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Abstract

Background: The application of RNA-seq has accelerated gene expression profiling and identification of
gene-associated SNPs in many species. However, the integrated studies of gene expression along with SNP
mapping have been lacking. Coupling of RNA-seq with bulked segregant analysis (BSA) should allow correlation of
expression patterns and associated SNPs with the phenotypes.

Results: In this study, we demonstrated the use of bulked segregant RNA-seq (BSR-Seq) for the analysis of differentially
expressed genes and associated SNPs with disease resistance against enteric septicemia of catfish (ESC). A total of 1,255
differentially expressed genes were found between resistant and susceptible fish. In addition, 56,419 SNPs residing on
4,304 unique genes were identified as significant SNPs between susceptible and resistant fish. Detailed analysis of these
significant SNPs allowed differentiation of significant SNPs caused by genetic segregation and those caused by
allele-specific expression. Mapping of the significant SNPs, along with analysis of differentially expressed genes,

allowed identification of candidate genes underlining disease resistance against ESC disease.

Conclusions: This study demonstrated the use of BSR-Seq for the identification of genes involved in disease
resistance against ESC through expression profiling and mapping of significantly associated SNPs. BSR-Seq is
applicable to analysis of genes underlining various performance and production traits without significant
investment in the development of large genotyping platforms such as SNP arrays.
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Background

Performance is related to the subtle variation in gene ex-
pression and this relationship differs among individuals
[1]. In well-defined families, the first level of variation
comes from genetic segregation and recombination of
chromosomes. As a result of segregation and chromo-
somal recombination, each individual has different gen-
etic makeup. Upon a given genetic background, genetic
potential carried on DNA can only be realized when the
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genes are expressed. At the whole genome level, expression
of each gene is affected by its genetic regulatory elem-
ent as well as trans-acting factors including the impact
of environment. A composite of genes, transcriptional
regulation, post-transcriptional modification and regu-
lation, translational regulation and post-translational
modification and regulation, along with environmental
impact and genotype-environment interactions eventually
determines the phenotypes of individuals. When considered
at the whole genome level, expression of tens of thou-
sands of genes and combination of these genes make
the variation of performance traits extremely complex
with huge variability. The task of modern agricultural
genomics is to gain understanding of such variations
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and their relationship in determination of production
and performance traits.

Traditionally, genetic and molecular biological studies
are conducted to dissect these variables at different levels.
For instance, the effect of alleles can be dissected through
genetic and QTL mapping analysis [2-5]. Gene expression
can be analyzed using high throughput methodologies
such as microarrays and RNA-seq analysis [6-8]. Various
epigenetic regulations have also been studied to understand
the differences in gene expression with similar genetic
background. Such analyses have been very powerful in
determination of genetic and epigenetic factors affect-
ing performance and production traits [9-11].

However, performance and production traits are often
highly complex and the outcome of agricultural operations
is affected by variations at all levels. For example, genetic
background is very important because disease resistance
genes allow the organism to survive the serious infections
[12,13]. In most cases, disease resistance genes have
been studied through genetic linkage and QTL analyses
that allow the identification of genomic regions containing
disease resistance genes to be identified. Even with the
most powerful molecular approaches, analysis of complex
traits such as disease resistance can be extremely chal-
lenging. In 1991, Michelmore et al. developed a method
called bulked segregant analysis (BSA) to study disease
resistance in plants [13-20]. The basic idea of BSA was
that phenotypic extremes should have drastic differences
in genotypes. When samples are selected from phenotypic
extremes, say the best and the worst performers, and their
genotypes are analyzed in bulk, a correlation of genotypes
with phenotypes can be attained. In other word, the
variation among individuals may be quite subtle and
difficult to detect; however, the pooled samples (bulk)
of the phenotypic extremes should pose a strong con-
trast in their genotypes at the genomic location linked
to the trait. BSA has been used in numerous studies to
associate phenotypes with related genomic locations.

BSA has been evolving along with various types of
molecular markers including Restriction Fragment Length
Polymorphisms (RFLPs) [13], Random Amplified Poly-
morphic DNAs (RAPDs) [14], Simple Sequence Repeats
(SSRs, or microsatellites) [15,16], Amplified Fragment Length
Polymorphisms (AFLPs) [16,17] and Single Nucleotide
Polymorphisms (SNPs) [18]. With the development of
Next-generation sequencing (NGS) technologies, BSA
was first enhanced by the application of sequence-based
markers such as restriction-site associated DNA (RAD)
markers [21] and whole genome sequencing [22].

In recent years, the application of RNA-seq [7,8,23-27]
has allowed rapid and comprehensive understanding of
transcriptome level of variations. Coupling of BSA with
RNA-seq has led to the development of bulked segregant
RNA-seq (BSR-Seq), and it has been successfully applied
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in plants [28,29], but not yet demonstrated in animals.
Apparently, BSR-Seq possesses the advantages of both
BSA and RNA-seq, with the high throughput for deep
coverage of the transcriptome as well as the strong ability
to detect genetic differences underlining the traits. Such a
technique is best suited to organisms with high fecundity
such as many species of fish.

Catfish is the major aquaculture species in the United
States, accounting for over 60% of all US aquaculture
production. The two major cultivated catfish species
are channel catfish (Ictalurus punctatus) and blue catfish
(Ictalurus furcatus). An inter-specific hybrid (channel
catfish female x blue catfish male) has been popular for
aquaculture because of strong heterosis [30]. Not only
is the interspecific hybrid is popular for aquaculture, it is
also a superior system to study disease resistance because
of their strong phenotypic difference. Blue catfish is
extremely resistant against ESC disease while channel
catfish is relatively susceptible. Genetic linkage analysis of
F2 generation of the interspecific hybrids [31-33] would
allow identification of disease resistance/susceptibility
genes. In this study, we take advantage of BSR-Seq for the
analysis of disease resistant genes using the F2 generation
backcross progenies (F1 hybrid backcrossed with the
susceptible channel catfish) of the interspecific hybrids.
Here we demonstrate that BSR-Seq is capable of 1) reveal-
ing differentially expressed genes; 2) revealing positional
candidates containing genes related to disease resistance
after mapping SNPs on the whole genome; and 3) revealing
allele-specific expression after bacterial infection.

Results

Sequence assembly and analysis

RNA-seq was conducted using Illumina sequencing with
three pooled samples of resistant fish, susceptible fish,
and control fish. Each pooled sample contained equal
amount of RNA collected from 24 individuals. Each pooled
sample was barcoded such that reads from each of the
three samples can be traced and analyzed separately. A total
of over 400 million reads were generated with 151 million
reads from the resistant fish, 116 million from the suscep-
tible fish, and 132 million from the control fish. After qual-
ity trimming, a total of 374 million reads were carried
forward for analysis, with an average read length of 95.9 bp
(Table 1). Raw read data are archived at the NCBI Sequence
Read Archive (SRA) under Accession SRP028159.

The reads after quality trimming were assembled de novo
into 232,338 non-redundant contigs (including coding and
non-coding RNA) with a N50 contig length of 1,900 bp
and an average contig length of 825 bp. Of the assem-
bled contigs, over 51,000 had a length of over 1,000 bp.
The assembled contigs were analyzed by BLAST searches
to determine the gene identities of the contigs. Of the
232,338 contigs, 55,130 had hits to 22,126 unigenes, of
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Table 1 Summary of lllumina sequencing of the catfish liver transcriptome with extreme phenotypes after ESC infection

Control Susceptible Resistant Total
Number of reads 132,406,228 116,652,262 151,256,664 400,315,154
Read length (bp) 100 bp 100 bp 100 bp 100 bp
Number of reads after trimming 123,437,613 110,344,258 140,669,530 374,451,401
Percentage kept after trimming 93.2% 94.6% 93.0% 93.5%
Average read length after trimming 95.8 bp 96.0 bp 95.8 bp 95.9 bp

which 15,599 were known genes and 6,527 were hypo-
thetical genes (Table 2).

Differentially expressed genes after infection
Differentially expressed genes after infection in resistant
fish and susceptible fish were determined by comparing
their expression levels in RPKM (reads per kilobase of exon
model per million mapped reads) with that of the control
group. As summarized in Table 3, a total of 224 genes were
differentially expressed in the resistant group as com-
pared with the control group. A significant fraction of
the differentially expressed genes in resistant fish were
highly regulated, with 42 genes (18.8%) being up- or
down-regulated 10-fold or more, and 21 additional genes
up- or down-regulated 5-10 fold (Table 3).

Although a relatively small number of genes were differ-
entially expressed in resistant fish, a large number of genes
were differentially expressed in susceptible fish, with a total
of 1,240 genes being differentially expressed (Table 3).
Not only the number of differentially expressed genes
was drastically more in susceptible fish, the number of
highly regulated genes was also much greater in suscep-
tible fish, with 233 genes being up- or down-regulated
10 folds or more, and additional 287 genes were up- or
down-regulated 5-10 folds (Table 3).

Table 2 Summary of de novo assembly of the catfish liver
transcriptome with infection of ESC generated by
lllumina sequencing and assembled with Trinity

Number of non-redundant contigs 232,338
Large contigs (=1,000 bp) 51,601
Length of the largest contig 18,759 bp
N50 size 1900 bp
Average length of non-redundant contigs 825 bp

% reads mapped to the final reference 91.68%
Number of contigs with hits 55,130
Unigene matches 22,126
Known gene matches 15,599
Unknown hypothetical gene matches 6,527

Contigs were used as queries for BLAST searches against Zebrafish and NR
protein databases. The cut-off value for gene identity was set at e-value < 1e”.

Comparison of gene expression in resistant fish and
susceptible fish after infection

Although a small number of genes were differentially
expressed in resistant fish when being compared with
the control fish, a large number of genes exhibited dif-
ferential expression in resistant fish when being com-
pared with the susceptible fish. A total of 1,255 genes
were differentially expressed in resistant and suscep-
tible fish, with 528 genes expressed significantly higher
in resistant fish than in susceptible fish and 727 genes
expressed significantly lower in resistant fish than in
susceptible fish (Additional file 1: Table S1). Of the
genes expressed significantly higher in resistant fish, 4
genes were expressed over 100 times more than in sus-
ceptible fish; 19 were expressed 50—-100 times more
than in susceptible fish; 86 were expressed 10-50 times
more than in susceptible fish (Table 4, Figure 1). Of
the genes expressed significantly lower in resistant fish,
2 genes were expressed over 100 times less in resistant
fish than in susceptible fish; 10 were expressed 50—-100
times less in resistant fish than in susceptible fish; 86
were expressed 10-50 times less in resistant fish than
in susceptible fish (Table 4, Figure 1).

Identification of SNPs and significant SNPs

SNPs were identified by alignment of short reads to the
reference assembly of the RNA-seq. In order to be qualified
for SNPs, at least 6 reads were required for each group
(resistant, susceptible, or control) and a total of minor
allele reads count must be greater than 3 among three
groups. Using software Popoolation 2, a total of 513,371
SNPs were identified. In order to be sure the identified
SNPs were properly identified, a second software package,
VarScan 2 [34] was also used. A total of 482,035 SNPs
were identified. The difference was caused by differences
in cutoff of quality scores of sequence reads by the two
programs. Although the total numbers of SNPs identified
by the two software differed by approximately 6%, the
vast majority (465,537 SNPs, 96.6%) of SNPs identified
by the two software were identical. These SNPs were
located within 31,646 contigs. In order to determine SNPs
with significant difference in allele frequencies between
the resistant and susceptible fish (significant SNPs), Fisher’s
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Table 3 Analysis of differentially expressed genes (fold change >2, p < 0.05) after infection with Edwardsiella ictaluri

Total Up-regulated Down-regulated Fold change>5 Fold change > 10
Number of genes differentially expressed in resistant fish 224 130 94 63 42
Number of genes differentially expressed in susceptible fish 1,240 771 469 520 233
Regulated genes only in resistant fish 89 57 32 43 35
Regulated genes only in susceptible fish 1,093 682 411 464 200

Exact test was initially performed. As shown in Table 5,
56,419 SNPs were identified as significant SNPs. These sig-
nificant SNPs were located in 11,249 contigs. Of the 11,249
contigs, 5,480 had significant hits to known genes, and
the remaining probably represented contigs assembled
from 5'- and 3’-untranslated regions or from long non-
coding RNAs. The 5,480 contigs with hits to known
genes represented 4,304 unique genes harboring 34,584
SNPs (Additional file 2: Table S2).

Bulk frequency ratios

Although significant SNPs identified through RNA-seq
analysis reflect the final ratios of different alleles at the
RNA level in the two bulked samples, statistical analysis
for significant SNPs using Fisher’s Exact test was only
the first step for screening SNPs that may be significantly
associated with the trait. In order to compare the SNP al-
lele frequencies more directly, bulk frequency ratios (BFR)
were generated from the RNA-seq data between the two
bulks, the resistant fish and the susceptible fish. The BFR
of genes were determined by the maximum BFR of the
significant SNPs generated from the Fisher’s Exact test lo-
cated in this gene. As shown in Figure 2, large proportion
of genes containing the significant SNPs had a BFR of at
least 2. A total of 359 genes had a BFR equal or greater

Table 4 Comparison of gene expression between
resistant fish and susceptible fish after infection with
Edwardsiella ictaluri

Differentially expressed genes between resistant 1,255
and susceptible fish
Gene expressed higher in resistant fish 528
>100 fold 5
50-100 fold 18
10-50 fold 86
5-10 fold 94
2-5 fold 325
Genes expressed lower in resistant fish 727
>100 fold 2
50-100 fold 10
10-50 fold 86
5-10 fold 159
2-5 fold 470

These genes are listed in Additional file 1: Table S1.

than 4. Among these genes, 337 (93.9%) genes had a
BFR of 4-16; 23 genes had a BFR over 16; and 4 genes
had a BFR over 32 (Figure 2). The four genes had the
highest BER are multidrug resistance-associated protein 5,
tumor suppressor candidate 5 homolog (Interferon-
induced transmembrane protein), uncharacterized protein
LOC101157921, and DnaJ subfamily A member 2. The
additional 19 genes with the largest BER of over 16 are
myoglobin, cytosolic phospholipase A2, metalloreductase
STEAP?2, suppression of tumorigenicity 5 protein, protein
G7c-like, Beta-tubulin, purine nucleoside phosphorylase 4b,
EF-hand domain-containing protein D2, Serum amyloid
P-component precursor, plasminogen activator inhibitor
1 precursor, si:dkey-269d20.3, transmembrane protein
C9orf125, MHC class II beta, bone morphogenetic protein
la, interferon-induced very large GTPase 1-like, aldehyde
dehydrogenase family 9 member A1-A, CC chemokine
SCYA108, RNA-binding protein 8A and 40S ribosomal
protein S3a (Figure 2). A list of the genes with various
BER values were listed in Additional file 3: Table S3.

Genes with large BFR caused by genetic segregation

As RNA-seq data is analyzed in terms of RPKM at the
RNA level, the allele ratios obtained by RNA-seq are
compounded by two factors: the genotype allele frequen-
cies at the DNA level and the relative expression levels
of the two alleles at the RNA level. For instance, the two
alleles may have very different genotype allele frequen-
cies in the two bulked samples, and in these cases, even
if the expression is not regulated at the transcriptional
level, the final ratio of the two alleles between the bulked
samples are expected to be different. However, if one of
the two alleles is differentially regulated, the final allele
ratio at the RNA level would be different from the allele
ratio at the DNA level.

In order to differentiate SNPs with large BFR caused by
genotype allele frequency difference from those with large
BFR caused by allele-specific expression, the ratio of the
two alleles was analyzed with combined bulk of both
resistance and susceptible bulks. Theoretically, now the
combined bulk should include alleles at expected segrega-
tion ratios without any connection with the phenotypes.

If the large BER is caused by different allele frequencies at
the DNA level in the two bulks but not by allele-specific ex-
pression, the ratio of the two alleles in the combined bulk
(resistant bulk plus susceptible bulk) should be relatively
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Figure 1 Volcano plot of genes differentially expressed between resistant and susceptible fish. The dots located in the positive area stand
for genes expressed higher in resistant fish, and dots located in the negative area stand for genes expressed higher in susceptible fish. As shown
in graphic symbol, different color were used to scale different expression fold changes; purple stands for expression fold changes higher than
100-fold; red stands for expression fold changes from 50-100 fold; light blue stands for expression fold changes from 10-50 fold; green stands for
expression fold changes from 5-10 fold; blue stands for expression fold changes from 2-5 fold; and gray stands for gene expressed insignificantly
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small and predictable with the family structure. For in-
stance, at an AA x AG SNP site in a single family, the
progenies should have a 3A:1G allele frequency at the
genomic level. However, the situation is more complex
if more than one family is used. Nevertheless, the largest
allele ratio at the DNA level can still be predicted. For

instance, if two families are used as in this study, at an SNP
site, the largest possible allele ratio at the DNA level is 7:1,
i.e, AA x AG in one family, and AA x AA in the second
family, where the largest possible allele ratio at the DNA
level is 7A:1G. Any other combinations would result in a
smaller combined allele ratio at the DNA level (Table 6).
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Table 5 Identification of SNPs and significant SNPs
(allele frequencies statistically different between the
resistant and susceptible groups) from the assembled
catfish liver transcriptome

Total number of SNPs 513,371
Number of contigs containing SNPs 31,646

Number of significant SNPs 56,419 (10.99%)
Number of contigs containing significant SNPs 11,249

Number of contigs with significant hits to genes 5480

Number of genes containing significant SNPs 4,304

Number of genomic scaffolds containing 2,096

significant SNPs

Therefore, we differentiated the large BFR caused by
genetic segregation and those caused by allele-specific
expression based on the combined allele ratio of the
resistant and susceptible bulks. While those large BFRs
with very large combined allele ratios are likely caused,
at least in part, by allele-specific expression, and those
large BFRs with small combined allele ratios are likely
caused by genetic segregation, the BFRs in the transitional
zone could be caused by both genetic segregation and
allele-specific expression (Figure 3).

Of the 359 genes with large BFR (>4), 347 had a com-
bined bulk allele ratio of 7 or less. The vast majority of
these had a combined bulk allele ratio of 1-3, suggest-
ing that the large BFR of these genes were not caused
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by allele-specific expression, and likely caused by gen-
etic segregation.

Genes with large BFR caused by allele-specific expression

As shown in Figure 3, a large number of genes harboring
significant SNPs had a significantly higher combined allele
ratio, with 286 genes had an allele ratio of greater than 9:1
(genes above the threshold of 9 in Figure 3). Considering
that most of the genes with BFR >4 had a combined allele
ratio of 1-3 (see above and Figure 3), many of the genes
with combined allele ratio of greater than 9 could be caused
by allele-specific expression. On the cautious side, even in
the extreme cases of 7:1 allele ratios at the DNA levels,
twice the largest possible allele ratio at the DNA level
should be 14:1. As shown in Figure 3, after the fisher’s exact
test on the significant different level between the two alleles
on the genes with allele ratio > 14, 98 genes had a combined
allele ratio of greater than 14 with FDR p-value smaller
than 0.05, indicating that these large allele ratios are caused,
at least in part, by allele-specific expression. A list of these
allele-specific expressed genes was provided in Additional
file 4: Table S4. Of the 98 genes with high combined allele
ratios, 4 genes were with BFR higher than 4 and allele
ratio higher than 14. They are plasminogen activator
inhibitor 1, interferon-induced very large GTPase 1-like,
uncharacterized protein LOC101157921 and CC chemo-
kine SCYA108. Apparently, these large combined allele
ratios were caused both by genetic segregation and by
allele-specific expression.
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Table 6 Allele ratio combination in two families

1st family/2nd family AA xAA AA x AG AG x AG
AA X AG 7:1 31 53
AG x AG 31 53 11
AA x AA - 71 31

Location of genes with high bulk frequency ratio (BFR)
To determine the genomic location of SNPs with high
levels of BER, genes containing SNPs with high BFR
(BRF > 4) were initially used as query for BLAST searches
against the draft catfish genome sequence scaffolds in
relation to the linkage map. A total of 354 genes were
identified to contain significant SNPs with high BFR
(Additional file 3: Table S3). BLASTN searches were
conducted to determine the locations of the 354 genes
on the scaffolds of the catfish genome draft sequence
(unpublished data), and they were found to be within
201 genomic sequence scaffolds. Of the 201 scaffolds, 134
can be located in linkage groups, and the remaining
cannot be located on linkage groups because no markers
from these scaffolds were mapped.

In order to further analyze the linkage disequilibrium
(LD) and to reduce the possibility of false positives, we
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placed additional stringent parameters including SNPs with
BER =5, along with combined bulk allele ratio <4 (to assure
that the high BFR is likely caused by genetic segregation)
and the FDR adjusted p<0.001 for significant SNPs. As
shown in Figure 4, eleven LG potentially harbor genes with
significant SNPs. However, with only two families used in
the study, if a gene is truly involved in resistance, long
stretches of genomic segments are expected to be in LD
because of genetic linkage. Therefore, the locations and
distributions of genes containing significant SNPs with the
following characteristics were further analyzed: 1) at least
5 genes were involved in the LG with significant SNPs; 2)
or if the genes with significant SNPs were fewer than 5, at
least one SNP has a BEFR equal or greater than 10. Using
this set of criteria, eight LG appeared to harbor QTLs
involved in ESC disease resistance. These LG were LG 1,
3,6,9, 15,17, 18, and 25. Of these eight LG, six contained
genes with SNPs having BER > 10 (Figure 4). Of the eight
LGs, LG6, 15, and 17 had the largest numbers of genes
with significant SNPs.

Detailed distributions of genes within LG were deter-
mined by locating the genes on the scaffolds along the
linkage group. As shown in Figure 5, in LG6, SNPs within
the von Willebrand factor A domain-containing protein
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Figure 3 Genes harbouring significant SNPs, plotted by their combined allele ratios versus rank of RPKM. Red dots represent genes with
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7-like (G7c-like) gene had a very high BFR (17.8), and the
nearby genes had a much lower BFR, suggesting that the
resistant gene(s) were near the G7c-like gene. In LG 15,
the SNP with the highest BFR was found in the middle of
LG15 within the acidic chitinase-like gene, and BFR values
in surrounding genes were gradually lower along both
sides of the LG, suggesting tight linkage of the resistance

gene(s) near the acidic chitinase gene (Figure 6). In LG17,
one SNP was found to have extremely high BFR (45.3)
within the DnaJ subfamily A member 2 gene (homologue
of HSP40). BFR values of SNPs within genes left of the
Dna]J subfamily A member 2 gene dropped sharply, but no
genes with high BFR values were found on the right side
of the DnaJ subfamily A member 2 gene (Figure 7).
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Parental origin of highly expressed alleles

As blue catfish is generally more resistant to ESC disease
than channel catfish, an interesting question to ask is
which allele was preferentially expressed after ESC in-
fection within the backcross progenies used in this
study. We therefore attempted to analyze the parental
origin of the alleles for the genes with high combined
allele ratios. As shown in Figure 8, a total of 98 genes
harboring SNPs with combined allele ratio of 14 or greater
were identified. Of these, the parental origins could be de-
termined for 18 genes with existing genome information,
while the parental origin of the remaining 80 could not be
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determined. Of the 18 genes, 11 were of channel catfish
origin and 7 were of blue catfish origin. Of the 11 genes
preferentially expressed with channel catfish alleles, six
were expressed high in resistant fish and five were
expressed highly in susceptible fish. Similarly, of the 7
genes preferentially expressed with the blue catfish alleles,
four were expressed highly in resistant fish while 3 were
expressed highly in susceptible fish (Figure 8).

Discussion
In this study, we conducted BSR-Seq [28,29] by combining
the NGS-based RNA-seq [25] with bulk segregant analysis
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Figure 8 Genes harbouring significant SNPs, plotted by their combined allele ratios versus the rank of RPKM. Red dots stand for genes
with the preferentially expressed allele expressed higher in resistant group and their parental origin unknown; Solid red triangles stand for genes
with the preferentially expressed allele expressed higher in resistant group and their parental origin being channel catfish; Unfilled red triangles
stand for genes with the preferentially expressed allele expressed higher in susceptible group and their parental origin being channel catfish;
Solid blue triangles stand for genes with the preferentially expressed allele expressed higher in resistant group and their parental origin being
blue catfish; Unfilled blue triangles stand for genes with the preferentially expressed allele expressed higher in susceptible group and their
parental origin being blue catfish; and green dots stand for genes with the preferentially expressed allele expressed higher in susceptible group
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[35] for the analysis of genes involved in disease response
and disease resistance against enteric septicemia of catfish
(ESC). Such a simple combination of RNA-seq and BSA
analysis allowed identification of differentially expressed
genes, localization of disease resistance-related genes in
linkage groups by mapping SNPs on the whole genome,
and analysis of allele-specific expression.

BSR-Seq carried the full capability of RNA-seq that
allowed identification of differentially expressed genes.
Comparison of expression in resistant fish pool and sus-
ceptible fish pool with the control allowed the identifi-
cation of differentially expressed genes after infection. A
total of 1,240 and 224 genes were identified to be dif-
ferentially expressed after ESC infection in susceptible
fish and resistant fish, respectively. In the susceptible
fish, many of the up-regulated genes represent the acute
phase response protein genes, as previously reported
[36,37]. Apparently, microarray studies were limited to
the gene probes existing on the array, while RNA-seq
analysis has the ability to detect all induced genes, de-
pending on their expression levels. Clearly, the greater
numbers of genes identified from this study after infec-
tion indicated that RNA-seq is more sensitive than the
microarray analysis. Although RNA-seq analysis was
also previously conducted after ESC infection [38], the
tissues were different in these studies. In the work of Li
et al. [38], intestine tissue was used, while liver was
used in this study. Nevertheless, many of the differen-
tially expressed genes identified here in the liver were
among the differentially expressed genes in the intes-
tine, as well as those identified in the microarray stud-
ies. For instance, the acute phase response (APR) genes
such as CC chemokines, Toll-like receptors, comple-
ment component proteins, catechol-O-methyltransferase
domain containing 1, apolipoprotein proteins, fibrino-
gens, angiotensinogen, MHC class I and II, Tumor ne-
crosis factors were all found to be up-regulated, as
found previously [36,37].

The use of phenotypic extremes, resistant and susceptible
fish, allowed comparison of expression patterns of genes
involved in immune responses, although the time point
was quite different. For instance, a number of immune-
related genes were found to be expressed higher in resist-
ant fish than in susceptible fish including apolipoprotein
A 1V, apolipoprotein Ab, apolipoprotein Eb, apolipo-
protein Bb, apolipoprotein B100, apolipoprotein M and
complement component 1q (C1lq), complement compo-
nent 1 s (Cls), complement component 3, complement
component 3a, fibrinogen alpha, fibrinogen gamma, MHC
class I, and MHC II. These genes expressed at higher
levels in resistant fish could indicate their importance
in the related disease resistance. Apolipoproteins have
been shown to be important for disease resistance in
mice [39-41] and chickens [42,43].
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Apparently, a much larger number of differentially
expressed genes were identified in susceptible fish than
in resistant fish as compared with the control. We be-
lieve that much of this difference was caused by the
different sampling time (3—5 days versus 2 weeks) be-
tween these two groups. As heavy mortalities occurred
4-6 days after infection, the vast majority of differen-
tially expressed genes in susceptible fish represented
the massive responses of the host against the infection
including the acute phase proteins and genes involved
in inflammation and immune responses [44,45]. In
contrast, the resistant fish samples were collected two
weeks after infection from the survivors. As such, these
resistant fish were either “resistant” or not infected, or
may have cleared the bacteria from their system. The
massive host responses to infection may have been over
by the time of two weeks after infection.

In addition to its ability to identify differentially
expressed genes, BSR-Seq carried the ability to iden-
tify significant SNPs between the pools of very strong
phenotype contrast. Localization of the significant SNPs
along the chromosomes should allow identification of
positional candidate genes responsible for the trait. In
this study, use of F2-generation backcross progenies,
when coupled to pooling of samples from phenotypic
extremes, allowed analysis of significant SNPs between
the resistant and susceptible fish. We initially identified
a set of significant SNPs between the two bulks using
Fisher’s Exact test. It’s the first step to remove the SNPs
not relevant to the target trait in this study, by setting
the FDR adjusted p-value <0.05 as the cutoff to identify
the significant SNPs and reduce the computation in-
tensive in the downstream analysis. And the BER of the
SNPs with FDR adjusted p-value > 0.05 were from 1 to
2.38, which indicated that non-significant SNPs won’t
affect the assignment of gene-level BFR. Although Fisher’s
Exact test is technically suitable for the binary SNP
markers, it is compromised by the expression levels.
Because the “allele frequencies” were called at the RNA
level, highly expressed genes had much lower p-values
(Figure 9). Therefore, p-values were used only as the
initial step for the identification of positional candidate
SNPs linked with resistance QTLs.

One gene can harbor many SNPs, but not all of them
are relevant to disease resistant. The low BFR of a SNP
means the allele frequency of that SNP is similar be-
tween the susceptible group and resistant group, and
such SNPs are irrelevant SNPs in relation to disease re-
sistance. As to the fact that different SNPs within a sin-
gle gene can have different BFR, there may be several
explanations including: 1) although the number of se-
quences from each allele at an SNP site should be pro-
portional to the “allele frequency”, that may not be the
case practically, simply because the sequencing depth is
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limited; 2) We are dealing with pooled samples from two
families that were derived from interspecific hybrids.
Therefore, there are SNP sites that are polymorphic only
within channel catfish, only within blue catfish, poly-
morphic in both channel catfish and blue catfish, or not
polymorphic within channel catfish or blue catfish, but
are polymorphic between the two species. Thus allelic
ratios at different SNP sites are expected to be different.
Given such complexities, it is reasonable to use SNPs
with the highest BFR within each gene. In contrast, ei-
ther use of median or mean BFR or use of all the SNPs
for each gene may bring irrelevant SNPs into the consid-
eration for the analysis of SNP localization, which can
lead to the underestimate of the BFR in the candidate
region or even miss the candidate region due to the in-
correct decay pattern of LD. In addition, it is worth to
mention that we used pooled sample for the BSR-seq,
which could induce the difficulty to the assessment of
the within-group variance, however, this is the innate
limitation of the Bulked segregant analysis. Currently,
there is no optimal resolution to avoid this limitation,
but some studies claimed that this flaw will not cause a
serious bias in the pooled sample RNA-Seq analysis [7].

Bulk frequency ratio (BFR) was previously used as an
effective parameter for genetic analysis in BSA or BSR-Seq
[28]. However, in those cases, genotypes were determined
using DNA. Here in this study, the “allele frequency”
was calculated from the mapped reads of RNA samples,
and thus the calculated BFR could be compromised by
allele-specific expression. In order to identify positional
candidates for resistance using transcriptome datasets
generated from BSR-Seq, we need to differentiate allele
frequencies caused by genetic segregation and those
caused by allele-specific induction/suppression: Significant
SNPs with large BER and small combined allele ratio are
likely to be caused by genetic segregation; significant SNPs

with small BFR but large combined allele ratio are likely
caused by allele-specific expression, while significant
SNPs with large BER and large combined allele ratios
may have been caused by both genetic segregation and
allele-specific expression. For instance, if the allele ratio
at an A/G SNP site is 10 to 1 in resistance pool, and 1
to 10 in susceptible pool, the BFR should be 10. When
the two bulks were combined, now the allele ratio of A/G
is 11:11 = 1. This SNP, with a high BFR and a low com-
bined allele ratio, should be a SNP with allele frequency
difference between the bulks caused by genetic segrega-
tion. In contrast, when one of the two alleles is differ-
entially up-regulated, the combined allele ratio will stay
large. For instance, at an A/G SNP site, if A is signifi-
cantly up-regulated in the resistant fish, say 100A:5G,
and in susceptible fish, A and G are roughly expressed
equally, both at low levels, say 5A:5G. In this case, the
BFR = (100/105)/(5/10) = 1.91; when the two bulks are
combined, the combined allele ratio would be 10.5. Ap-
parently in this case, the large allele ratio is caused by
allele-specific expression.

In this study, each bulk was made of 24 fish with 12
fish from one family and 12 fish from a second family.
As the exact allele ratio at each SNP site is unknown in
the two families, we made several assumptions for the
analysis of SNPs due to genetic segregation and those
due to allele-specific expression. At an A/G SNP site,
the parent in one family could be AA x GG, AA x AG,
or AG x AG. In these cases, the largest allele ratio can
be 3:1 (in the case of AA x AG) at the DNA level. When
two families were used, as in this study, the largest allele
ratio at the DNA level could be 7:1, i.e,, AA x AG in one
family, and homozygous AA x AA in another family.
Any SNPs with significantly larger combined allele ratio
than 7:1 would suggest allele-specific expression. We iden-
tified SNPs with combined allele ratio of greater than 14
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(twice the largest possible allele ratio at the DNA level) as
being allele-specifically expressed. Apparently, many SNPs
fell between the two possibilities, and to obtain reasonable
assessment of those caused by genetic segregation and
those caused by allele-specific expression, we neglected
those ones between the two possibilities (Figure 3).

True linked SNPs are characteristic in that many sig-
nificant SNPs can be observed in nearby genomic loca-
tions because of genetic linkage. In catfish, the whole
genome sequence assembly is still under way. We there-
fore, mapped the significant SNPs to scaffolds and then
examined the patterns of the SNP distribution. Within a
QTL region, statistical significance should be the high-
est with the gene underlining the performance trait, and
LD should decay gradually on both sides of the chromo-
some surrounding the gene [44]. In our study, quite
many significant SNPs were located on unmapped scaf-
folds, but many were also mapped to genetic linkage
groups including LG6, LG15, and LG17 that included at
least 10 genes with high BFR (>5) and low combined
allele ratio (<4). As shown in Figures 5, 6, and 7, the LD
appeared to be decaying around the most significant
SNPs, suggesting that these genomic regions indeed
contain resistance-related genes. For instance, in LG6,
the gene containing the most significant SNP was pro-
tein G7c-like gene located at the 24 Mb position, and
the BER values on both sides of this gene were signifi-
cant, but lower than BFR within the G7c-like gene
(Figure 5). Similarly, the gene containing the highest
BFR was acidic chitinase-like gene that located in the
middle of a 23 Mb DNA in LG15, and the BFRs were
lower on both sides along this LG (Figure 6). In LG17,
the SNPs with highest BFR was located within the DnaJ
subfamily A member 2 gene close to the end of the
12 Mb DNA in LG17, and the BER on both sides were
lower (Figure 7). It was unknown if the detected genes
with the highest BER were themselves involved in dis-
ease resistance. This was because some linked genes
with even greater BFR were not yet mapped to the link-
age group, staying as isolated scaffolds, and therefore
cannot be viewed under the same “Manhattan plot”, or
because the expression level of the real disease resist-
ance gene was so low that it was not detected under
the BSR-Seq analysis.

One logical thought is that if one gene is truly involved
in disease resistance, it should be correlated with positional
candidate genes as well as expression candidate genes.
In other words, it should be differentially expressed ei-
ther between resistant and susceptible fish or differen-
tially expressed after infection, and located at a genomic
location the resistance phenotype is mapped. A cross
examination of differentially expressed genes and genes
with high BFR but low combined allele ratio allowed
identification of 17 genes (Table 7). Only four of these 17
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genes have been mapped to linkage groups, whereas the
remaining 13 were just mapped to isolated scaffolds.
Further mapping studies are required to determine how
many QTLs are involved. These genes included some
important immune function related genes such as the
NLR, MHC-related genes, and Mannan-binding lectin
serine peptidase. Regardless of their direct involvement
in the disease resistance, the importance of these genes
in resistance and immune responses to ESC should not
be neglected. Additional research is warranted to deter-
mine if these genes are responsible for the resistance
against ESC.

A total of 98 genes were identified as genes with allele-
specific expression (Figure 3). One obvious question is
what causes allele-specific expression (ASE). Two hy-
potheses were previously proposed to account for ASE
[45,46]. In the first hypothesis, mutations in cis-acting
DNA elements can cause differences in binding of trans-
acting factors, especially when such mutations are lo-
cated in the promoter or enhancer regions. Inversely,
mutations in the trans-acting factors would also cause
their differences in binding to their target sequence.
In the second hypothesis, epigenetic factors such as
differential methylation of the two alleles can cause
differences in expression levels. It has long been known
that mutations in non-coding regions which affect gene
expression can cause human genetic disease [45,47]. A
differentially expressed gene exhibits cis-acting variation
when the differential expression is caused by factors
linked to the differentially expressed alleles, such as dif-
ferences in promoter sequences or chromatin state. The
list of examples in which cis-acting regulatory variation
plays a key role in phenotypic variation are increasing
[45]. In vitro experiments prove that variants in gene
promoter regions effect rates of transcription and these
variants may also lead to a significant proportion of dif-
ferential allelic expression [46]. In addition, expressed
genes contain trans-acting variation when the differen-
tial expression is caused by factors unlinked to the dif-
ferentially expressed alleles, such as differences caused
by genetic background and regulatory networks.

The importance of DNA methylation as a driving factor
in allele specific expression has been claimed and proved
by a number of studies [46,48]. In these studies, a direct
correlation between allele specific expression and methyla-
tion was observed. Clearly, the different epigenetic state of
each haploid genome is a major factor in the expression of
the two alleles. Although X-chromosome inactivation
and silencing are usually considered to be mainly related
to epigenetic effect [49], some studies also suggested
that the change of gene regulation caused by epigenetic
modification of sequence variation might be a common
pathogenic mechanism in mammals [50]. One hypothet-
ical role for epigenetics is genetic imprinting leading to
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Table 7 Differentially expressed genes after infection with high bulk frequency ratios and low combined allele ratio

Gene BFR Combined Known function
allele ratio
Metalloreductase STEAP2 212 3 Regulates iron ion homeostasis and involved in endocytosis
Tumor suppressor candidate 5 homolog 340 23 Inhibits breast tumor formation in vivo
Protein G7c-like 178 32 Effect the susceptibility to lung tumors
Acidic chitinase-like 98 14 Participates in the defense against nematodes, fungi and bacteria.
Plays a role in T-helper cell type 2 (Th2) immune response.
Mannan-binding lectin serine peptidase 2 4.1 22 Lectin complement pathway actication
Inter-alpha-trypsin inhibitor heavy chain H4 43 13 Type Il acute-phase protein (APP) involves in inflammatory responses
to trauma. May also play a role in liver development or regeneration.
D-amino acid oxidase 43 18 Regulation of the glutamatergic neurotransmission; may play a role
in the glutamatergic mechanisms of schizophrenia
MAWD binding protein like 44 14 Inhibits proliferation and invasion in gastric cancer
Cytokeratin-like 45 15 Mediate epithelial innate defense through their antimicrobial properties
Spermidine/spermine N1-acetyltransferase 47 1 Involves in polyamine homeostasis
Stonustoxin subunit alpha-like 47 19 Induces hemolytic activities, displays edema-inducing activities, increases
vascular permeability and interferes irreversibly with neuromuscular function.
UDP-glucose 4-epimerase 48 18 Catalyzes the epimerization of UDP-glucose to UDP-galactose and the
epimerization of UDP-N-acetylglucosamine to UDP-N-acetylgalactosamine.
Major histocompatibility complex class | UDA 5.1 3.1 Play an important role in immune response and antigen processing and presentation
NLR-C8 59 14 Involves in the gram negative bacteria recognition. Against the intracellular pathogen.
MARCKS-like 1a 6.1 2.5 Most prominent cellular substrate for protein kinase C. It can bind calmodulin,
actin, and synapsin.
3-oxoacid CoA transferase 1a 70 13 Key enzyme for ketone body catabolism. Also plays and important roles in the
energy metabolism of spermatozoa.
MHC class Il beta chain 179 24 Involves in antigen processing and presentation of peptide or polysaccharide

antigen via MHC class Il

mono-allelic expression [51]. Both in vivo and in vitro
experiments indicate that allele-specific differences in
the rate of transcription are common existed, if not all
genes are likely to show differential allelic expression in
different individuals [46]. However, the role of ASE genes
in complex traits is still not clear.

Most ASE studies have been conducted in humans,
and no studies have been conducted in fish. In addition
to the above discussed possibilities, it is noteworthy that
we used an interspecific hybrid system in this study. In
the channel catfish backcrossed progenies, overall 50%
of chromosomes are “homozygous” from channel catfish
while 50% chromosomes are heterozygous with one
chromosome being from channel catfish and the other
from blue catfish. If a trans-acting factor is transcribed
from channel catfish genes, it would bind the cis-acting
elements from channel catfish with greater affinity, caus-
ing allelic expression. This could be another explanation
for the observed ASE.

The significance of the observed allele-specific expres-
sion in relation to phenotype is unknown at present. To
date, the majority of expression analysis focus on the total
amount of the transcripts. However, emerging evidence

underlies the importance of understanding the allele spe-
cific transcript in cases of disease [45,52]. In our studies
here, among the 98 allele-specifically expressed genes,
parental origin of alleles can be determine for only 18
genes. Among these 18 genes, the channel catfish allele was
expressed higher in 11 genes (six high in resistant fish and
five high in susceptible fish), and blue catfish allele was
expressed higher in 7 genes (four high in resistant fish and
three high in susceptible fish). There was no correlation of
resistance with a specific parent. However, it is possible that
certain combinations of alleles would warrant resistance
and certain combinations of alleles would lead to sus-
ceptibility. This clearly warrants future studies.

Conclusions

In this study, we demonstrated the application of BSR-Seq
to study disease resistance by combining RNA-seq with
bulk segregant analysis. It has the full capacity for the
identification of differentially expressed genes, the capacity
to identify significant SNPs between phenotypic bulks,
the capacity to potentially identify the positional candi-
date genes, and the ability to identify allelic expressed
genes. Among many differentially expressed genes, 17
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genes were also among the genes that had high BFR
and low combined allele ratio, suggesting that these genes
could be potentially involved in disease resistance.

Methods

ESC bacterial challenge

All procedures involving the handling and treatment of
fish used during this study were approved by the Auburn
University Institutional Animal Care and Use Committee
(AU-IACUC) prior to initiation. Four families of backcross
progenies (average size 35+ 1.3 g) were reared at the
Auburn University Fish Genetics Research Unit prior to
challenge. Fish were challenged in 500 L (400 L water)
aquaria with control group containing 400 fish (100 per
family) and treatment group containing 1200 fish (300 per
family). The MS-S97-773 isolate of E. ictaluri bacteria was
obtained from a natural outbreak and utilized in the
experimental challenge. Bacteria were re-isolated from
a single symptomatic fish and biochemically confirmed
by appearance (small, punctate white colonies) and through
biochemical assay (oxidase negative, fermentative in O/F
glucose or glucose motility deeps (GMD), triple sugar iron
(TSI) slant reaction K/A with no H,S, and negative for
indole production in tryptone broth). The confirmed
bacteria were then cultured in Brain Heart Infusion
broth (BHI) and incubated in a shaker incubator at 28°C
overnight. The concentration of the bacteria was deter-
mined using colony forming unit (CFU) per mL by plating
10 ml of 10-fold serial dilutions onto BHI agar plates. Dur-
ing challenge, 1000 mL bacterial culture with a concentra-
tion of 4 x 10* CFU/ml was added into the aquaria. Water
was turned off in the aquaria for 2 h of immersion expos-
ure, and then continuous water flow-through resumed for
the duration of the challenge experiment. Control group
was treated with same volume of brain heart infusion
(BHI) medium at the same time. During 3-5 days after
challenge, all dying fish with classical ESC clinic signs
were collected as susceptible fish from two families. After
two weeks of the challenge, all survival fish were collected
as resistant fish from the same two families. Also, the fish
in control group were collected at that time. The fish were
euthanized with tricaine methanesulfonate (MS 222) at
300 mg/1 before tissue collection.

Sampling and RNA isolation

Equal amount of liver tissue was used from each of the
72 fish (12 fish/family, 24 fish/group each for resistant,
susceptible, and control) used for RNA isolation. The tissue
samples were ground separately to a fine powder in the
presence of liquid nitrogen. Total RNA was extracted
using the RNeasy Universal Tissue Kit (Qiagen, USA).
The samples belonging to the same group were then
diluted to the same concentration and pooled together
prior to library construction.
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lllumina sequencing

Sequencing libraries were prepared with 2.14-3.25 pg of
starting total RNA and processed using the Illumina
TruSeq RNA Sample Preparation Kit, as dictated by the
TruSeq protocol. The library were amplified with 15 cycles
of PCR and contained TruSeq indexes within the [llumina
adaptors, specifically indexes barcode 1-3 to label the
three groups. The final, amplified library yields were 30 pl
of double-stranded product (19.8-21.4 ng/pl) with an aver-
age length of 275 base pair (bp), indicating a concentra-
tion of 110-140 nM. After quantitation performed using
KAPA Library Quant Kits (Kapa Biosystems, USA) and
dilution, the library were clustered 3 in one lane and
sequenced on a Hiseq 2500 instrument with 100 bp
paired end (PE) reads at the HudsonAlpha Genomic
Services Lab (Huntsville, AL, USA). The image analysis,
base calling and quality score calibration were processed
using Illumina Pipeline Software v1.5, and FASTQ reads
files containing the sequencing read, quality scores and
paired reads information were exported for the following
trimming and assembly process. Raw reads were proc-
essed for initial trimming by CLC Genomics Workbench
(version 5.5.2; CLC bio, Aarhus, Denmark). Adaptor
sequences, ambiguous nucleotides (N’ in the end of reads),
and low quality sequences (quality scores < 30 or read
length < 30 bp) were removed.

De novo assembly

As the primary algorithm used in RNA-seq assembly,
the de bruijn graph method was utilized in this study.
Trinity version 2013-02-25 was chosen in this study
due to its good performance [53]. Briefly, the raw reads
were assembled into unique sequences of transcripts in
Inchworm via greedy K-mer extension (k-mer 25). After
mapping of reads to Inchworm contigs, Chrysalis incor-
porated reads into de bruijn graphs and the Butterfly
module processed the individual graphs to generate full-
length transcripts. And then CD-hit [54] and CAP3 [55]
were used to remove assembly redundancy by setting
global sequence identity in CD-hit to 1, the minimal
overlap length and percent identity in CAP3 to 100 bp
and 99%.

Gene identification and annotation

The final Trinity assembly contigs were used as queries
against the NCBI non-redundant (nr) protein database
and the zebrafish protein database using BlastX by setting
the cut-off value (E-value, the likelihood that the matching
sequence is obtained by chance) of 1e”® and returning only
the top 10 hit results of each query. The top gene identifi-
cations and names were initially assigned to each contig.
“Hypothetical” or “uncharacterized” top BLAST results
were replaced by more informative hits from the top ten
lists when available.
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Transcript-level gene expression analysis of different groups
The modified assembly of Trinity including all unigenes
with blast hits was used as the pseudo-reference against
which trimmed reads were mapped for gene expression
analysis. Reads per kilobase of exon model per million
mapped reads (RPKM) [56] were calculated as the ori-
ginal expression value. The original expression values
were scaling normalized in order to ensure that sam-
ples were comparable [57]. The expression fold change
was calculated based on the modified expression value
between the infection and control groups. The Kals test
[58] was used to test the significance of the expression fold
change. The initial p-value were adjusted by False discovery
rate (FDR) method [59]. Analysis was performed using the
RNA-seq module and the expression analysis module
in CLC. The threshold of gene expression selection
was set to: FDR adjusted p-value <0.05, mapped reads >5,
weighted proportions of fold change > |2|, or unless other-
wise clarified for more stringent analysis.

Sequencing mapping and significant SNP identification
Sequencing mapping for SNP identification analysis was
performed using CLC Genomics Workbench (version 5.5.2;
CLC bio, Aarhus, Denmark). Trimmed sequence reads were
aligned against the Trinity assembly contigs. Mapping
of reads from each group to the reference sequence
was performed with mismatch cost of 2, deletion cost of
3 and insertion cost of 3. The highest scoring matches
that shared > 95% similarity with the reference sequence
across = 90% of their length should be included in the align-
ment. The non-unique mappings were removed. Finally, all
mapping results were converted to BAM format.

The initial SNP identification was conducted by the
rmdup and mpileup function of SAMtools version 0.1.18
[60]. PoPoolation2 version 1.201 [61] was used to call
the genotype at each variant with the lowest criteria setting
in order to get all possible real SNPs, SNP loci that has
more than 2 allele variants were discarded. Two factors that
are important for increasing quality of putative SNPs were
set based on the sequence error rate and total coverage: 1)
minimum reads in each group = 6, and 2) Total minor allele
reads count >3. SNPs that passed all the optimal factors
were considered as initial SNPs.

Significant SNPs were identified between resistant catfish
group and susceptible catfish group. SNPs which displayed
heterozygous genotype (allele variants =2 and minor allele
reads >2 in each group) were retrieved to test the difference
level of allele frequencies between resistant catfish group
and susceptible catfish group using two-tailed Fisher’s Exact
test [62]. The threshold was set as FDR p-value <0.05.

Analysis of bulk frequency ratios and allele specific expression
In order to compare the SNP allele frequencies more
directly, bulk frequency ratios (BFR) were generated
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from the RNA-seq data between the two bulks, the resist-
ant fish and the susceptible fish, as follows: the frequency
of informative base (the major allele of resistant fish) was
first calculated for resistant and susceptible bulks and then
BFR was equal to the ratio of these frequencies between
the bulks. The ratio of the two alleles was also analyzed
with combined bulks of both resistance and susceptible
fish (i.e. total count of one allele in both resistant and sus-
ceptible group divided by total count of the other allele) to
help classify the genes containing significant SNPs into
several categories: 1) The genes containing significant
SNPs with BFR >4 and allele ratio <9; 2) The genes con-
taining significant SNPs with BFR >4 and allele ratio > 14;
3) The genes containing significant SNPs with BFR <4 and
allele ratio > 14; 4) The genes containing significant SNPs
with BER <4 and allele ratio<9; 5)The genes containing
significant SNPs with allele ratio from 9 to 14. The genes
with BFR >4 and allele ratio <9 were defined as segregation
involved candidate genes, the genes with BFR <4 and allele
ratio > 14 were defined as allele specific expression (ASE)
involved candidate genes, and the genes with BFR >4 and
allele ratio > 14 were defined as both segregation and ASE
involved genes. An extra fisher’s exact test were used to
check the significant different level between the two alleles
on the genes with allele ratio > 14, by setting the expect
allele ration equal to 7:1 and FDR adjusted p-value < 0.05.
Analysis of parental origin of the alleles for the genes with
high allele ratio was then performed. The inter-species
SNPs database of blue and channel catfish [63] and the
parents’ genotype of two target families on SNP chip
(unpublished data) were used. The inter-species SNPs were
mapped to the genes containing significant SNPs with high
allele ratio (allele ratio > 14) to check whether they shared
the same position with the significant SNPs. The major
allele origin of mapped SNPs was labeled based on the
genotype information of the inter-specific SNPs.

Genomic location of ESC resistance-related genes

Genes harboring significant SNPs with BFR >5 and com-
bined allele ratio <4 were used as query to map to the whole
genome scaffold and linkage groups (unpublished data)
by BLASTN with e-value of 1e™°. The mapped scaffolds
were then located to the linkage groups by 2™ generation
catfish linkage map [33]. The linkage groups contain more
than 10 genes with significant SNPs and at least one gene
harboring significant SNPs with BER = 10 were identified
as potential genomic regions harboring candidate genes
for ESC resistance.
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