for gene annotation.

To date, little is known about co-linearity of chromo-
some segments among filamentous ascomycete fungi
[33] compared to plant and animal genomes. The
synteny relationship could facilitate the acquisition of
knowledge about genome evolution and dynamics, com-
parative genomics and phylogeny [35,36]. We compared
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Table 6 The SSR frequency and distribution in the UV-8b BESs
Type (motif number)’ Average length (bp) SSR number Counts/Mb Read number? Primer number®
Mononucleotide (2) 2268 339 124.64 329 248
A 23.76 268 98.53 258 204
C 18.59 71 26.10 71 44
Dinucleotide (3) 2940 57 20.96 57 44
AG 2848 33 1213 33 23
AT 30.27 15 551 15 14
AC 31.33 9 331 9 7
Trinucleotide (10) 27.16 223 81.99 215 191
AGC 29.98 42 1544 37 37
AAG 31.63 40 14.71 38 33
ACG 27.00 36 1324 36 32
CCG 2240 30 11.03 30 27
AAT 17.75 16 588 16 13
ATC 31.38 16 5.88 16 13
others 2533 43 15.81 42 36
Tetranucleotide (23) 25.14 113 4155 113 100
AAAG 2546 13 478 13 12
AGGC 24.92 12 441 12 10
ACCT 2327 1 4.04 " 1
AGCC 30.33 9 331 9 6
others 25.84 68 25.01 68 61
Pentanucleotide (53) 2272 158 58.09 155 137
AAAAG 25.82 22 8.09 20 15
AAAAT 21.06 16 588 16 14
ACCAG 27.00 10 3.68 10 10
others 22.02 110 4044 109 98
Hexanucleotide (85) 29.28 133 4890 133 116
AAAAAG 33.67 6 2.21 6 5
AGCGGC 24.00 5 1.84 5 4
ATATCG 2040 5 1.84 5 5
others 3213 17 43.01 117 102
Total 2517 1023 37612 849 836

Group all the similar and reverse complementary SSR motifs together, e.g. “TC”, “CT”, “AG”", and “GA” were grouped into “AG".

2The number of sequence reads that contain SSRs.
3The primer numbers that were successfully designed for SSR loci.

the repeat-masked BESs to the top 10 fungal pathogens
to search microsyntenic regions. The result showed that
F. oxysporum and F. graminearum have the most hit
numbers. The hosts of F. oxysporum range from arthro-
pods [37] to humans and also include gymnosperm and
angiosperm plants [38], whereas F. graminearum was
notorious for causing Fusarium head blight. However,
the M. oryzae, which was a well-known pathogen of rice,

showed few synteny regions.

Alignments of contigs and BAC clones to the target or
reference genomes through BESs were widely used to
detect phylogenetic relationships and large structural
genomic variations between species, such as expan-
sion, contraction, inversion and rearrangement in
plants [12,39]. These alignments could also assist in
the sequence assembly and detect the assembly errors
of the genome sequence of the same species [13]. In
this study, the numbers of UV-8b contigs aligned to
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the target genomes were not high. This was most
probably due to both the high diversities among fungal
genomes and the incompleteness of the target genome
sequences.

The SSRs play an important role in genetic diversity
analysis and genetic map construction due to their high
level of polymorphisms, co-dominance and robustness
[40]. Before substantial genome sequence availability, the
BESs, as random genome survey sequences, were an
important resource for mining SSR markers. We found
1,023 SSRs with an average length of 25.17 bp and a
density of 376.12/Mb, of which primers of 836 loci have
been designed successfully. These primers are candidates
for genetic analysis by PCR. It is interesting that UV-8b
has a similar SSR content and distribution pattern with
M. oryzae but not with the closely related T. reesei.

Conclusions

We constructed the first generation BAC-based physical
map of V. virens and acquired 3,030,658 bp of BAC end
sequences, representing 8.54% of the genome. The BAC
library was equivalent to 22.7X genome coverage with
an average insert size of 140 kb. A total of 2,035 BAC
clones were assembled into 194 contigs and 255 clones
were left as singletons. The BAC library and physical
map provide tools for positional cloning, comparative
genomics and whole genome sequencing of V. virens. In
addition, the BAC end sequence analysis provides a
glimpse into the V.virens genome composition, such as
51.52% GC content, 22.51% repetitive sequences, 376.12/
Mb SSR density and approximately 36.01% coding regions.

We believe that all these information is valuable to exped-
ite the genomic and genetic research into the important
rice false smut fungus.

Methods

The 18S rRNA gene identification and phylogenetic
analysis

The 18S rRNA gene of UV-8b was amplified by PCR
using the common primers NS1 and NS8 [41]. The se-
quence was compared with those in the NCBI GenBank
database by the BLASTN searching tool. The sequences
were edited using ClustalX 1.83 software [42]. The
phylogenetic tree was constructed using the neighbor-
joining (NJ) algorithm tested by 1,000 bootstrap with
MEGAS5 [43].

High molecular weight genomic DNA preparation

The V. virens strain UV-8b was subcultured on PSA
medium (1 L: 200 g peeled potato, 20 g sucrose and 15 g
agar; natural pH) at 28°C for 5 days. The fresh mycelium
was harvested and transferred onto new PSA plates
covered with a layer of cellophane to propagate enough
amount of fresh mycelium. The fresh mycelium was
collected, ground properly and cultured in liquid
complete medium [44,45] at 28°C, 180 rpm for 65 h.
The culture was filtered through 2-4 layers of cheese
cloth. The collected mycelium pellet was washed first
with sterile ddH,O twice and then with 0.7 M NaCl
twice, and incubated in 0.7 M NaCl solution containing
8 mg/ml Driselase (SIGMA D9515) at 31°C at 100 rpm
for 3 h to release protoplasts. The protoplast-containing
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Only the best BLAST hit was counted.

Figure 6 Distribution of the matched species in annotation step. The masked and non-redundant BESs were BLASTed against the NR
database of NCBI using BLASTX program. A: All-Hit species distribution. All BLAST hits of the BESs were counted. B: Top-Hit species distribution.
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mixture was filtered through one layer of miracloth
twice. The protoplast-containing solution was centri-
fuged at 1500 g for 15 min. The pellet was washed with
0.7 M NaCl for three times, with 1.2 M sorbitol once
and then resuspended in a minimal volume (usually
~1 ml) of 1.2 M sorbitol to reach a compromise to
obtain both as high as DNA concentration and as many
as DNA plugs required for at least one attempt of BAC
library construction (It is difficult to obtain a high DNA
concentration from rice fungi). The protoplast suspen-
sion was mixed with an equal volume of 1% low melting
point (LMP) agarose (prepared with 1.2 M sorbitol) at
45°C and then transferred into plug molds (Bio-Rad) to

form plugs. The plugs were treated following our pub-
lished protocol [46].

BAC library construction

BAC library construction was performed as previously
described [46-48]. The linearized dephosphorylated low-
copy BAC vector pIndigopBAC536-S was prepared with
HindIll from a high-copy composite vector pHZAU-
BAC1 as previously described in Shi et al. [49]. Indi-
vidual BAC clones were arrayed in 384-well plates and
stored at —80°C in our laboratory. The insert size of the
BAC library was estimated by digesting random BAC
clones with I-Scel and analyzing the digested products
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Figure 7 Distribution of GO annotations of gene products predicted from UV-8b BESs.
.

on 1% CHEF agarose gel at 5-15 s linear ramp, 6 V/cm,
14°C in 0.5x TBE buffer for 17 h.

BAC plasmid DNA preparation

BAC plasmid DNA was extracted as described by Kim
et al. [39] with minor modifications. BAC clones were
inoculated in deep 96-well plates with a 96-well replica-
tor, and each well contained 1.2 ml of 2 x YT medium
plus 125 pg/ml chloramphenicol. The plates were
covered with Airpore gas-permeable plate sealant
(AXYGEN) and shaken on an orbital shaker at 180 rpm
at 37°C for 20 hours. BAC plasmid DNA was extracted
manually using the AxyPrep™ Easy-96 Plasmid Kit
(24x96-prep (AXYGEN)), according to manufacturer’s
instructions, and dissolved in 35 pl 1 mM Tris—HCI,

pH 8.0.

BAC fingerprinting and contig assembly

BAC fingerprinting was performed using SNaPshot kit
(ABI No. 4323159) as described by Luo et al. [50] and
Kim et al. [39] with minor modifications. SNaPshot
reaction products were purified and dissolved in 10 pl of
Hi-Di formamide (ABI NO. 4311320) containing 0.15 pl
of GeneScan-500 LIZ Size Standard (ABI No. 4322682).
An ABI 3730 DNA analyzer with 50 c¢m capillaries
(Applied Biosystems, Foster City, California) was used to
separate fingerprinting fragments. Fingerprint profiles
that contained fragment peaks between 50 and 200 were
collected. FPC software version V9.4 [51] was used for
contig assemblies. The FPC parameters were adjusted as
described [50,52]. A series of cutoff and tolerance values
were tested to obtain optimal assembly following the
principles of decreasing the number of contigs without
excessively increasing the number of questionable clones.

After each round, when more than 5 Q clones existed in a
contig, the “DQer” function was used to break up the Q
contig with a step value of 2. Finally, the tolerance value
was set to 4 and the Sulston cutoff value was set to 107",
At the end, the contigs were improved using the “End to
End” automerge function.

The primers which were used to evaluate the contig
quality generated at cutoff 10> were designed from
masked BESs by primer5, with the exception of con-
tigl84 whose 3 pairs of primers were SSR primers
generated in SSR analysis. The conditions of the bac-
terial liquid PCR reaction were 94°C for 5 min for initial
denaturation, followed by 35 cycles of denaturation at
94°C for 30 sec, annealing for 30 sec, and extension at
72°C for 40 sec, and a final cycle of extension for 10 min.
The annealing temperature was selected based on the TM
values of the primers. The products of PCR were sepa-
rated in 1.0% agarose gels. The presence/absence of the
bands of expected sizes were examined. The host cells,
empty vector, and the clones U13J12 (contig6), U03HO1
(contig133), U03J10 (contig53), and U03A03 (contigl00)
were randomly selected as control samples.

BAC end sequencing

BAC end sequencing was performed as previously
described [53] with some modifications. BAC clones
were sequenced at both ends on an ABI 3730 DNA
Analyzer using Big-Dye v3.1 (Applied Biosystems, Foster
City, California), following the manufacturer’s instruc-
tions. The two primers BACf (5'aacgacggccagtgaattg3’)
and BACr (5'gataacaatttcacacagg3’) were used as for-
ward and reverse sequencing primers, respectively.
Sequences were base-called using Phred [54], and the
vector and low-quality (Phred value <16) sequences were
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removed using the program LUCY [55]. The reads less
than 100 bp in length were removed. All the trimmed
sequences were deposited in the GenBank database
[GenBank:JY267549 to GenBank:JY274108].

Analysis of repetitive DNA in BESs

The known classes of repeat elements contained in the
UV-8b BAC end sequences were identified by the
RepeatMasker v3.3.0 pipeline (http://www.repeatmasker.
org) from the Fungi subdatabase in RepBasel7.07 [56].
The BAC end sequences were used to search for novel
repeat elements with RepeatScoutl.0.5 [57]. Only the
sequences that were repeated > 3 times and were > 50 bp
in length in the BES dataset were kept. Then, the
remaining BES sequences were self-BLASTed to search
for additional BESs that were repeated >3 times and
were > 50 bp in length [12,58].

Genome comparative analysis

The genome sequences of the fungal pathogens M. oryzae,
B. cinerea, P. graminis, F. graminearum, F. oxysporum, C.
graminicola and U. maydis were downloaded from the
Broad Institute Database (http://www.broadinstitute.org).
The genome sequences of the fungal pathogens B. grami-
nis, M. graminicola, M. laricis, M. anisopliae, N. haemato-
cocca, T.reesei and C. militaris were downloaded from the
NCBI database (http://www.ncbi.nlm.nih.gov). The re-
peat-masked BESs were BLASTed against the above
genome sequences using BLASTN with an E-value cutoff
of 10°°. The matched sequences with longer than 50 bp
and more than 80% identity were collected and analyzed.
The BESs were also used to anchor the corresponding
contigs to the genome sequences of M. anisopliae, F.
oxysporum, N. haematococca and T. reesei using the
SyMAP V3.4 program [23] (http://www.agcol.arizona.
edu/software/symap/).

Analysis of simple sequence repeats

The BES sequences were clustered by the program
CAP3 [25] with default parameters to reduce the redun-
dancy of the dataset. The non-redundant sequences were
scanned by SciRoko3.4 [24] to search for the potential
SSRs, with the criteria of a minimum repeat number was
of 3 and a minimum total length of 15 bp. The full
standardization of SciRoKo, which groups all the similar
and complementary SSR motifs together, was used for
the SSR statistics, e.g. “TC”, “CT”, “AG”, and “GA” were
grouped into “AG”. The genome sequences (GSS section)
of B. graminis, F. virguliforme, M. oryzae and T. reesei
were downloaded from NCBI (of December 2012) and
mined for SSRs with the same criteria above for com-
parisons of the SSR contents and distribution patterns.
The primers flanking SSRs were designed by standalone

Page 13 of 15

primer3 [26] and the DesignPrimers program in the SciR-
oko3.4 package [24].

Gene annotation

After the repeat elements were masked, the masked-
BESs were clustered by CAP3 [25] with default parame-
ters to reduce redundancy. To identify protein-coding
regions, the masked and non-redundant BESs were
BLASTed to the GenBank EST database using the pro-
gram BLASTN with an E-value cutoff of 10 and to
the non-redundant protein database using the program
BLASTX with an E-value cutoff of 10, Different func-
tions of the program BLAST2GO [27] were used to
analyze the BLASTX-identified sequences: GO terms
were annotated by the GO function, the motifs and
domains were identified by the InterProScan function
and the pathways were annotated by the Enzyme Code
and KEGG function.

Additional files

Additional file 1: Figure S1. Neighbor-joining phylogenetic tree of 185
rRNA gene sequences. Phylogenetic tree showing the phylogenetic
position of the strain UV-8b and the strains of the genera Villosiclava, Tri-
choderma, Metarhizium, Cordyceps and Torrubiella. Percentages at nodes
are bootstrap values based on 1,000 replications. The scale bar represents
0.01 substitutions per nucleotide position. The 185 rRNA gene sequences
of the strains UV-8b and UV-2 were generated in our laboratory. The 185
rRNA gene sequence of T. reesei QM6a was obtained by the draft gen-
ome sequence in BLAST. The 18S rRNA gene sequences of other strains
were obtained from GenBank.

Additional file 2: Figure S2. Insert size analysis of randomly selected
UV-8b BAC clones. The plasmid DNA of 180 randomly selected BAC
clones from the UV-8b BAC library were digested with I-Scel, and the
DNA fragments were separated on 1% CHEF agarose gel. Lane 21 was
the MidRange PFG marker | (NEB). V is vector.

Additional file 3: Contig quality evaluation. The primers have been
designed from repeat sequence masked BAC end sequences and were
used to verify the overlap between clones in PhaselA contig.

Additional file 4: Table S1. Information about the SSRs and the
primers. With the SSRs and their flanking sequences as input, a total of
836 pairs primers were designed for SSR loci by Primer3 program.

Additional file 5: Table S2. GO annotations of gene products
predicted from UV-8b BESs. GO annotations and terms at level 3.
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