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Abstract

Background: Determination of the minimum gene set for cellular life is one of the central goals in biology.
Genome-wide essential gene identification has progressed rapidly in certain bacterial species; however, it remains
difficult to achieve in most eukaryotic species. Several computational models have recently been developed to
integrate gene features and used as alternatives to transfer gene essentiality annotations between organisms.

Results: We first collected features that were widely used by previous predictive models and assessed the
relationships between gene features and gene essentiality using a stepwise regression model. We found two issues
that could significantly reduce model accuracy: (i) the effect of multicollinearity among gene features and (ii) the
diverse and even contrasting correlations between gene features and gene essentiality existing within and among
different species. To address these issues, we developed a novel model called feature-based weighted Naïve Bayes
model (FWM), which is based on Naïve Bayes classifiers, logistic regression, and genetic algorithm. The proposed
model assesses features and filters out the effects of multicollinearity and diversity. The performance of FWM was
compared with other popular models, such as support vector machine, Naïve Bayes model, and logistic regression
model, by applying FWM to reciprocally predict essential genes among and within 21 species. Our results showed
that FWM significantly improves the accuracy and robustness of essential gene prediction.

Conclusions: FWM can remarkably improve the accuracy of essential gene prediction and may be used as an
alternative method for other classification work. This method can contribute substantially to the knowledge of the
minimum gene sets required for living organisms and the discovery of new drug targets.
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Background
Essential genes, as a minimal gene subset in organisms,
are required for survival, development, or fertility [1,2].
Therefore, the prediction and identification of such
genes is not only interesting but also of theoretical and
practical significance. Enhanced knowledge of essential
genes promotes an understanding of the primary struc-
ture of the complex gene regulatory network in a cell
[3-5] and helps elucidate the relationship between geno-
type and phenotype [6,7], identify human diseases [8],
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discover potential drug targets in novel pathogens [9,10],
and re-engineer microorganisms [11,12].
Two types of approaches are mainly used to predict and

identify essential genes: experimental laboratory tech-
niques and computational techniques. The former is
randomly or systematically used to inactivate potential
essential genes, and gene essentiality could be determined
based on the living situation of the organism. General
gene disruption strategies include single gene knockouts
[13], conditional knockouts [14], RNA interference [15],
and transposon mutagenesis [16]. Unfortunately, expe-
rimental techniques have significant drawbacks, such as
long durations and high costs. In addition, the spectrum
of gene essentiality varies under different growth con-
ditions [6,17].
Computational techniques have become popular over

the past years for several reasons. First, known essential
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Table 1 Abbreviations and descriptions of selected
features

Abbreviation Description

GO Gene ontology

mE mRNA expression level

mEF mRNA express fluctuation

Age Gene origin age

DoT Gene domain type

DoC Gene domain conservation

DC Network topology feature, degree centrality

CCo Network topology feature, clustering coefficient

CC Network topology feature, closeness centrality

BC Network topology feature, betweenness centrality

PL Protein length

CAI Codon adaptation index

NP Number of paralogs for a target gene

NS Number of species which have at least a homology
for a target gene

NEH Number of essential homolog genes in other
species for a target gene

NNH Number of non-essential homolog genes in other
species for a target gene
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genes from dozens of microorganisms provide instruc-
tional and training materials. Second, the available genome
sequences obtained by high-throughput sequencing pro-
vide unprecedented opportunities for investigating the
minimal subset of genes in various organisms. Finally and
most importantly, the development of bioinformatics tools
improves our capability for exploring essential genes.
Several prediction models have been developed in silico

to identify essential genes. Among these models, the
simplest one is prediction of essential genes based on
the known essentiality of homologous genes [18-21]. Al-
though these prediction models show high confidence
levels, they still have two limitations: first, the conserved
orthologs between species only account for a small por-
tion of the genome [22] and, second, the orthologs, espe-
cially in distantly related species, often show variations in
gene regulations and functions [6,23], which lead to po-
tential diversity in gene essentiality. To circumvent these
limitations, feature-based models have been constructed
to distinguish essential genes from non-essential ones
based on common or similar features among essential
genes [24-28].
In previous models, feature selection was often based

on significant correlations between gene essentiality and
gene features or the significant distribution difference
between essential and non-essential genes [29-31]. A
common disadvantage of such selection method, how-
ever, is that feature–feature interactions and strong cor-
relations among features are ignored [32]. Moreover,
because of evolutionary divergence among species, the
linkages between features and gene essentiality might
have changed. For example, arguments on whether or
not younger genes are less likely to be essential than
older genes [33,34] or whether or not duplicate genes
are less likely to be essential than singletons [34-36],
demonstrate that gene essentiality associations with ori-
gin time and number of duplications are diverse among
different species.
Aside from feature selection, machine learning algo-

rithms have also been introduced into feature-based
classification models to identify essential genes in many
studies, such as Naïve Bayes [25], decision tree [26], and
support vector machine (SVM) [27].
In the present study, we first collected 16 features (see

feature abbreviations in Table 1) that were widely used in
previous models, and demonstrated that the predictions
exhibit at least two problems: (1) strong correlations
among gene features and (2) different and even contras-
ting associations of gene features with gene essentiality
among different species. We then presented a novel ap-
proach, the feature-based weighted Naïve Bayes model
(FWM), which can address multicollinearity impacts
among gene features and feature divergence between spe-
cies. In the proposed model, prior information was
collected to determine the weight of each feature by lo-
gistic regression and genetic algorithm [37]. Afterward,
essential genes in target organisms were predicted using a
weighted Naïve Bayes (WNB) classifier [38]. We applied
FWM to reciprocally predict essential genes between and
within 21 species and compared its performance with
those of other models including SVM, Naïve Bayes model
(NBM), and logistic regression model (LRM). Results
showed that FWM can significantly improve the accuracy
and robustness of essential gene prediction. Finally, using
stepwise discriminate analysis (SDA), we demonstrated
why FWM outperforms these other classifiers.

Results and discussion
Relationship of gene features and gene essentiality
Selecting features associated with gene essentiality is
fundamental to predict essential genes in feature-based
models. However, because of the correlations between
features, some features may actually share no or very
few linkages with gene essentiality. Moreover, although
feature linkages with gene essentiality exist, these link-
ages in different species are diverse or have contrasting
effects.
To illustrate the possible consequences of different fea-

tures in essential gene prediction, we investigate the link-
ages between gene essentiality and gene features in the
Saccharomyces cerevisiae (SCE, Table 2A) and Escherichia
coli (ECO, Table 2B) genomes, using the stepwise re-
gression model (SRM) combined with forward selection



Table 2 Linkages of features and gene essentiality in
SCE (A) and ECO (B)

A

Feature Correlation1 P-value2 True effect3 P-value4 R Square5

DC 0.256 3.7E-58 0.157 1.6E-09 0.065

NEH 0.188 5.5E-32 0.345 4.8E-61 0.087

NP −0.054 4.5E-04 −0.186 2.5E-23 0.118

NS 0.001 0.47034 −0.225 8.0E-24 0.133

Age −0.138 5.9E-18 −0.150 8.3E-15 0.150

CCo 0.166 4.0E-25 0.080 2.3E-06 0.155

DoC 0.132 1.9E-16 0.058 2.5E-04 0.157

mEF −0.048 0.00166 −0.044 0.01224 0.159

CAI 0.043 0.00398 −0.033 0.07042 0.160

PL 0.020 0.10449 0.022 0.14817 0.161

CC 0.204 2.1E-37 0.021 0.40713 0.161

mE 0.086 5.4E-08 −0.009 0.65639 0.161

B

Feature Correlation P-value True effects P-value R Square

DC 0.486 6.E-228 0.368 1.2E-38 0.237

NEH 0.478 2.E-219 0.359 2.E-110 0.350

NNH −0.148 1.7E-20 −0.327 3.4E-42 0.382

NS 0.283 6.7E-72 0.147 7.8E-11 0.390

CC 0.314 6.0E-89 −0.115 2.4E-06 0.396

NP −0.151 2.9E-21 0.085 1.3E-05 0.399

mEF 0.147 2.7E-20 −0.058 6.9E-05 0.401

CAI 0.302 3.7E-82 0.024 0.11874 0.402

mE 0.266 1.4E-63 0.036 0.02500 0.402

PL 0.038 0.00940 0.024 0.07566 0.403

DoC 0.106 1.8E-11 0.013 0.32555 0.403

CCo 0.250 3.0E-57 0.004 0.79730 0.403

Note: The features from top to bottom in Column 1 are shown in accordance
with the sequence in which they are added to the SRM. Data for gene
essentiality in SCE and ECO originate from the relative growth rates of
single-gene deletion yeast strains in nutrition-rich YPD medium [43] and E. coli
chromosome (PEC) database profiling [44], respectively. Pearson correlations1

between gene essentiality and features are shown with a corresponding
P-value2. True effect3 refers to the standardized regression coefficient in the
model and it is presented with a related P-value4. R Square5 represents the
ratio of the variance predicted by the SRM and the variance for
gene essentiality.
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[39-41]. At the beginning of the experiment, no features
are considered in the model. A feature that mostly im-
proves the model is added, and this process is repeated
until all features are included in the model. The first
column of Table 2 shows the results of the sequential
addition of features into the SRM. Among the 12 features
(Table 2A), the feature DC is the most important factor
that explains the variation (6.5%) of gene essentiality.
Some close neighboring features (e.g., NEH and NP) show
statistical significance in terms of both correlations and
true effects (i.e., standardized regression coefficients) with
gene essentiality in the model. The last selected features
(i.e., CAI, CC, and mE) also show statistical significance in
linkage with gene essentiality; however, their true effects
are detected without statistical significance (P-value >
0.05). This result may be explained by the fact that CC is
highly correlated with DC (r = 0.765, P-value < 0.01), and
DC has been selected as the first feature in the model that
has diminished the effects of CC. One reason that may ex-
plain the lack of significant true effects exerted by CAI
and mE is that both features have significant correlations
with DC (r = 0.298, r = 0.393, and both P-values < 0.01)
and CC (data not shown). Another explanation is that
some essential genes show low expression levels. For
example, the genes whose products are located in nuclear
part (GO: 0044428) are overrepresented among the essen-
tial genes with lower expression levels. In addition, some
transcription factors and centromere-associated proteins
are only required in small amounts; however, these sub-
stances may be expressed constitutively and indispensably
[42]. A similar pattern is observed during ECO analysis;
however, compared with the SCE genome (Table 2A), the
same features (e.g., NS) often show distinct effects on gene
essentiality in the SRM (Table 2B). Most features in SCE
contribute much less to gene essentiality than those in
ECO. The genes in SCE are thus postulated to have more
complicated and diverse functions than those in ECO, and
the essentiality of these genes must be explained by a
larger variety of features, which is expectedly in agreement
with that eukaryotes are more complex than prokaryotes.
If excessive features that contributed less to the model

were selected, the process would inevitably lead to a
complex and inefficient regression model. Besides, the
same feature can result in different or opposite effects in
different species, (e.g., NS has opposite effects in ECO
and SCE). Therefore, selection of improper or excessive
features may lead to redundancy and decrease the accu-
racy of the essential gene prediction model. These effects
contradict the original goal of the essentiality analysis. In
the current study, to overcome the deficiency in essen-
tial gene prediction, we developed a new method called
FWM.

FWM construction
Among the various classification methods, the Naïve Bayes
classifier [45] is a simple, fast, and efficient algorithm.
Thus, Naïve Bayes classifiers are widely used in identifying
essential genes, disease genes, and housekeeping genes
[25,28,46-48]. In the current study, we developed another
method called FWM (Figure 1A) that effectively addresses
the effects of multicollinearity among gene features in
NBM and overcomes the disadvantages of training and
prediction sets with equal global feature score (GFS, see
Appendix).
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Figure 1 Flow chart for constructing FWM and assessing its performance in predicting essential genes between and within species.
(A) FWM construction. During essential gene prediction from species 1 to species 2, the goal of FWM is to calculate the score vector Si and the
weighted coefficient vector W. To calculate Si, we mainly employ kernel density estimation (KDE) combined with Naïve Bayes estimation (see Methods).
When calculatingW, we first collect prior information (e.g., known essential genes in species 2 or from a closely related species); this information is used
as training-prediction dataset to assess W in combination with the training set. Finally, we calculate the posterior probability of the genes in species 2
belonging to essential genes based on the weighted Naïve Bayes (WNB) method. (B) FWM performance for predicting essential genes between and
within species. To assess the performance of FWM within species (e.g., SCE–SCE or SPO–SPO), 20%, 50%, and 80% of the whole genes were randomly
selected as the training set, respectively, and the rest as testing set. We used the training set itself as a training-prediction set to calculate weights; the
AUC score for the testing set was then calculated through the WNB method. Finally, the process was replicated 1,000 times to obtain the corresponding
AUC distributions. To predict essential genes between species (e.g., SCE–SPO or SPO–SCE), all of the genes in SCE (or SPO) were selected as the training
set, 20% (or 50%, 80%) of the SPO (or SCE) genes were randomly selected as the training-prediction set, and the rest of the genes were designated as
the testing set. Similar to the comparison within species, AUC distributions were obtained by replicating the process 1,000 times.
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The basic FWM formula in the present study is de-
scribed below (see inference in Appendix). For one gene gi
(gi ∈G, i = 1, 2,⋯,m) with a feature vector Xi, the pro-
bability of the gene belonging to the class E (E = essential)
is:

Pðgi∈E Xij Þ ¼ 1
1þ e−Si⋅W

ð1Þ
where W is the weight vector indicating the extent of
contribution of the features to gene essentiality and Si is
the feature score vector corresponding to logarithmic
likelihood ratio: Si ¼ log PðXijgi∈EÞ

P Xi gi∈�EÞjð .

The key FWM procedure is the evaluation of Si and W.
For Si calculation, our selected features are divided into
continuous type (e.g., protein length) and non-continuous
type (e.g., domain type); we then employ kernel density
estimation [49] and Bayes estimation to calculate the Si of
these two types of features (see Methods).
To evaluate W, we need a W that can reflect the true

contribution of the features in the target species. There-
fore, we first determine some prior information based
on a known essential gene set, which is preferably from
the target species or a species that is closely related to
the target species. Note that we define the known essen-
tial gene set as the training-prediction set used as a
dependent variable to help evaluate W. If we cannot
obtain any prior information, the training set is also used
as an alternative training-prediction set to calculate W.

According to formula (1), we obtain Si�W¼ logPðgi∈EjXiÞ
1−P gi∈E XiÞjð .

We then imitate the estimation of logistic regression
coefficients to calculate W. To obtain high essential
gene prediction accuracy, we estimate the parameter
W= argmax{AUC[PP(W), GE]} using genetic algo-
rithm. Here, PP(W) represents the posterior probability
vector calculated by formula (1), GE represents the
true gene essentiality determined from the training-
prediction set, and the AUC (area under curve) score is
calculated from PP(W) and GE. Finally, we calculate
the posterior probability of the genes in Species 2 (the tar-
get species whose essential genes need to be predicted)
based on the WNB method again using formula (1).
FWM accuracy, stability, and adaptability
Because FWM is developed from NBM, we first compared
the predictive performances of FWM and NBM within
and between species. Two eukaryotic species (SCE
and Schizosaccharomyces pombe (SPO)) that have well-
characterized essential genes were used as either training
sets or testing sets (Figure 1B).
To investigate the accuracy and stability of FWM, 20%

of the SCE genes were randomly selected as both the
training set and the training-prediction set to help calcu-
late W; the rest of the genes were used as the testing set.
FWM and NBM were then used to predict and calculate
AUC scores, respectively. The simulation was replicated
1,000 times (randomly selected training set and testing
set), and two corresponding AUC distributions were
obtained (Figure 2A). Similarly, 50% and 80% of the
genes in SCE were respectively randomly selected and
simulated with 1,000 replications to obtain the AUC dis-
tributions (Figures 2C and E). By comparing the AUC
distributions obtained by FWM and NBM, we found
that the mean values from FWM were significantly
higher than from NBM (T-test and P-value < 1e-100;
Figure 2A, C and E). This finding demonstrates that the
results within species predicted by FWM are more
accurate than those predicted by NBM. Similar results
were obtained in SPO (Additional file 1: Figure S1-A,
S1-C and S1-E).
To assess the adaptability of FWM between different

species, we adopted the strategy to predict essential genes
in SPO based on training dataset from SCE. First, 20%,
50%, and 80% of the SPO genes were randomly selected as
training-prediction sets (the rest of the genes were used as
the testing set), and the corresponding weight vector W
was obtained. We then predicted the remaining set of
SPO genes using W and the training set from SCE. Finally,
we obtained the AUC distributions with 1,000 replicated
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simulations. The results were shown in Figures 2B (20%),
2D (50%), and 2F (80%). A similar analysis was performed
in the prediction from SPO to SCE (Additional file 1:
Figures S1-B, S1-D, and S1-F). Consistent with the results
of prediction within species, FWM showed better per-
formance than NBM for predictions between species. In
addition, while obtaining an accurate vector W, FWM
easily reaches a saturation point when some prior infor-
mation is supplied.
Comparison of FWM with LRM, NBM, and SVM
We applied FWM to 21 species (including 19 bacteria and
two fungi; listed in Additional file 2: Table S1) to illustrate:
(1) the validity of FWM predictions of essential genes in
diverse species and (2) the advantages of FWM over other
methods. The genes in the 21 species were taken in turns
to use as training and testing sets. The process yielded a
21 × 21 AUC matrix represented as M = (mij), i,j = 1, 2,…,
21, where mij indicates the AUC score obtained with ith
species as training set and jth species as testing set.
The accuracy of FWM prediction was compared with

three other classifiers: LRM, NBM, and SVM. Each of
these classifiers yielded a 21 × 21 matrix with a total of
441 AUC scores (Additional file 2: Table S2) indepen-
dently. Afterward, we sorted the AUC scores of variable
mij produced by the four approaches (Figure 3, see details
in Additional file 2: Table S3). 61.7% (272/441) AUC
scores produced by FWM were ranked in first tier (which
represented the AUC score is the maximum among the
quadruple AUC scores generated by the four methods)
and only one was located in the fourth tier (the AUC score
is the minimum among the quadruple AUC scores). Evi-
dently, FWM significantly outperformed the other three
methods (P-value < 1e-53). By the way, the performance
of SVM was slightly but not significantly better than that
of NBM (P-value = 0.343). Although the performance of
LRM was the worst among the four approaches studied,
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this model showed strong overfitting, which can lead to
better performance during cross-validation within species
than NBM and SVM. Anyhow, our method is substantially
superior to LRM, NBM, and SVM for predicting essential
genes.

Why does our approach perform better prediction
effects?
To explain why FWM outperforms the other classifiers,
we employed SDA combined with forward selection [50]
to investigate AUC variations; FWM and NBM were
used as discriminate models. During the repeating selec-
tion process, the features that could improve AUC score
the most in the classifiers were selected one by one, until
all of the features were included in the model. Four mi-
crobes with well-characterized essential genes were used
in our analysis (Figure 4), including two bacteria (i.e.,
ECO and Streptococcus sanguinis (SSA)) and two fungi
(i.e., SCE and SPO). The labels on the X-axis from left to
right in Figure 4 indicated the order of the features se-
lected into the model one by one. During analysis, the
following features showed the best performance: CC in
SCE–ECO, NEH in ECO–SSA and SSA–SPO, and DoT
in SPO–SCE. The best performance of CC demonstrated
that essential genes tend to play topologically more im-
portant roles in protein interaction networks than non-
essential genes. SCE and ECO had more complete and
available interaction data than the other organisms; thus,
CC neither performs the best among the three other pre-
dictions. The best performance of NEH showed that
orthologous gene essentiality is conserved across orga-
nisms. DoT had the best performance in SPO–SCE
prediction because, relative to that in bacteria, gene essen-
tiality is more conserved through the function of protein
domains or domain combinations rather than through the
conservation of the entire genes in fungi [28].
Although the feature GO has a better effect than other

features in the prediction (see Additional file 2: Table S4),
most genes with known GO annotations have only been
recorded in well-studied model species but have not been
investigated in the non–model organisms. Thus, selecting
GO as the feature to predict essential genes in a non–
model or a new sequenced organism is inappropriate.
Values close to the X-axis (Figure 4) indicate the singular
prediction effect of the corresponding feature. Except for
the first feature, the selection order of other features into
the prediction model was based on the diminished effect
from the previous selected features. For example, in the
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Figure 4 Comparison of FWM and NBM in stepwise discriminant. Examples of SCE–ECO (A), ECO–SSA (B), SSA–SPO (C), and SPO–SCE (D) are
plotted. The labels on the X-axis from the left to right indicate the order of the features selected into the model according to their prediction
effects. The values above the X-axis represent the singular prediction effect of the corresponding feature. FWM indicates feature-based weighted
Naïve Bayes model and NBM indicates Naïve Bayes model.
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prediction from SPO to SCE, the AUC score generated by
a single NS feature is 0.69, which ranks third among all of
the features; but this feature was selected as the seventh
feature in SDA because of the partial replacement of NS
effects by previously selected features.
FWM performed better than NBM in all cases. The pre-

diction accuracy reached a saturation point when some
key features were selected into the model. The NBM clas-
sifier substantially reduced the prediction accuracy at the
end of prediction, whereas FWM provided redundant fea-
tures with small weights to avoid such a problem (see
Additional file 2: Table S5) and showed slow changes in
prediction accuracy with addition of features.
In Figure 5, we compared receiver operating characte-

ristic (ROC) curves generated by FWM and NBM in four
microbes. FWM consistently showed a significant higher
true positive rate (TPR) and a significantly lower false
positive rate than NBM in all four predictions, except for
the location of ROC curves at approximately 0 or 1 in the
X-axis. The increases in AUC based on FWM relative to
NBM in SCE–ECO, ECO–SSA, SSA–SPO, and SPO–SCE
are 0.064, 0.018, 0.085, and 0.044, respectively. AUC score
also indicated the average TPR in all threshold values [51];
thus, our FWM could improve prediction accuracy at least
from 2% to 9%. In general, FWM provides a more effective
way of integrating features associated with gene essen-
tiality, and overcomes the impact of multicollinearity
among features. Therefore, FWM presents the advantages
of increased adaptability and reliability for essential gene
prediction.
Conclusions
Selecting features associated with gene essentiality is ne-
cessary to identify essential genes through machine lear-
ning approaches. However, current studies often neglect
the phenomenon of multicollinearity among these fea-
tures, and the same feature may result in different and
even contrasting effects among species. Selecting such fea-
tures makes the prediction model cumbersome, does not
improve prediction precision, but contrarily, may decrease
the accuracy of essential gene prediction. In other words,
selecting more features does not mean better prediction
results.
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To address these problems, we built FWM by improving
the Naïve Bayes classifier. This new model assigns a cor-
responding weight for each feature based on its real con-
tribution to the model, and importantly, this weight can
be changed depending on the specific target organisms.
FWM is able to effectively alleviate the effects of both
multicollinearity among features and the complex rela-
tionship between features and gene essentiality in different
organisms. In summary, FWM is able to improve predic-
tive accuracy compared with other methods (e.g., NBM,
LRM, and SVM).
Xu et al. [52] revealed that essential genes are associated

with only three basic categories of essential functions or
processes in organisms: cell envelope maintenance, energy
production, and genetic information processing. Never-
theless, the genes engaged in essential functions may yield
a conditional essential gene during evolution [3,7]. Others
may be compensated by a duplicate or buffered by some
new metabolic network flux reorganization that results in
the transformation of essentiality in the original reaction
or path. Besides, because of changes in the external
environment or evolution from lower to higher organ-
isms, many new essential functions and metabolic pro-
cesses can emerge. Thus, gene essentiality constantly
changes over time and more efforts are needed to com-
pletely understand the minimal requirements for cellu-
lar life. In the current study, we presented a theoretical
frame and a practical strategy to predict mass genome-
wide essential genes. Our method reduced the burden
of systematic understanding of the minimal require-
ments for cellular life and can help identify potential
drug targets in novel pathogens.

Methods
Essential gene and gene sequences
The essential genes of 21 species (see the species in
Additional file 2: Table S1 and the collected essential
gene in Additional file 3) were obtained from relevant
studies, as well as the Online Gene Essentiality Database
(OGEE) [53] and Database of Essential Genes (DEG)
[54]. The cDNA and protein sequences of the 21 species
were downloaded from the NCBI server (ftp://ftp.ncbi.

ftp://ftp.ncbi.nih.gov/genomes/
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nih.gov/genomes/). The homologous map and proteome
sequences of 417 core species were downloaded from
eggNOG 3.0 [55].

Features collection
We collected 16 features (Table 1), 12 of which were
widely used in previous models and 4 of which were used
for the first time in our model (see details for the 16 fea-
tures in Additional file 4: Table S6). The distribution diffe-
rence of each feature between essential and non-essential
genes is shown in Additional file 4: Figures S2-S13.
(i) Domain and GO annotations. Essential genes are as-

sociated with basic categories of biological functions or
processes [52]. Therefore, essential genes may enrich some
domains or GO annotations. To collect the domain of each
gene in 21 species, the hidden Markov models (Pfam-A.
hmm) of the protein domains were downloaded from the
Pfam database [56], and Hammer [57] was used to identify
the protein domain for each gene. The corresponding
domain type for each gene (see details of identifed domains
for the 21 species in Additional file 5: Table S7) was
defined as the feature DoT. The amino acid sites within
protein domains are often more important and conserved
than other fractions. Therefore, we assumed that the pro-
tein domain conservation is a reflection of gene essen-
tiality, and the DoC of each gene was calculated from the
ratio of the conserved domain score and the domain
length. GO annotations were downloaded from the Gene
Ontology Database [58]. GO enrichment analysis of SCE
and SPO is shown in Additional file 5: Table S8.
(ii) Protein–protein interaction (PPI) network. Network

topology features have been widely used in previous pa-
pers (Additional file 4: Table S6). In our study, PPI data
for the genes in 21 species were downloaded from the
STRING Database [59]. Afterward, we used the NetworkX
software package [60] to compute the four network topo-
logy features of DC, CCo, CC, and BC.
(iii) Genomic sequence properties. Although protein

length (PL) tends to become longer through evolution
[61], different natural constraints might exist on the PL
between essential genes and nonessential genes. The
codon usage of essential genes suffers from more evolu-
tionary constraints than non-essential genes. We used the
CodonW [62] software package to calculate the codon
usage, i.e., CAI.
(iv) Homology properties. Duplicated genes are believed

to often overlap in function and expression [63], and du-
plicates are always less likely to be essential than single-
tons [34,64,65]. An all-against-all BLAST search was
conducted for the whole set of proteins in each of 21 spe-
cies to identify the paralogs with an E-value threshold of
10-20, and the number of paralogs for a target gene within
species was used as the feature NP. Four-hundred seven-
teen core organisms in the eggNOG database included all
of 21 species in our study; thus, we counted the number
of species among the 417 core species that had at least
one homologous gene for each target gene in 21 species
(feature NS). The orthologous gene of an essential gene is
highly likely to be essential as well [18]. Therefore, we
calculated the numbers of essential and non-essential
homologous genes, including those that are found in other
species, for each target gene (NEH and NNH).
(v) Phyletic gene age. Chen [34] showed that older

genes (i.e., genes with earlier phyletic origin) are more
likely to be essential than young ones. Age was calcu-
lated according to previously described methods [34,66];
the target genomes of SCE and SPO were divided into
five taxonomic groups, i.e., species typical, Ascomycota,
Opisthokonta, Eukaryota, and cellular organisms.
(vi) Gene expression. mRNA expression data were ob-

tained from Series GSE15352 [67] and GSE30025 [68] of
the Gene Expression Omnibus (GEO) Database. The
expression levels of essential genes are often generally
higher and more stable than those of non-essential genes
[69]. The average and variable coefficients of mRNA
expression levels in all conditions were collected as pre-
dictors (i.e., mE and mEF).

Calculation of the feature score vector Sij
Features can be classified into two types: continuous and
non-continuous. For continuous features, the kernel den-
sity estimation [KDE; the estimate is implemented by
MATLAB’s “ksdensity” function, using a normal kernel
function and a window parameter (bandwidth) that is a
function of the number of points in the sample] [49] is
employed to acquire the empirical probability density
function f (x|E) for essential genes and f x �EÞjð for non-
essential genes [49]. The feature score vector Sij can be cal-

culated as Sij ¼ log f ðx Ej Þ
f x �E Þjð . For non-continuous features, the

analysis is much more complicated (see Additional file 6). In
the current study, we only displayed the inferred result:

Sij ¼ log
njEþ1ð Þ= NEþ2ð Þ
nj�Eþ1ð Þ= N�Eþ2ð Þ , where njE and nj�E indicate the

number of essential and non-essential genes, respec-
tively, sharing the same value for a given feature, and NE

and N�E indicate the total number of essential and non-
essential genes, respectively.

Other classifiers
We compared three classifiers with FWM: (1) NBM, (2)
LRM, and (3) SVM. Each classifier scheme indepen-
dently generates a separate probability score of gene
essentiality. All classifiers were implemented using the
Weka software package [70]. The outline of Weka pro-
cedures with JAVA codes is shown in below.
Input: Attribute relation function format (ARFF) files

of feature data of 21 organisms.

ftp://ftp.ncbi.nih.gov/genomes/
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Parameters:

1. Sequential minimal optimization (SMO) (weka.
classifiers.functions. SMO -C 1.0 -L 0.001 -P 1.0E-
12 -N 0 -M -V −1 -W 1 -K “weka.classifiers.functions.
supportVector.RBFKernel -C 250007 -G 0.01”)

2. NaïveBayes (default settings)
3. Logistic (weka.classifiers.functions. Logistic -

R 1.0E-8 -M −1)

Output: 21 × 21 AUC matrices of SVM, NBM, and
LRM

1. Read the training and testing sets
2. For each species as training set
2.1.Build classifiers NaiveBayes(), Logistic() and
SMO()

2.2.For each species as testing set
2.2.1. Evaluate each classifier
2.2.2.Write evaluation.toSummaryString(),

evaluation. toClassDetailsString(), evaluation.
toMatrixString()2.2.3 Extract ROC area score

3. For each classifier
3.1.Arrange ROC area scores to the matrix

Appendix: The derivation of formula (1) for FWM
construction
In Naïve Bayes algorithm, the probability that gene
gi (i = 1, 2,⋯,m) belongs to class E (E = essential and
�E ¼ non−essential ) given the feature vector Xi = [xi1,
xi2,⋯, xin] is:

Pðgi∈EjXiÞ ¼
P Eð Þ∏n

j¼1Pðxij gi∈E
�� �

P Xið Þ ð2Þ

where j indicates the jth feature in all n features for
gene (gi); P(E) indicates the prior probability of a gene
belonging to an essential gene (in general, P(E) is rep-
resented by the proportion of essential genes in all
genes); P(xij|gi ∈ E) denotes the conditional probability
when we observe that the jth feature value is xij under
the condition that the ith gene (gi) is an essential gene;
and P(Xi) is from the complete probability formula:

P Xið Þ ¼ P Eð Þ∏n
j¼1Pðxij gi∈Ej Þ þ P �Eð Þ∏n

j¼1P xij gi∈�EÞ
���

We obtain:

Pðgi∈�E Xij Þ ¼ P �Eð Þ∏n
j¼1Pðxij gi∈�E

�� �
P Xið Þ ð3Þ

We use the ratio of (2) and (3) and set:

P gi∈�E XiÞ ¼ 1−P gi∈E XiÞ; P �Eð Þ ¼ 1−P Eð Þj����
Finally, we obtain:

Pðgi∈E Xij Þ ¼ 1þ e− log P Eð Þ
1−P Eð Þ−∑

n
j¼1Sij

� �−1
;

ð4Þ
where Sij¼ logPðxijjgi∈EÞ

P xij gi∈�E Þjð indicates the logarithmic likelihood
ratio, which we refer to as the feature score. We define
the GFS ¼ ∑n

j¼1Sij as the global feature score. If we sup-
pose that GFS is a function of the feature vector Xi, the
Naïve Bayes classifier comes into existence based on the
fundamental conditions that the features must be mutu-
ally independent and that the training and prediction
sets must have the same GFS function.
Unfortunately, the assumption of mutual independ-

ence for NBM does not always hold true, and training
and prediction sets will not always have the same GFS
function. To solve the problems, we add a weighted co-
efficient wj prior to Sij. The global feature score is rede-
fined as GFS ¼ ∑n

j¼1wjSij , and

Pðgi∈E Xij Þ ¼ 1þ e− log P Eð Þ
1−P Eð Þ−∑

n
j¼1 wjSij

� �� �−1

ð5Þ
where wj indicates the extent of the contribution of the
jth feature to a gene classified as an essential gene. To
simplify the model, we set w0 ¼ log P Eð Þ

P �Eð Þ, Si0 = 1, Si = [Si0,
Si1, Si2,⋯, Sin] and W = [w0,w1,w2,⋯, wn]. The probabil-
ity of a gene gi belonging to essential gene is given by:

Pðgi∈E Xij Þ ¼ 1
1þ e−Si⋅W

:

We put the scripts for FWM construction and usage
in Additional file 7.
Additional files

Additional file 1: Figure S1. Essential gene prediction within and
between species by NBM and FWM. AUC distributions within species
(SPO - SPO) were generated by randomly selecting 20% (A), 50% (C) and 80%
(E) of SPO genes as training data and training-prediction set, respectively.
Whereas AUC distributions between species (SPO- SCE) were generated by
randomly selecting 20% (B), 50% (D), and 80% (F) of SCE genes as training-
prediction set to estimate weight vector W, respectively. The blue and red
lines represent the distribution obtained by NBM and FWM, respectively.

Additional file 2: Table S1. The fundamental information of 21
species. This table displayed the evolutionary relationships of 21 species,
the experimental methods for identification of essential genes, and the
growth conditions. Table S2. The AUC matrices of four methods. Each
matrix was obtained with the corresponding method. The AUC score in
the same position of matrices had the same training set and prediction
set. Table S3. The AUC order matrices of four methods. The AUC scores
(mij) in the same position of the four matrices were sorted and replaced
with numbers (1 was equivalent to the maximum AUC score, followed by

http://www.biomedcentral.com/content/supplementary/1471-2164-14-910-S1.pdf
http://www.biomedcentral.com/content/supplementary/1471-2164-14-910-S2.xls
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2 and 3, and 4 corresponded to the minimum score). We then calculated
the frequency of the ranking list (i.e., 1, 2, 3, and 4) in the four matrices.
The method which the corresponding matrix had more 1 or 2 was
considered better method. Table S4. The AUC scores with singular
feature in the predictions. Table S5. Comparing FWM and NBM in
stepwise discriminant analysis. We employed SDA to investigate AUC
variations by adding features one by one. The ‘Features’ column indicates
the sequence into the model. The ‘Singular AUC Score’ column indicates
the AUC score generated with only a feature in the model. The ‘Ranking’
column indicates the sorting of singular AUC score. The ‘W’ column
indicates the weights of the corresponding feature in FWM. The last two
columns indicate AUC variations with the additions of features).

Additional file 3: Essential genes dataset. We collected currently
available essential genes among a wide range of organisms, including 11
eukaryotes and 21 prokaryotes.

Additional file 4: Table S6. Introduction and reference about our
selected features. Figure S2. The distribution difference of DoC.
Figure S3. The distribution difference of DC. Figure S4. The distribution
difference of CCo. Figure S5. The distribution difference of CC.
Figure S6. The distribution difference of BC. Figure S7. The distribution
difference of PL. Figure S8. The distribution difference of CAI.
Figure S9. The distribution difference of NP. Figure S10. The distribution
difference of NS. Figure S11. The distribution difference of NEH.
Figure S12. The distribution difference of NNH. Figure S13. The
distribution difference of mE, mEF, and Age in SCE and SPO.

Additional file 5: Table S7. Comparison of domain enrichment
between the 19 bacteria and 2 fungi. We calculate the P-value using the
hypergeometric distribution, and Bonferroni method is used for multiple
hypothesis correction. Table S8. Comparison of Gene Ontology term
enrichment between S. cerevisiae and S. pombe. We calculate the P-value
using the hypergeometric distribution, and Bonferroni method is used for
multiple hypothesis correction.

Additional file 6: Calculation of the score vector Si for non-
continuous features.

Additional file 7: FWM script.
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