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Abstract

comprehensive view of T variations in pig.

Background: Immune traits (ITs) are potentially relevant criteria to characterize an individual's immune response.
Our aim was to investigate whether the peripheral blood transcriptome can provide a significant and

Results: Sixty-day-old Large White pigs classified as extreme for in vitro production of IL2, IL10, IFNy and TNFaq,
phagocytosis activity, in vivo CD4/CD8* or TCRyS + cell counts, and anti-Mycoplasma antibody levels were chosen
to perform a blood transcriptome analysis with a porcine generic array enriched with immunity-related genes.
Differentially expressed (DE) genes for in vitro production of IL2 and IL10, phagocytosis activity and CD4/CD8" cell
counts were identified. Gene set enrichment analysis revealed a significant over-representation of immune
response functions. To validate the microarray-based results, a subset of DE genes was confirmed by RT-qPCR.
An independent set of 74 animals was used to validate the covariation between gene expression levels and [Ts. Five
potential gene biomarkers were found for prediction of IL2 (RALGDS), phagocytosis (ALOX12) or CD4/CD8" cell count
(GNLY, KLRG1 and CX3CR1). On average, these biomarkers performed with a sensitivity of 79% and a specificity of 86%.

Conclusions: Our results confirmed that gene expression profiling in blood represents a relevant molecular phenotype
to refine ITs in pig and to identify potential biomarkers that can provide new insights into immune response analysis.
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Background

Over the last decades, production traits have been studied
and exploited for the genetic improvement of livestock
through selective breeding [1]. At the same time, diseases
that can cause substantial economic losses have emerged.
There is little doubt about the economic and welfare
implications of infectious diseases or about the existence
of genetic variation in disease susceptibility and resistance
in livestock populations [2]. However, research aimed at
identifying genetic factors that confer relative susceptibility
or resistance against diseases in pigs is limited by the lack
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of sufficient phenotypic observations. Thus, including
health traits in the current breeding schemes while
limiting loss in long-term selected production traits is
a major concern and stands as an emerging trend in
pig breeding [1,3-6].

Direct strategies that target animal resistance or tolerance
to specific pathogens, may result in increased susceptibility
to other diseases [7]. Therefore, we and other authors have
suggested an indirect approach focused on immunity traits
(ITs) [3,7,8]. ITs measured on healthy animals are studied
as candidate traits for immune capacity. To define immune
capacity or immunocompetence, it is necessary to know
how the immune system of an individual responds to
different stimuli (e.g. infection by microorganisms,
vaccination or environmental stresses), and its efficiency.
Therefore, the term immunocompetence may be defined
as the ability of the host to launch an immune response of
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sufficient specificity and magnitude, and thus is a rough
indication of the effective quality of the host’s immune
system [9,10]. For instance, in poultry for which many
studies are available, He et al [11] demonstrated that
chicken lines with functionally less active heterophils
(equivalent to mammalian neutrophils) were more suscep-
tible to infections by Salmonella enteritidis than those with
highly functional heterophils. Furthermore, Swaggerty et al.
[12] reported that broilers selected for higher levels of pro-
inflammatory cytokines and chemokines had a more effi-
cient pro-inflammatory profile that contributed in part to
increased resistance against pathogens. Thus, identifying
candidate ITs that could predict immunocompetence is a
major issue in animal production systems. We and others
have shown that a large number of ITs are heritable, which
suggests that genetic selection on ITs is feasible [7,13]. The
new challenge is to identify heritable ITs that are signifi-
cantly associated with health or disease resistance and may
predict the efficiency of an individuals immune response
before biotic or abiotic stresses occur [14].

Peripheral blood cells are now widely used as a surrogate
tissue to monitor individuals for various markers [15].
Blood cells constitute one of the first lines of the immune
defence system [16]. For studies on immunocompetence,
blood is considered as a target tissue that contains the
different immune cells that circulate in the whole body.
Indeed, profiling gene transcripts in blood has earned its
place in the molecular and cellular profiling approaches
used to analyse the immune response in patients with a
wide range of diseases in humans [17]. Moreover, analysis
of the blood transcriptome can contribute to identify
immune response specific signatures (overexpressed or
under-expressed transcripts) associated with specific
ITs, which might be translated into useful molecular
biomarkers for differential immunocompetence. Ultimately
these biomarkers or patterns of markers could help to
improve animal selection programs.

Huang et al. [18,19] and Arceo et al. [19] have shown
that pig blood transcriptome is informative to monitor
disease susceptibility, to characterize response to immune
stimulation [20] or to refine the characterization of certain
ITs [8]. In the present study, our first objective was to
perform blood transcriptome profiling in pigs with
extreme IT levels and without any initial focus on resistance
to specific pathogens. Our second objective was to
investigate whether genome-wide transcriptional data
in blood can lead to the identification of candidate
biomarkers associated with variations of ITs.

Results

The blood transcriptome varies significantly for four of
the eight ITs tested

Eight ITs were considered in an extreme phenotype
study design (Table 1). The ITs were classified into two
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subsets corresponding to (1) ITs measured after in vitro
stimulation (IL2, IL10, IFNy, TNFa and phagocytosis
capacity (PHAG)) and (2) ITs measured in vivo from
blood («f T lymphocyte CD4/CD8" count (CD4/CDS8"),
y8 T lymphocyte count (TCRy8"), and level of IgG specific
to Mycoplasma hyopneumoniae (IgG-Mh)). The average
and standard deviation of extreme groups for each IT are in
Table 1, and information on their distribution is in
Additional file 1: Figure S1 and Additional file 2: Figure S2.
On average, a statistically significant difference between the
means of each pair of groups was observed for each IT at
the 5% level (Table 1). We identified differentially expressed
(DE) genes for IL2 and IL10 productions, PHAG and
CD47/CD8" cell counts ITs (Table 2). Since gene expression
was not significantly affected in the blood of pigs with
different IFNy, TNFa, TCR y8" counts and IgG-Mh levels,
we focused our study on the association between IL2
and IL10 productions, PHAG and CD4/CD8" and
gene expression. To validate technically the microarray
gene expression data, blood RNA samples were analysed
by real-time quantitative polymerase chain reaction
(RT-qPCR) for 19 genes (Additional file 3). RT-qPCR
results confirmed the microarray expression levels for
15 of the 19 selected genes (Additional file 4: Figure S3).
Observed correlations between RT-qPCR results and
microarray gene expressions were consistently high, with
most genes having r* values > 0.70.

Differentially expressed genes in animals with contrasted
in vitro production levels of IL2

We identified 850 genes DE in the blood from pigs with
extreme levels of IL2 (Table 2 and Additional file 5). The
fold change (FC) of DE genes ranged from -2.67 to 2.62
when high (H) and low (L) groups were compared.
Hierarchical cluster analysis (HCA) and principal
component analysis (PCA) were applied to search for
classifiers. The HCA animal dendogram separated the
H and L groups, although one animal of the H group
clustered with the piglets of the L group (Figure 1A). On
the gene axis, two main gene clusters (clusters 1 and 2)
were detected. A total of 413 genes in cluster 1 was
over-expressed in animals of the H group compared
to the L group (Figure 1A). Conversely, 437 genes in
cluster 2 were significantly under-expressed in the H
group versus the L group. The first component of PCA,
projecting the arrows onto the first dimension, explained
50.57% of the total variability in gene expression and identi-
fied the DE genes that contributed most to the separation
between the two groups (in red on Figure 1B).

To gain insight on the functions of the blood transcrip-
tome that differed significantly between the H and L
groups, we measured the subsets of DE genes by using the
core analysis function included in Ingenuity Pathways
Analysis (IPA). In the H group, IPA showed that the most
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Table 1 Basic statistics describing the difference between high and low groups for in vitro production of IL2, IL10, IFNy
and TNFa, phagocytosis activity, and in vivo CD4/CD8"* and TCRy$ + cell counts, and anti-Mycoplasma antibody levels

Type of trait Trait symbol Group Animal number Mean sD’ CV® (%) p-value
In vitro stimulation 12! Low 1 —4.66 0.084 1.80 <0.0001
High 10 3.20 0.243 7.59
IL10" Low 10 —-4.80 0.240 5.00 <0.0001
High 10 1.71 0.056 327
IFN\/1 Low " -6.65 1.649 24.8 <0.0001
High 7 263 0.174 6.06
TNFa' Low 9 -241 0.496 2061 <0.0001
High 8 148 0.207 4.46
PHAG” Low 1 453 0326 7.06 <0.0001
High 9 9.04 0316 343
In vivo CD4/CD8" Low 5 -3.52 0.697 19.80 0.0002
High 3 2.96 0.622 743
TCR Y5 Low 8 -3.59 0338 941 <0.0001
High 9 449 0338 7.52
IgG-Mh* Low 10 —324 0.162 5.00 <0.0001
High 10 412 0.776 1883

Traits were all transformed using Box-Cox transformation, thus making the transformed data symmetric; 'means were expressed as transformed pg of
cytokine/mL of blood; *phagocytosis activity was expressed as transformed percentages; *leukocyte sub-populations were expressed as transformed cell
counts/mL; “total concentrations of immunoglobulin G against M. hyopneumoniae were expressed as transformed pg of IgG-Mh/mL of blood; *standard
deviation; ®coefficient of variation.

significant over-expressed (P < 0.05) biological functions Differentially expressed genes in animals with contrasted
were related with cell growth, proliferation and development, in vitro production levels of IL10

cell death and survival, cellular and molecular transport,  As shown in Table 2,733 genes were DE in the blood of
lipid metabolism, and immune cell trafficking (Figure 2,  pigs with contrasted IL10 levels (Additional file 8). The
Additional file 6). By contrast, biological functions related ~ FC of the DE genes ranged from -2.65 to 1.93 when the
to cell death and survival, cell signalling, cell-mediated H and L groups were compared. On the one hand, the
immune response, immune cell trafficking, and inflam- HCA animal dendogram showed that one animal from
matory and infectious diseases were under-expressed the L group clustered within the H group (Figure 3A)
(P <0.05); Additional file 6). Significant canonical pathways  and on the other hand, it identified two gene clusters:
that were induced in the H group compared to the L group  cluster 1 with 526 genes and cluster 2 with 207 genes. Most
were associated with mTOR signalling, PI3K signalling,  of the genes in cluster 1 were significantly down-expressed
regulation of elF4 and p706K signalling and tight junctions  in the H group versus the L group, whereas in cluster 2 the
signalling (Additional file 7). opposite was observed (Figure 3A). In addition, the first

Table 2 Differentially expressed genes for in vitro production of IL2, IL10, IFNy and TNFa, phagocytosis activity, in vivo
CD4/CD8"* and TCRy$ + cell counts, and anti-Mycoplasma antibody levels

Type of traits Trait symbol Number of animals Number of differentially expressed genes

Low group High group Total Up-expressed in High Group Down-expressed in High group

In vitro IL2 11 10 850 413 437
IL10 10 10 733 207 526
IFNy " 7 0 0 0
TNFa 9 8 0 0 0
PHAG 11 9 1195 673 522

In vivo CD4/CD8" 5 3 52 10 42
TCR y&* 8 9 0 0 0

IgG-Mh 10

o
o
o
o
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Figure 1 Multivariate analyses of the differentially expressed genes in animals with contrasted IL2 production. A two-way hierarchical
clustering analysis matrix (A) and Principal Component Analysis gene factor map (B) are represented. In the heatmap, a color-coded gene module is
displayed in the colour bars to the left of the dendogram. Each column in the heatmap corresponds to one animal (green for “Low group”; and red for
"High group”). Furthermore, green colour represents low adjacency (negative correlation), while red represents high adjacency (positive correlation). In
the PCA figure, the quality of representation of a variable on the axis is measured by the squared cosine between the vector issued from the element

and its projection on the axis. The genes that contribute most to the separation between the two groups are coloured in red.

component of PCA explained 58.75% of the total variability
in gene expression (Figure 3B). In Figure 3B, the main
genes that contribute to the separation of the two extreme
groups are indicated in red. As shown in Figure 2,
biological functions that were significantly less expressed
(P < 0.05) in the H group compared to the L group were
primarily involved in immune T-cell activation and traf-
ficking functions (e.g., IL-2 signalling, IL-15 production
and signalling, IL-17A signalling, and 4-1BB signalling in T
cells), lipid metabolism, immunological diseases, cellular
function, maintenance, assembly and organization (e.g.,
FAK signalling, HGF signalling, Rac signalling), as well
as in cellular movement and proliferation (Figure 2,
Additional file 6 and Additional file 9). By contrast,
most biological functions associated with cellular move-
ment, cell death and survival, and immune cell trafficking
were over-expressed (P < 0.05) in the H group compared
to the L group (Additional file 6 and Additional file 9).

Differentially expressed genes in animals with contrasted
phagocytic capacities

A large number of genes (1195) was significantly DE
between animals with extreme phagocytic capacity
(Table 2 and Additional file 10). The FC of the DE genes
ranged from -3.49 to 251 between the two groups.
Furthermore, the HCA animal dendogram separated two
main clusters each with a mixture of animals belonging to
both the H and L groups, which suggests that the L group

could be split into two subgroups (Figure 4A). For the
gene variables, two main HCA clusters were identified.
Clusters 1 (522 genes) and 2 (673 genes) were primarily
down-and over-expressed in the H group compared to the
L group, respectively (Figure 4A). The first component of
PCA (explaining 59.62% of the total variability) clearly
separated the two groups and about 80% of the genes
showed a high correlation with the two principal compo-
nents (r* > 0.7) (Figure 4B). Some of the most significant
genes that separated the H and L groups are indicated in
red in Figure 4B. Comparison of the extreme groups
showed that the foremost over-represented IPA biological
functions (P < 0.05) were related to nutrient metabolism
(e.g. lipid metabolism, carbohydrate metabolism, protein
degradation and trafficking, and energy production;
Figure 2). Conversely, humoral immune response, infectious
disease, cell-mediated immune response, cellular growth
and proliferation, cellular maintenance and development,
cell signalling, and amino acid metabolism were down-
expressed (P < 0.05) in the H group versus the L group
(Additional file 6). A precise examination of the canonical
pathways revealed that inflammatory response, such
as CD28 signalling in T Helper cells, CTL4A signalling in
cytotoxic T lymphocytes, IL-2, IL-9, IL-15, IL-22 produc-
tion and signalling, T cell receptor signalling, as well as
JAK/Stat signalling were over-represented (P < 0.05) in the
H group (Additional file 11). By contrast, in the L group, an
increased expression (P < 0.05) of canonical pathways
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Biological Functions

Figure 2 Biological functions significantly affected when comparing the high versus low groups for in vitro production of IL2, IL10,
phagocytosis activity and CD4/CD8" cell counts. Statistical significance of biological functions modulation was calculated via a right-tailed
Fisher's Exact test in Ingenuity Pathway and represented as —log (P value): -log values exceeding 1.30 were significant (FDR g-values < 0.05). For
each pathway, the number of affected genes is indicated for each IT in the corresponding coloured box. The numbers of genes that were down-
expressed (negative numbers) or up-expressed (positive numbers) in the high group are on the left and right sides of the graph, respectively.
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associated with acute phase response signalling, comple-
ment system, and LXR/RXR activation (Additional file 11)
was observed.

Differentially expressed genes in animals with contrasted
af T lymphocyte CD4/CD8*counts

Fifty-two DE genes were identified between groups with
contrasted CD4-/CD8+ counts (Table 2; Additional file 12).
The FC of DE genes ranged from -2.21 to 6.89 between
the extreme groups. The HCA revealed a clear difference in
gene expression patterns between the two groups. Indeed,
the animal dendogram showed a higher divergence be-
tween individuals from different groups, which supports
the fact that the small number of animals analysed per
condition in this study was sufficient to reach a conclusion
(Figure 5A). For the gene variables, two clusters were
identified. Clusters 1 (42 genes) and 2 (10 genes) were
respectively down- and up-expressed in the H group ver-
sus the L group (Figure 5A). The first component of the
PCA captured 90.04% of the total variance, which indi-
cated that this component represented most of the expres-
sion pattern of the individual samples. About 90% of the
genes showed a high correlation with the two principal
components (r* > 0.7, Figure 5B). Genes that are highly

correlated with the two principal components are indicated
in red in Figure 5B. Regarding biological functions and ca-
nonical pathways, the DE genes were related to cell death
and survival (18 genes), cell morphology (15 genes), cell-to-
cell signalling and interaction (16 genes), cellular develop-
ment (17 genes), and infectious diseases (16 genes;
Figure 2; Additional file 6). However, the number of genes
was too small for a reliable detection of enriched canonical
pathways (Additional file 13).

Identification of candidate biomarkers by testing a
validation population

In order to validate our results and identify potential gene
biomarkers for the ITs included in the study, we used a val-
idation set of 74 animals. Sparse partial least square regres-
sion (sPLS) [21,22] and regularized canonical correlation
analysis (rCCA) [23] statistical methods were applied to
identify potential gene biomarkers. sPLS revealed a large
covariance between expression of genes and distinct ITs.
Q’ values, which have a meaning in terms of variable im-
portance measure, showed that the best-explained variable
was CD4/CD8" (Q* = 0.134). Based on expression levels,
most of the genes were negatively associated with IL2, IL10
and CD4/CD8" ITs, but positively associated with



Mach et al. BMC Genomics 2013, 14:894
http://www.biomedcentral.com/1471-2164/14/894

Page 6 of 17

Canonical Pathways

0. 05

Dim 2 (9.33%)
0

0.5

M
As
R
T

L

R
v

!
Hi
¥
Ga

R

08} CYPIALABCI ALDHIA

Figure 3 Multivariate analyses of the differentially expressed genes in animals with contrasted IL10 production. A two-way hierarchical
clustering analysis matrix (A) and Principal Component Analysis gene factor map (B) are represented. In the heatmap, a color-coded gene module is
displayed in the colour bars to the left of the dendogram. Each column in the heatmap corresponds to one animal (green for “Low group”; and red for
“High group”). Furthermore, green colour represents low adjacency (negative correlation), while red represents high adjacency (positive correlation). In
the PCA figure, the quality of representation of a variable on the axis is measured by the squared cosine between the vector issued from the element
and its projection on the axis. The genes that contribute most to the separation between the two groups are coloured in red.

Dim 1 (58.75%)

phagocytosis activity (Figure 6). The most striking result
was the negative covariation between the following genes i.
e. tumour necrosis factor receptor superfamily member 18
(TNFRSF18), glycine amidinotransferase (GATM), mito-
chondrial ribosomal protein L54 (MRPL54), arachido-
nate 12- lipoxygenase (ALOX12), complement factor B
(CFB), sushi-repeat containing protein (SRPX), protein
O- fucosyltransferase 2 (POFUT?2) or talin-1 (TLN1I), and
the IL2 and CD4/CD8" ITs. Another important finding
was the strong positive covariation between DNA-damage-
inducible transcript 4 (DDIT4), granulysin (GNLY), the ral
guanine nucleotide dissociation stimulator (RALGDS),
CX3C chemokine receptor 1 (CX3CRI), Kruppel-like factor
2 (KLF2) and the CD47/CD8" IT. Focusing on correlation
rather than covariance also enabled us to detect an associ-
ation between the expression of selected genes and ITs (Fig-
ure 7). sPLS and rCCA analyses identified a total of 49
genes that were highly associated with at least one IT and
that could be considered as potential gene biomarkers
(similarity measure between a pair of vectors in the dimen-
sion 1 and 2 > 0.5). The suitability of these potential gene
biomarkers was further assessed by the receiver operating
characteristic (ROC) curve analysis and the area under the
curve (AUC) in an extreme phenotype study design. Inter-
estingly, the results demonstrated that 11 genes could be po-
tential biomarkers to discriminate between H and L groups
for IL2, PHAG and CD4/CD8" immune traits (Table 3).

Among these 11 genes, GNLY and KLRGI achieved the
highest predictive performance in discriminating high from
low CD4°/CD8" levels (Figure 8). The average expression
intensity of the GNLY gene was 2.58 times greater in the
H group than in the L group for CD4°/CD8", with a sensi-
tivity and specificity of 100% and 70%, respectively, and an
AUC of ROC curve of 0.87 (Figure 8). The average expres-
sion intensity of KLRGI was two times greater in the H
group than in the L group for CD4°/CD8", with a sensitiv-
ity of 90% and a specificity of 80% and an AUC of 0.87.
Lastly, the CX3CRI gene was also shown to be a good po-
tential gene biomarker to differentiate between H and L
groups for CD4/CD8". The RALGDS and ALOX12 genes
were identified as potential gene biomarkers to classify
correctly IL2 production and phagocytosis activity, re-
spectively (Table 3).

Discussion

Blood transcriptome analyses were carried out to com-
pare groups of animals with contrasted values for eight
ITs. For each IT, we compared two groups of extreme
animals, which presented significantly different mean
values of the IT of interest. Because selection of the ex-
treme animals included in the experimental sets was
based on more stringent criteria and new quality filters
were used in the gene analysis, the results reported here
refine those of a previous report [8]. DE genes were
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Figure 4 Multivariate analyses of the differentially expressed genes in animals with contrasted phagocytosis activity. A two-way hierarchical
clustering analysis matrix (A) and Principal Component Analysis gene factor map (B) are represented. In the heatmap, color-coded gene
module is displayed in the colour bars to the left of the dendogram. Each column in the heatmap corresponds to one animal (labelled
by colour; Green for “Low group”; and Red for “High group”). Furthermore, green colour represents low adjacency (negative correlation),
while red represents high adjacency (positive correlation). In the PCA figure, the quality of representation of a variable on the axis is measured by the
squared cosine between the vector issued from the element and its projection on the axis. The genes contributing most to the separation between

the two groups are coloured in red.

identified for in vitro production of IL2 and IL10, phago-
cytosis activity and CD4/CD8" cell counts but not for
the in vitro production of TNFa or IFNy, the in vivo
TCRyYS" cell counts, and the levels of IgG-Mh.

Blood transcriptome provides information to refine

in vitro measured ITs: a potential of prediction

We identified gene expression profiles in blood (without
stimulation) that were significantly associated with variations
in I'Ts measured after in vitro blood stimulation, which sug-
gests that the information provided by the peripheral blood
can predict a response to a stimulus.

To our knowledge, the effects of varying IL2 levels on the
genome-wide gene expression in the blood of pigs have not
been studied to date. Although expression by naive CD8" T
cells and dendritic cells has been reported [24], IL-2 is a
cytokine produced primarily by activated CD4" T cells. The
main physiological functions of IL-2 are critical for the en-
hancement of cellular immune responses, and include in-
duction of cytotoxic T cells, activation of natural killer cells
(NK), production of other cytokines by T cells, stimulation
of proliferation of activated B-lymphocytes, and induction
of immunoglobulin secretion [25]. Here, we identified wide-
spread changes in the expression of mRNAs in circulating
blood cells that were obtained from animals with extreme
levels of IL2 production after in vitro stimulation. The
pathways involved in cell growth and proliferation were

over-expressed in the H group, probably in accordance
with a higher capacity to induce proliferation of B cells.
Moreover, IL-2 is an important T-cell growth factor and
appears to be required for naive cells to develop into Thl
or Th2 cells [26].

Apart from TGF-f and IL-35, IL-10 is the most im-
portant cytokine with anti-inflammatory properties [27].
It is produced by almost all leukocyte types [28], and
regulates the functions of many different immune cells:
release of immune mediators, antigen presentation and
phagocytosis [27]. IL-10 suppresses the functions of
monocytes/macrophages that are responsible for both
innate and specific immunities [27]. This agrees with
our findings that animals with higher IL10 levels pre-
sented a decreased expression of biological functions
related to cellular immune response, antigen presenta-
tion and inflammatory response. More specifically, we
observed a reduction in IL2, IL-15, and IL-17A expres-
sion in animals with a high IL10 production in agree-
ment with the results of Wolk et al. [28]. Since IL-10 is
also involved in preventing apoptosis of B cells by en-
hancing their proliferation and differentiation [29,30], it
was expected that growth and proliferation functions
were over-expressed in animals with higher levels of
IL10 compared to those with lower levels.

The blood transcriptome of animals with an extreme
phagocytic in vitro activity revealed a large number of
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Figure 5 Multivariate analyses of the differentially expressed genes in animals with contrasted CD4/CD8" cell counts. A two-way
hierarchical clustering analysis matrix (A) and Principal Component Analysis gene factor map (B) are represented. In the heatmap, color-coded gene module
is displayed in the colour bars to the left of the dendogram. Each column in the heatmap corresponds to one animal (labelled by colour; Green for “Low
group”; and Red for “High group”). Furthermore, green colour represents low adjacency (negative correlation), while red represents high adjacency (positive
correlation). In the PCA figure, the quality of representation of a variable on the axis is measured by the squared cosine between the vector issued from the
element and its projection on the axis. The genes contributing most to the separation between the two groups are coloured in red.

genes that were differentially expressed. One important important mediators in the regulation of the immune
observation of this study was that animals that have a  and inflammatory responses. However, pathways associ-
higher in vitro phagocytic activity also have an activated  ated with LXR/RXR activation were less expressed in an-
CTL4A signalling pathway. This signalling pathway is  imals with higher phagocytic activity. Interestingly, while
necessary for the negative regulation of T-cell activity the transcriptional pathways that allow macrophages to
following T-cell activation by antigen-presenting cells recognize and respond to apoptotic cells are poorly
[31]. Moreover, a strong relationship between blood defined, Gonzalez et al. [32] reported that LXR signal-
phagocytosis and the stimulation of different interleukin  ling was important for both apoptotic cell clearance and
pathways was detected, likely because cytokines are maintenance of immune tolerance.

“n |

o B o 0 ore ‘
I | — | [ E__:I [:1‘?
- R = = et P

w0

A R R I T D PN T AR R

Figure 6 Covariation between gene expression and levels of different ITs in a validation population using sparse partial least square
regression. The covariation between the blood transcriptome profiles of 74 animals and the corresponding levels of IL2 and IL10 production,
PHAG activity and CD4/CD8" cell counts was measured. For each of these ITs, the top 50 differentially expressed genes between the high and
low groups were selected. A total of 200 genes was included in the analysis. In the heatmap, increasing values are translated into colours from
blue (negative association) to red (positive association). The symbol of the genes identified as candidate biomarkers is indicated in red.
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Figure 7 Correlation between gene expression and levels of different ITs in a validation population using sparse canonical correlation.
The correlation between the blood transcriptome profiles of 74 animals and the corresponding levels of IL2 and IL10 production, PHAG activity and CD4/CD8*
cell counts was measured. For each of these ITs, the top 50 genes that were differentially expressed between the high and low groups were selected.
A) [Ts and genes are represented through their projections onto a circle of radius 1 centred at the origin called correlation circle. Strongly associated variables
are projected in the same direction from the origin. The greater the distance from the origin, the stronger the association. Only association scores greater
than 050 with at least one of the [Ts are displayed. B) ITs and genes are represented through a network. The network is displayed graphically as nodes
(genes and [Ts) and edges (the biological relationship between nodes). The edge colour intensity indicates the expression of the association: red = positive
and blue = negative. Node shape indicates whether it is a gene (round) or an IT (square). The score of the association was indicated under each edge. Only
pairwise associations with scores greater than 0.50 were projected. The symbol of genes identified as candidate biomarkers is indicated in blue in figure A

and red in figure B.

Blood transcriptome provides information to refine in vivo
measured ITs

For animals with extreme CD4°/CD8" cell counts, transcrip-
tome differences were shown to be the best predictors for
phenotype variations compared to other ITs. The 52 anno-
tated DE genes captured around 90.04% of the total vari-
ance. Moreover, the most highly expressed genes in animals
with different levels of CD4/CD8" were the perforin and
cathepsin complex gene members (GNLY, GZMB), natural
killer cell-related genes (KLRG1, NCR1), chemokine recep-
tor gene (CX3CRI), cytokine ligands such as Fas ligand
TNF superfamily (FASLG), as well as resolution of acute in-
flammation resolving exudates genes (ALOX12). There is
evidence that GNLY and GZMB are involved in the synthe-
sis of granzymes [33,34]. Saini et al [35] reported that
GNLY and GZMB genes may play a role in the elimination
of cells infected with viruses or other pathogens, tumour
surveillance, and transplant rejection. FASLG, an IFN-
stimulated gene, has also been associated with cell death/
apoptosis of uninfected bystander cells, and attack/killing
of infected cells in pigs that recovered from a pestivirus
infection [36]. Moreover, Marcolino et al. [37] and

Voehringer et al. [38] reported that the gene for KLRG1,
which belongs to the family of inhibitory C-type lectins
that are encoded in the NK gene complex, is expressed
in healthy human peripheral blood CD4 and CD8 lympho-
cytes. Interestingly, in pigs, it has been demonstrated that
effector and memory CD4" T cells express chemokine re-
ceptors such as CX3CR1 [39]. Although the functions of
these genes remain to be elucidated in pigs, our results sug-
gest that the levels of different subsets of afp T lymphocytes
affect the expression of genes related to antigen presenta-
tion, phagocytosis and immunoregulation.

Blood transcriptome as a source of gene biomarkers for
IT variation

The power of transcriptomics to identify potential gene
biomarkers was previously demonstrated in classical studies
on cancer, in which the analysis of gene expression signa-
tures of primary tumours [40-42] led to the identification of
predictive outcome profiles [43,44]. Most current strategies
for the discovery of biomarkers involve a ‘top-down’
approach in which predictive genes are first identified
by empirical association with a clinical symptom and
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Table 3 Specificity, sensitivity and area under the curve
of the 11 identified candidate biomarkers by testing a
validation population

Immune traits Gene symbol Parameters
Sensitivity (%) Specificity (%) AUC'

L2 RALGDS 70 100 0.84
PHAG GATM 89 60 0.75
SCARBI1 88 50 0.68
ALOX12 67 90 0.80
CD4/CD8* GNLY 100 70 0.87
FASLG 70 70 0.67
DDIT4 90 80 0.78
GZMB 100 40 0.76
CTSG 80 70 0.71
KLRG1 90 80 0.87
CX3CR1 70 90 0.82

'Area under the curve.

are then evaluated as potential biomarkers for decision
making [15]. In our study, the evaluation of potential
biomarkers combined empirical association of gene ex-
pression with ITs and additional validation samples to
demonstrate the accuracy and the reproducibility of the
classifiers, using a multivariable analysis and a discrim-
ination analysis approach. Five genes (GNLY, KLRGI,
ALOXI12, CX3CRI and RALGDS) were among the most
promising potential gene biomarkers (Table 3). GNLY,
KLRGI and CX3CRI genes were identified as potential
gene biomarkers for the prediction of aff T lymphocyte
(CD47/CD8") counts. In humans, it has been shown that
GNLY expressed in peripheral blood mononuclear cells
(PBMC) is a biomarker for childhood and adolescent tu-
berculosis [45] and for the diagnosis of serious bacterial
infections [46]. CXCR3 is a highly selective chemokine
receptor and surface marker for cytotoxic effector lym-
phocytes, and KLRGL1 is a surface marker used to pre-
dict the potential of CDS8 effector T cells to differentiate
into memory cells [47,48]. Moreover, Sherhan et al. [49]
reported that ALOXI2 is associated with the synthesis
of eicosapentaenoic acid, an essential fatty acid that
can be enzymatically converted into E-series resolvins
during inflammation in mammals. Understanding the
mechanistic relationship and the biological meaning of
these blood potential gene biomarkers is essential for
future research.

Blood transcriptome in healthy individuals as a source of
relevant information for the prediction of immune traits

In humans and animals, blood is extensively moni-
tored to follow health state, disease infection, and
antibody production. In pigs, the blood transcriptome
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revealed variations in gene expression profiles in ani-
mals that differ in Salmonella shedding levels [18],
and during the kinetics of response to porcine reproduct-
ive and respiratory syndrome virus infection [19]. Analysis
of the transcriptome of PBMCs has also revealed variations
in gene expression profiles in response to in vitro stimula-
tion by lipopolysaccharide (LPS) or phorbol myristate acet-
ate (PMA)-ionomycin (Iono) [50], vaccination with
tetanus toxoid [20] or in response to in vitro pseudo-
rabies virus infection [51]. This study shows that,
based on an experimental design that does not target a
response to an infection or an immune stress, blood tran-
scriptome profiling is a valid molecular approach to iden-
tify potential biomarkers and biological pathways related
to the function of the immune system in healthy animals
that harbour different levels of in vivo as well as in vitro
ITs. Additional studies will be necessary to ascertain dy-
namic changes that occur over time. In the future, it
will be interesting to connect our results with those
of a recent analysis on human blood transcriptome,
that aimed at investigating the variations in gene ex-
pression in the blood of individuals within a popula-
tion to predict the susceptibility to various
environmental and living conditions [52]. Indeed,
healthy individuals were categorized into nine com-
mon clusters based on co-regulated transcripts in the
blood [52]. Each cluster was enriched for gene ontol-
ogy categories related to subclasses of blood and im-
mune functions. Therefore, understanding how the
blood transcriptome varies across the population, and
not only in the extreme individuals of the population,
and correlating this variability with specific immune
functions, could be an emerging component of the
prediction of immune responses in pigs. Since CD4’/
CD8" and phagocytosis ITs are highly heritable in pigs
[13] and associated with the expression of different genes,
it might be anticipated that a study that combines the
levels of gene expression with genetic analyses could con-
tribute to identify candidate genes underlying heritable
immune response traits. More studies are necessary on
the functional and biological validation of blood gene bio-
markers in pigs in order to better understand their role in
the immune system response. Integration of information
from various sources (e.g. immunity traits, stress traits,
performance, health data) should be a major trend in
the future to better understand causalities and promote
prediction capacity. Lastly, since pig is an important
biomedical model [53], profiling the blood transcriptome
could be highly relevant to understand the immune func-
tion in animals, but also in humans. Recently, Groenen
et al. [54] highlighted the pig as a relevant biomedical
model and Dawson et al. [55] underlined the importance
of the domestic pig as a model for human immunology
since the two species share many pathogens.
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Figure 8 Accuracy and reproducibility of GNLY (A) and KLRG1 (B) genes using a discrimination analysis approach. The receiver-operating
characteristic (ROC) curve gave an area under the curve of 0.87 for both genes by comparing H and L groups for the CD4/CD8" cell counts. The
solid black line represents the performance of the gene-expression biomarker on the test samples. The dashed line represents the line of no
discrimination between H and L groups. The boxplot graph represents the expression levels (log2) of genes in the H and L groups for
CD4/CD8" cell counts, respectively.

Conclusions

Peripheral blood represents an attractive tissue source
because it is easily sampled and because of its potential
as a sentinel tissue to monitor immunocompetence. Our
results demonstrate that the transcriptome of circulating

blood cells varies between healthy pigs with extreme
levels of in vitro production of IL2 and IL10, phagocytic
activity and CD47/CD8"cell counts. Furthermore, five
transcriptional biomarkers were found to be good
predictors for CD4/CD8" cell counts, IL2 production,
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or phagocytic activity. Therefore, new molecular strategies
to phenotype immune traits in pigs could be launched
based on blood genome-wide transcriptome or by targeting
specific biomarkers.

Methods

Animals

Animals were selected from a population of 443 Large
White pigs (castrated males) bred in a test farm (UE450,
INRA, Le Rheu, France). All animals were vaccinated with
a single dose of inactivated Mycoplasma hyopneumoniae
(Stellamune, Pfizer Animal Health) at 36 days of age, and
blood was sampled three weeks later. We used animals
that had already been measured for a large range of ITs in
a previous study [13]. We focused on eight ITs (Table 1),
including five ITs measured after in vitro stimulation
(IL2, IL10, IFNy, TNFa and PHAG) and three in vivo
ITs directly measured in the blood (CD47/CD8" and
TCRy8" counts), and serum (level of IgG-Mh). The
choice of the ITs was based on the following criteria: (1)
ITs that qualify the innate immunity or the cell and
humoral-mediated adaptive immunity; (2) ITs that were
highly (h* > 0.4) or moderately heritable (0.1 < h* < 0.4),
respectively [13].

All protocols for IT phenotyping are fully detailed in
Flori et al. [13]. Briefly, for the IL2, IL10 and IFNy
dosage, 1:5 diluted blood was stimulated with a mixture of
PMA and Iono for 48 hours and the levels of cytokines
released in the supernatants were measured using
in-laboratory developed ELISA tests. For TNFa, 1:5
diluted blood was stimulated with a mixture of PMA, Iono
and LPS for 24 hours and the cytokine levels were
measured using a commercial ELISA kit (DuoSet ELISA
development kits, R&D Systems, USA). Phagocytosis
was measured from total blood using the Phagotest
kit (ORPEGEN Pharma, Heidelberg, Germany). The
CD47/CD8" and TCRy8" cell counts were quantified
by Fluorescence-Activated Cell Sorting (FACS), using
FACScan and CELLQuest software (Becton Dickinson,
Oxford, UK). Levels of specific IgG directed against
Mycoplasma hyopneumoniae were measured in pig serum
as described by Tarany et al. [56]. Box-Cox transformation
of IT values was performed to improve the normality
of the distributions and equalize variances to meet
assumptions [57], thus making the transformed data
symmetric.

For each of the eight ITs included, we created a specific
experimental set. For each experimental set, pigs were
selected from the higher and lower 10% of the Gaussian
distribution in order to generate two extreme groups
(high and low referred to as H and L groups, respectively).
Furthermore, within groups, animals that contributed to
increase the coefficient of variation of each IT (> 25%)
were removed (Table 1, Additional file 1: Figure S1 and

Page 12 of 17

Additional file 2: Figure S2). There was no overlapping
of individuals between the eight experimental sets. The
number of animals included in each experimental set is
given in Table 1.

All experiments on animals were conducted in accord-
ance with the French national regulations for humane
care and use of animals in research. No ethics approval
was required for the vaccination and the collection of
blood samples under the regulations applying at the time
of the experiments. Experiments were performed under
the individual license numbers 77-01 assigned to people
responsible for experiments in the test farm. The experi-
mentation agreement number for the test farm at le Rheu
was A35-240-7.

RNA isolation and microarray workflow

Blood for transcriptome analysis and phenotyping of ITs
was sampled at the same time on PAXgene Blood RNA
tubes (PreAnalystiX, Qiagen, Germany), in order to have a
direct correspondence between the measured ITs and the
blood transcriptome for each animal. Total RNA was
isolated using PAXgene Blood RNA Kit (Qiagen, Germany)
according to the manufacturer’s instructions. The RNA pur-
ity and concentration were determined using a NanoDrop
1000 spectrophotometer (Thermo Scientific, USA) and RNA
integrity was assessed using the Bioanalyzer 2100 (Agilent
Technologies, USA). A reference RNA was designed by
combining total RNAs extracted from 17 different tissues:
in vitro stimulated PBMCs (PMA-Iono), spleen, lymph
node, thymus, ileal Peyer’s patches, liver, kidney, lung,
testis, epididymis, ovary, uterus, heart, brain, longissimus
dorsi, skin, and three weeks foetuses.

We used a microarray enriched for immunity related
genes (SLA-RI/NRSGAPS8-13 K long oligo microarray)
as described in Gao et al. [50]. The microarray platform
(GPL7151) consisted in 17 070 porcine oligonucleotide
probes, representing at least 10 010 unique genes. All
microarrays included in our study were produced by the
INRA facility CRB GADIE (http://crb-gadie.inra.fr).

For each animal, 5 pg of total RNA were reverse
transcribed and directly labelled by Cy3, and 5 ug of the
reference RNA were reverse transcribed and labelled
by Cy5, using the ChipShot™ Direct Labeling System
(Promega, USA). The labelled cDNAs were purified
with the ChipShot”™ Membrane Clean-Up System
(Promega, USA). Microarrays were pre-hybridized at
50°C for 30 min in a pre-hybridization buffer (3.5X
SSC, 0.1% SDS and 1% BSA). The slides were then
washed twice in distilled water for 5 min at room
temperature and dried by centrifugation. A total of
750 ng of each Cy3-labeled and Cy5-labeled ¢cDNA
targets were mixed and the volume of the mix was
adjusted to 200 pl with ddH,O water. The labelled cDNA
mix was denatured at 95°C for 2 min, and 200 pl of 2X
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hybridization buffer (Agilent Technologies, USA) were
added. The resulting 400 ul mixes were then centrifuged
and applied to each single microarray with a cover slip
(Agilent Technologies, USA). Microarrays were incubated
at 60°C in an Agilent DNA microarray hybridization oven
for 17 h. The slides were washed in 2X SSC 0.1%
SDS twice for 5 min, 0.5X SSC and 0.1% SDS once
for 5 min, 0.2X SSC three times for 5 min, and dried by
centrifugation. The slides were scanned using the Agilent
G2565CA scanner. For each array, the corresponding .tiff
image was analysed using the GenePix Pro software V6.0
(MDS Inc., Canada).

All microarray experimental data are MIAME compliant
and have been deposited in Gene Expression Omnibus
((GEO), http://www.ncbi.nlm.nih.gov/geo/) with the ac-
cession number: GSE45196.

Statistical analysis of microarray expression data
All microarray analyses, including pre-processing, nor-
malization and statistical analysis were carried out using
‘Bioconductor’ packages in R programming language
(version 2.15). The homogeneity of the background was
systematically checked on each microarray by the boxplot
and image plot procedures of the linear models for
microarray data (‘Limma’ library; version 3.14.4).
Furthermore, PCA was performed with ‘FactoMineR’
library (version 1.23) to detect if any particular array
contributed largely to variability in the gene expression
data, that is, whether it retained most of the informa-
tion (Additional file 14: Figure S4 and Additional file 15:
Figure S5). Finally, after examining the resulting diagnostic
plots, we analysed a total of 141 microarrays (Table 2).
The Log2 median ratio values between Cy3/Cy5 were
normalised on each individual array (ratio centred on zero)
according to the hypothesis that on the whole gene
expressions do not differ between two samples. The
centring was performed by ‘Lowess fitness’ to take into
account the intensity dependence of the fluorescence
bias. Identification of DE genes between groups was
done with the ‘Limma’ package. The P-values were
corrected for multiple testing using a false discovery
rate method (g-value < 0.05), which provides an estimate of
the fraction of false discoveries among the significant terms.
Centred on significantly expressed genes, unsupervised
analysis was done to visualize clusters of samples or
genes based on their variance-covariance structure.
Such an analysis helps to define coordinated regulation of
similarly related genes and study fundamental and intrinsic
differences at the level of transcription that are specific
to the groups studied. Thus, a two-way hierarchical
cluster analysis was performed using ‘hclust’ function
with ‘I-cor (x)" as distance and ‘ward’ as aggregation
criterion. The ‘heatmap’ function was used to generate
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images. In addition, PCA was performed with ‘FactoMiner’
library to better identify which genes contribute most to
the separation of expression patterns between H and L
groups. The quality of representation of a variable on the
PCA axis is measured by the squared cosine between the
vector issued from the element and its projection on
the axis. If this square cosine is close to one, it means that
the element is well projected on the axis [58]. The quality
of representation of a gene on a plane can be visualized by
the distance between the projected variable onto the plane
and the correlation circle (circle of radius 1). The list of DE
genes for each IT was uploaded into IPA (IPA; ver. 5.5,
Ingenuity Systems, Redwood City, CA) to identify relevant
categories of molecular functions, cellular components and
biological processes. Using this approach, we identified
statistically overrepresented functional GO annotations,
and determined their up- or down-expression, and
group-specific transcriptional networks. All listed or
reconstructed cellular pathways were derived from the
expert annotated database that is provided by the Ingenuity
Knowledge Base. The IPA annotations follow the GO anno-
tation principle, but are based on a proprietary knowledge
database of over 10° protein-protein interactions. The IPA
output included biological functions and signalling
pathways with statistical assessment of the significance of
their representation based on Fisher’s Exact test. IPA
computed networks and ranked them according to a
statistical likelihood approach [59]. Only the canonical
pathways that presented a -log (P-value) exceeding 1.30
(FDR g-values < 0.05) were described in the respective
additional files. For the canonical pathways, the ratio
values (number of molecules in a given pathway that
meets cut criteria, divided by total number of molecules
that make up that pathway) were also presented.

Validation of the transcriptome results by RT-qPCR on a
subset of genes

To technically validate the data generated in the microarray
study, quantitative RT-qPCR was carried out on selected
candidate genes (Additional file 3). The genes were selected
based on the following strategies: (1) genes with significant
DE levels between the phenotypes of interest that spanned
a dynamic range of at least log2 (ratio) > 0.485; (2) genes
with a coefficient of determination greater than 0.8 with
respect to the first principal component in the PCA; and
(3) genes with biological interest (e.g. SLA-1 and IL10RA;
Additional file 3). PCR primers specific to these genes were
designed using ABI Primer Express software version 2.0
(Applied Biosystems, USA) and designed with the melting
temperatures of 58°C to 60°C and resulting products
between 100 and 150 bp. Briefly, reverse transcription
of 1 pg of the isolated total RNA was performed using the
high capacity cDNA archive kit (Applied Biosystems, USA),
according to the manufacturer’s protocol. Dilutions
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were used for qPCR with SYBR green Master Mix
(Applied Biosystems, USA) in an ABI Prism 7900 HT
(Applied Biosystems, USA). The ¢cDNA samples were
mixed with 1x SYBR Green Master Mix and the specific
reverse and forward primers, in a final volume of 20 pl
For each sample and each gene, PCR runs were performed
in duplicates. In order to quantify and normalise the
expression data, we used the AACt method using the
geometric mean Ct value from the -2 microglobulin
(B2M) and L32 ribosomal protein gene (RPL32) as the
endogenous reference genes [60].

The set of genes chosen for confirmation by RT-qPCR
was analysed using a linear effect model, including group
(H or L) as a fixed effect. Differences were considered
significant at P < 0.05. The correlation analysis between
RT-qPCR and microarray expression data was performed
using the ‘corr’ function of R.

Determination of potential blood biomarkers for
immunocompetence

The top 50 DE genes between the H and L groups for IL2,
IL10 production, PHAG activity and CD4/CD8" cell counts
were selected to identify potential blood biomarkers
(n = 200) in a validation set. To evaluate the predictive
value of these selected gene signatures from the experi-
mental sets, first, we mapped the gene signatures in a valid-
ation set of 74 animals. The validation set was sampled
from the same original population to avoid biological and
technical sources of dataset variation. These 74 animals
corresponded to (1) animals that showed no differential
expression between the H and L groups for the levels of
IFNy, TNFa and y§ T lymphocyte counts and IgG-
Mh (n = 72), and (2) two animals that contributed to
increase the coefficient of variation for CD4/CD8" cell
counts, and that had been removed from the experimental
set for this IT. All animals included in the validation
set were analysed with the same SLA-RI/NRSP8-13 K
microarrays and normalised as described above.

Two different statistical methods were applied to quantify
the association between gene expression and the different
ITs and to detect which of these genes could be considered
as potential gene biomarkers: (1) the sPLS and (2) the
rCCA. sPLS maximised the covariance between two
datasets by searching for linear combinations of the
variables. Furthermore, it imposed sparsity within the
context of partial least squares and thereby carried out
dimension reduction and variable selection simultaneously
[21,22]. To evaluate the statistical significance of covariation
between the expression of genes and the distinct ITs, we
performed the M-fold or leave-one-out cross-validation,
estimating the mean squared error of prediction (MSEP),
the R? and the Q? for each IT in the dataset. An X variable
contributed significantly to the prediction if Q* > (1-0.95%)
[61]. rCCA identified and quantified the correlation
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between two datasets and regularized the empirical
covariance matrices of X and Y by adding a multiple
to the identity matrix [23]. The ‘mixOmics’ library
(version 4.1.4) in R was used to carry out sPLS and
rCCA analyses [62,63]. We used the ‘cim’ function to
plot the sPLS results and the ‘plotVar’ and ‘network’
functions to generate the images from rCCA. On the
one hand, the ‘cim’ function plotted the association
matrices for X and Y variables. Increasing values were
translated into colours from blue (negative association) to
red (positive association). On the other hand, the variable
plot (‘plotVar’) made it possible to identify the structure of
the correlation between the two sets of variables X and Y.
On the graphic, two circumferences were plotted with
radiuses 0.5 and 1 to reveal the most salient patterns in
the ring defined between these two circumferences.
Variables with a strong relation were projected in the
same direction from the origin. The greater the distance
from the origin, the stronger the relation [23]. The
‘network’ function calculated a similarity measure between
X and Y variables in a pair-wise manner. The output was a
graph in which each X-and Y-variable corresponds to a
node and the edges included in the graph display the
associations between the nodes. Before considering a gene
as a potential biomarker, constraints were applied. First,
candidate potential gene biomarkers were selected if they
presented at least a similarity measure (in absolute value)
between a pair of vectors in the dimensions 1 and 2 greater
than 0.50. Second, potential gene biomarkers had to be
expressed in 100% of the animals. Then, the diagnostic of
accuracy of potential gene biomarkers was assessed by
ROC curve analysis in an extreme phenotype study design.
For each potential gene biomarker, animals that were at the
extreme ends (10%) of the phenotype distribution for
the target ITs in the validation set of 74 animals were
considered. On average, the number of individuals sampled
from each tail was equal to 10. The ROC curve analysis was
chosen as a measure of the accuracy of gene biomarkers
because it includes all possible cut points and shows the
relationship between the sensitivity of a biomarker and its
specificity [64]. The AUC was calculated with the maximum
area under a ROC curve equal to 1.00. An AUC of 0.5 indi-
cates no association between prediction and the true out-
come, and a value of 1 indicates perfect association. The
optimal cut-off point was the point on the ROC
curve closest to (0,1). The ‘epi’ library (version 1.1.49)
in R was used to plot the ROC curve and find the
optimal cut point.

Availability of supporting data

The datasets that support the results of this article are
available in the GEO database under the dataset identifier
provided in the text.
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Additional files

Additional file 1: Figure S1. Distribution of the individual’s values for
in vitro immune traits. The values of animals from the high and low
groups are labelled by colour: green “Low” and red “High".

Additional file 2: Figure S2. Distribution of the individual's values for
in vivo immune traits. The values of animals from the high and low groups
are labelled by colour: green “Low” and red “High".

Additional file 3: Sequences of the primers used for the RT-qPCR.

Additional file 4: Figure S3. Validation of the transcriptome results by
RT-gPCR on a subset of genes.

Additional file 5: Differentially expressed genes in animals with
contrasted in vitro production levels of IL2.

Additional file 6: Significance of the biological functions detected
in animals with contrasted levels of IL2 and IL10 production, PHAG
activity and CD4/CD8" cell counts.

Additional file 7: Differentially canonical pathways in animals with
contrasted in vitro production levels of IL2.

Additional file 8: Differentially expressed genes in animals with
contrasted in vitro production levels of IL10.

Additional file 9: Differentially canonical pathways in animals with
contrasted in vitro production levels of IL10.

Additional file 10: Differentially expressed genes in animals with
contrasted phagocytosis capacities.

Additional file 11: Differentially canonical pathways in animals with
contrasted phagocytosis capacities.

Additional file 12: Differentially expressed genes in animals with
contrasted CD4/CD8" cell counts.

Additional file 13: Differentially canonical pathways in animals with
contrasted CD47/CD8" cell counts.

Additional file 14: Figure S4. Principal component analysis (PCA) of
microarray expression data for in vitro immune traits. PCA was performed
with FactoMineR library (version 1.23) to detect if any particular array
largely contributed to variability in the gene expression data, that is,
retains most information. Animals are labelled by colour: green “"Low”;
and red “High".

Additional file 15: Figure S5. Principal component analysis (PCA) of
microarray expression data for in vivo immune traits. PCA was performed
with FactoMineR library (version 1.23) to detect if any particular array
largely contributed to variability in the gene expression data, that is,
retains most information. Animals are labelled by colour: green “Low”;
and red "High".
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1; CD47/CD8™: o T lymphocyte CD4/CD8* counts; CHIC2: Cysteine-rich
hydrophobic domain 2; COQ9: Coenzyme Q9 homolog; CTL4A: Cytotoxic
T-Lymphocyte antigen 4; CTSG: Protein coding capthepsin; CX3CR1: CX3C
chemokine receptor 1; DDIT4: DNA-damage-inducible transcript 4;

DE: Differentially expressed; DEK: Oncogene; EGR1: Early growth response protein
1; FASLG: Fas ligand (TNF superfamily, member 6); FC: Fold change;

FDFT1: Farnesyl-diphosphatefarnesyltransferase 1; FKBP4: FK506 binding protein
4; GATM: Glycine amidinotransferase; GEO: Gene Expression Omnibus; GKAP1:

G kinase anchoring protein 1; GMFB: Glia maturation factor; GNLY: Granulysin;
GPR56: G protein-coupled receptor 56; GZMB: Granzyme B; H group: High group;
HCA: Hierarchical cluster analysis; HDACS: Histone deacetylase 5; HEATR5A: HEAT
repeat containing 5A; IgG-Mh: Immunoglobulin G directed against Mycoplasma
hyopneumoniae; IL10RA: IL10 receptor; lono: lonomycin; IPA: Ingenuity Pathway
Analysis; IT: Immune trait; KCNB1: Shab subfamily potassium cannel;

KLF2: Kruppel-like factor 2; KLRGT1: Killer cell lectin-like receptor subfamily
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G member 1; L group: Low group; LPS: Lipopolysaccharide; M.

hyopneumoniae: Mycoplasma hyopneumoniae; MCCD1: Mitochondrial coiled-coil
domain 1; MFI2: Antigen P97; MRPL54: Mitochondrial ribosomal protein L54;
NCRT1: Natural cytotoxicity triggering receptor 1; NK: Natural killer cells;

NOMOT1: NODAL modulator 1; PBMC: Peripheral blood mononuclear cell;

PCA: Principal component analysis; PHAG: Phagocytosis; PLAGL2: Pleiomorphic
adenoma gene-like 2; PMA: Phorbol myristate acetate; POFUT2: Protein

O- fucosyltransferase 2; RALGDS: Theral guanine nucleotide dissociation
stimulator; RNF31: Ring finger protein 31; ROC: Receiver-operating characteristic;
RPL23: Ribosomal protein L23; RPL24: Ribosomal protein L24; RPL32: 132
ribosomal protein gene; RPS3A: Ribosomal protein S3A; RT-gPCR: Real time
quantitative polymerase chain reaction; SCARB1: Scavenger receptor class B
member 1; rCCA: Regularized canonical correlation analysis; SLA-1: Awine
leukocyte antigen 1; SLCO3AT1: Solute carrier organic anion transporter family,
member 3AT1; sPLS: Sparse partial least square regression; SPRR1A: Small
proline-rich protein 1A; SRPX: Sushi-repeat containing protein; TCRyS":

y& T lymphocyte count; TGFB1: Transforming growth B-factor; TLN1: Talin-1;
TNFRSF18: Tumour necrosis factor receptor superfamily member 18;

ZDHHC1: GHHC domain-containing cysteine -rich protein.
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