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Abstract

Background: Genome scale annotation of regulatory interactions and reconstruction of regulatory networks are
the crucial problems in bacterial genomics. The Lactobacillales order of bacteria collates various microorganisms
having a large economic impact, including both human and animal pathogens and strains used in the food
industry. Nonetheless, no systematic genome-wide analysis of transcriptional regulation has been previously made
for this taxonomic group.

Results: A comparative genomics approach was used for reconstruction of transcriptional regulatory networks in 30
selected genomes of lactic acid bacteria. The inferred networks comprise regulons for 102 orthologous transcription
factors (TFs), including 47 novel regulons for previously uncharacterized TFs. Numerous differences between
regulatory networks of the Streptococcaceae and Lactobacillaceae groups were described on several levels. The two
groups are characterized by substantially different sets of TFs encoded in their genomes. Content of the inferred
regulons and structure of their cognate TF binding motifs differ for many orthologous TFs between the two
groups. Multiple cases of non-orthologous displacements of TFs that control specific metabolic pathways were
reported.

Conclusions: The reconstructed regulatory networks substantially expand the existing knowledge of transcriptional
regulation in lactic acid bacteria. In each of 30 studied genomes the obtained regulatory network contains on
average 36 TFs and 250 target genes that are mostly involved in carbohydrate metabolism, stress response, metal
homeostasis and amino acids biosynthesis. The inferred networks can be used for genetic experiments, functional
annotations of genes, metabolic reconstruction and evolutionary analysis. All reconstructed regulons are captured
within the Streptococcaceae and Lactobacillaceae collections in the RegPrecise database (http://regprecise.lbl.gov).

Keywords: Transcriptional regulatory network, Comparative genomics, Carbohydrate metabolism, Lactobacillaceae,
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Background
Regulation of gene expression in response to external and
internal stimuli is a crucial mechanism for adaptation of
microorganisms to changes of environmental conditions
and intracellular states. In Bacteria, regulation of gene ex-
pression at the transcriptional level is usually mediated by
transcription factors (TFs) that recognize their cognate TF-
binding sites (TFBSs) in the promoter regions of regulated
genes. A set of target genes under direct control of a certain
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TF is defined as a regulon. All regulons in a single organism
establish the transcriptional regulatory network (TRN), a
fine-tuned system for complex regulation of gene expres-
sion in response to environmental changes and physio-
logical needs of the cell.
Reconstruction of TRNs in bacterial genomes involves

identification of regulatory interactions between target
operons and TFs that requires genome-wide definition of
all respective TFBSs. Various approaches for TRN recon-
struction have been developed including traditional
bottom-up genetic methods [1-3] and new top-down tech-
niques based on the large-scale expression data [4] and/or
automated inference of TFBS motifs [5-8]. On the other
hand, the growing number of available complete genomic
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sequences opens opportunities for comparative genomic
analysis of transcriptional regulation and subsequent TRN
inference (reviewed in [9,10]). This analysis can be effi-
ciently used for both propagation of known regulons to
previously uncharacterized organisms and for ab initio dis-
covery of novel regulons. Combination of the comparative
genomic-based regulon reconstruction with other genome
context analysis techniques and multiple available experi-
mental datasets define a knowledge-driven approach for
reconstruction of TRNs in a set of related bacterial gen-
omes. This approach has been successfully used for TRN
inference in two groups of related genomes including 16
Shewanella species [11] and six species from the
Staphylococcaceae family [12]. The comparative genomics
approach not only allowed us to reconstruct TRNs in mul-
tiple genomes but also resulted in prediction of functions
for previously uncharacterized genes.
In this study, we applied the knowledge-driven com-

parative genomic approach for reconstruction of TRNs
in lactic acid bacteria belonging to the Lactobacillales
order of the Firmicutes phylum. In spite of the large
number of complete genomes and huge economic im-
pact of this group (reviewed in [13-15]), most studies of
gene regulation in these bacteria are limited to individual
regulons in some model species; large-scale TRN recon-
structions were attempted for Lactobacillus plantarum
[16] and Lactococcus lactis [17]. On the other hand,
availability of complete genomic sequences and multiple
experimental data on gene regulation provide an oppor-
tunity for application of comparative genomic-based
techniques for reconstruction of TRNs in lactic acid bac-
teria. To reconstruct genome-wide TRNs in the set of 30
Lactobacillales genomes we used a modified approach
with three innovations. First, we subdivided the analyzed
group of genomes into two phylogenetically distinct
groups: the Streptococcaceae group including species
from the Streptococcus and Lactococcus genera, and the
Lactobacillaceae group that also includes two closely-
related genomes from the Leuconostocaceae family.
Second, to compose the initial training sets of TF-
regulated genes we used the available experimental data
on transcriptional regulation from 14 model species.
Third, the coordinated reconstruction of a large number
of TF regulons was carried out by a community of anno-
tators using the RegPredict platform [18] with subse-
quent curation and quality control. Using this combined
approach we reconstructed regulons for 102 orthologous
TFs, including 47 novel regulons predicted for the first
time in this study and awaiting further experimental
validation.

Results and discussion
We selected a set of 30 complete genomes in the Lacto-
bacillales order for TRN reconstruction. Based on the
phylogenetic species tree (Additional file 1) all studied
genomes were divided into two groups called the
Streptococcaceae and Lactobacillaceae. The Streptococca-
ceae family includes 13 Streptococcus spp. and 2 strains of
Lactococcus lactis. The second group includes 13 genomes
from the Lactobacillaceae family and 2 genomes form the
Leuconostocaceae family that are phylogenetically close to
each other [19].

Repertoire of TFs in Lactobacillales genomes
To estimate the scale and diversity of the TF mediated
regulatory networks in the Lactobacillales genomes, we
performed a genetic census of their putative DNA-
binding TFs using similarity search and the existing
prokaryotic TF compilations (Additional files 2, 3). The
total number of putative TFs varies broadly within the
Lactobacillales genomes, from ~60 in S. thermophilus
and L. helveticus to ~240 in L. plantarum and ~150 in S.
gallolyticus (Additional file 4).
The putative TFs identified in the Lactobacillales are

distributed between 49 protein families and about 90%
of these TFs belong to 24 major families with at least
two representatives per genome. The largest number of
TF representatives was observed for the Xre family (298
TFs total, ~19 TFs per genome). Among other large
families with more than 4 TFs per genome are the TetR,
GntR, MarR, OmpR, LacI, LysR, MerR and AraC fam-
ilies. Comparison of TF repertoires between the two
Lactobacillales groups reveals 42 TF families that have
representatives in both groups. Among the lineage-
specific TF families, three families (CodY, PF04394,
YobV) are present only in the Streptococcaceae, whereas
four families (LexA, SdaR, SfsA, ComK) are unique for
the Lactobacillaceae. Interestingly, the LexA and CodY
regulators are both present in the Staphylococcaceae,
Bacillaceae, and Enterococcaceae families of Firmicutes,
suggesting the family-specific loss of these TFs and their
regulons in the Streptococcaceae and Lactobacillaceae
families, respectively.
The entire set of 3445 TFs identified in 30 studied

genomes was broken into 596 orthologous groups in the
Streptococcaceae and 640 orthologous groups in the Lac-
tobacillaceae (Additional files 2, 3). The numbers of uni-
versal TFs present in all analyzed Streptococcaceae and
Lactobacillaceae genomes are 21 and 8, respectively
(Figure 1). At that, only 5 regulators are shared between
these two groups of universal TFs including the global
regulator for catabolite repression CcpA [20,21], the
copper uptake regulator CopR [22], the purine biosyn-
thesis regulator PurR [23], the redox control global regu-
lator Rex [12], and the aminosugar utilization regulator
NagR [24]. In each taxonomic group we defined all TFs
that are present in more than half of the analyzed gen-
omes as conserved TFs. Among the conserved TFs, 47
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Figure 1 Distribution of TF orthologous groups in studied genomes. (A) Distribution of TF orthologous groups in genomes. Conserved TFs
are present in more than half analyzed genomes within the lineage. Universal TFs are present in all genomes of the lineage. (B) Examples of
functional annotations for conserved TFs. TFs for which regulons were reconstructed are shown in bold, other TFs are underlined. TFs universally
conserved in at least one lineage of the Lactobacillales are highlighted in green.
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are shared by both studied lineages, whereas the Strepto-
coccaceae and Lactobacillaceae groups have respectively
22 and 12 conserved TFs that are lineage-specific. The
regulators of carbohydrate and amino acid metabolism
form the most populated functional group of conserved
TFs (Figure 1).
The studied two taxonomic groups of lactic acid bac-

teria demonstrate different distributions of orthologous
TFs. The fractions of universal and conserved TFs are sig-
nificantly higher in the Streptococcaceae than in the
Lactobacillaceae. On the other hand, the Lactobacillaceae
genomes are equipped by a confidently higher fraction of
sporadically distributed TFs that are present in 2 to 6 gen-
omes. Thus, the Lactobacillaceae are characterized by
higher variability of TFs orthologous groups than the Strep-
tococcaceae that is in correspondence with the larger
phylogenetic distances between species in the Lactobacilla-
ceae family (Additional file 1).

Reconstruction of regulons in two lineages of
Lactobacillales
A comparative genomic approach implemented in the
RegPredict Web server [18] was applied for regulon in-
ference in the Streptococcaceae and Lactobacillaceae
groups of genomes. Totally, 102 orthologous TF regu-
lons were reconstructed in the studied genomes
(Additional file 5). Initially we collected the published
experimental data on transcriptional regulation in model
Lactobacillales species (Additional file 5). Depending on
the availability of experimental data, we applied three
different workflows for regulon inference: (1) expansion
and projection of TF regulons previously characterized
in Lactobacillales, (2) the reconstruction of regulons for
TFs that have orthologs previously characterized in B.
subtilis or S. aureus, and (3) ab initio inference of regu-
lons for previously uncharacterized TFs (Figure 2).
A significant number of the studied Lactobacillales

genomes, including eight Streptococcus, two Lactococcus
and four Lactobacillus species, were considered as
model species with previously characterized TFs and
regulons (Additional file 5). By using workflow 1, we
propagated the previously established regulatory interac-
tions for 41 TFs in the model Lactobacillales species,
and predicted new regulon members by the comparative
genomics approach. Using workflow 2, we inferred regu-
lons for twelve TFs that have orthologs previously ex-
perimentally investigated in B. subtilis and two TFs that
were previously studied in S. aureus. Finally, using work-
flow 3, we predicted and described 47 novel TF regulons
(Figure 2). Thus, all TF regulons studied in this work are
either entirely predicted by computational analysis regu-
lons or partially predicted regulons with some regulatory
interactions supported by experimental data in model
species.
The resulting set of reconstructed regulons varies drastic-

ally between the individual genomes (Table 1). The average
number of reconstructed TF regulons per genome is 35.8,
whereas the minimal and maximal numbers are 18 and 46
that were inferred in L. delbrueckii and L. plantarum, re-
spectively (Figure 3). An average regulatory network of the
reconstructed TF regulons includes ~250 genes per
genome. The minimal number of genes in a reconstructed
TRN was observed in L. delbrueckii (69 genes), whereas the
maximal number of regulated genes in a network was in S.
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suis (366 genes). In summary, the number of regulated
genes in the reconstructed TF regulons is significantly
higher in the Streptococcaceae genomes. However, L.
plantarum from the Lactobacillaceae group has numbers
of TFs and target genes in the reconstructed TRN compar-
able with Streptococcaceae. The observed variability in
reconstructed TRNs of studied microorganisms can be
explained by multiple factors including the diversity of their
respective ecological niches and nutrient availability, and
different metabolic capacities of individual species.

Classification of reconstructed regulons by taxonomic
distribution
Distribution and properties of 102 TF regulons in 30
genomes of the Lactobacillales are summarized in
Additional file 5. In each of the two taxonomic groups,
the Streptococcaceae and Lactobacillaceae, we defined
TF regulons that are universal (i.e. present in all 15
genomes) and the remaining regulons with a mosaic dis-
tribution in the analyzed genomes (Table 2). Only five
regulons including the global regulons CcpA and Rex
were found to be universally conserved in both lineages.
Ten regulons that are universal in the Streptococcaceae
have orthologs with mosaic distribution in the
Lactobacillaceae. In contrast, no TF regulons appeared
in the group of regulons that are universal in the
Lactobacillaceae but mosaic in the Streptococcaceae. A
large set of 31 TF regulons that are mosaic in both lineages
contains regulons controlling different sugar utilization
pathways.
The remaining TF regulons reconstructed in this work

are present only in a single taxonomic group. Among 23
TF regulons present solely in the Streptococcaceae, the
CmbR, CodY and PipR regulons are universal, whereas the
others have a mosaic distribution in 15 analyzed genomes.
The SOS response regulon LexA is only linage-specific reg-
ulon that was identified as universal in the Lactobacillaceae,
whereas the remaining 20 lineage-specific TF regulons have
a mosaic distribution in this lineage.
In conclusion, 23 TF regulons are specific for the

Streptococcaceae, 33 regulons are present only in the
Lactobacillaceae and 46 regulons have orthologs in both
lineages. Thus, among the reconstructed regulons, the
Streptococcaceae group has significantly larger number
of universal TF regulons in comparison with the
Lactobacillaceae group.



Table 1 Statistics for reconstructed regulons in studied genomes

Genome TFs Target genes Target operons Regulatory interactions

Streptococcaceae L. lactis cremoris SK11 36 255 125 130

L. lactis lactis Il1403 34 244 128 138

S. thermophilus CNRZ1066 30 263 125 141

S. agalactiae 2603 V/R 38 340 159 186

S. uberis 0140 J 42 330 156 183

S. equi MGCS10565 42 334 143 167

S. dysgalactiae GGS_124 43 356 160 189

S. pyogenes M1 GAS 40 319 150 180

S. gallolyticus UCN34 41 328 167 199

S. mutans UA159 41 317 147 173

S. suis 05ZYH33 43 366 145 173

S. mitis B6 35 305 148 174

S. pneumoniae TIGR4 42 365 167 206

S. gordonii CH1 41 312 167 194

S. sanguinis SK36 43 339 163 191

Total 591 4773 2250 2624

Non-overlapping 1 69 779 397 470

Lactobacillaceae L. sakei 23 K 36 186 92 106

L. casei ATCC 334 41 226 110 120

L. rhamnosus GG 42 237 106 116

L. delbrueckii ATCC BAA-365 18 69 36 37

L. acidophilus NCFM 27 165 80 90

L. helveticus DPC 4571 21 91 53 55

L. johnsonii NCC 533 26 145 78 87

P. pentosaceus ATCC 25745 38 205 97 111

L. brevis ATCC 367 39 217 112 128

L. plantarum WCFS1 46 299 147 170

L. fermentum IFO 3956 30 172 85 101

L. reuteri JCM 1112 32 167 83 96

O. oeni PSU-1 25 109 59 70

L. mesenteroides ATCC 8293 32 202 89 103

L. salivarius UCC118 31 198 86 96

Total 484 2688 1313 1486

Non-overlapping 1 79 539 289 328
1Numbers of orthologous groups of TFs, genes and operons in lineage.
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Classification of reconstructed regulons by TF protein
families
The reconstructed regulons are controlled by TFs from 31
protein families. The mostly represented TF family in the
obtained set of regulons is the LacI family (26 regulons). As
expected, all LacI family regulons reconstructed in this
work controls different carbohydrate utilization pathways.
Another broadly represented TF family is GntR family
(13 regulons) that control carbon and amino acid metabo-
lisms and resistance to toxic compounds. TFs from the
TetR and MarR families (7 and 6 reconstructed regulons,
respectively) regulate genes involved in environmental
adaptation, multidrug and heavy metal resistance and fatty
acids metabolism. The reconstructed regulons from the
RpiR family control various carbohydrate utilization path-
ways (5 regulons), whereas the predicted AguR regulon
controls the agmatine utilization pathway. The BglR and
DeoR families of TFs include respectively 6 and 5 regulators
that control carbohydrate catabolism. Three regulons oper-
ated by TFs from the LysR family regulate the cysteine/
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methionine metabolism, whereas one regulon (MleR) con-
trols the malonate utilization pathway.

Classification of reconstructed regulons by function
The functional gene content was assessed for each recon-
structed TF regulon to tentatively predict its possible
biological function and molecular effector. Metabolic re-
construction of the respective biochemical pathways and
prediction of functions of co-regulated genes were per-
formed using the subsystem-based approach implemented
in the SEED genomic platform [25,26]. The inferred func-
tional annotations of genes constituting regulons were cap-
tured in the RegPrecise database [27] within the taxonomic
Table 2 Distribution of TFs with reconstructed regulons for o
genomes

TF type 1 TF
number

Examples

Streptococcaceae Lactobacillaceae

Universal Universal 5 CcpA, CopR, NagR, PurR, R

Universal Mosaic 10 AdcR, ArgR, BirA, CtsR, Fab

Mosaic Universal 0 n/a

Mosaic Mosaic 31 CcpB, CelR, FucR, GalR, Gu
ScrR, TagR, TreR, UxuR

Universal ― 3 CmbR, CodY, PipR

Mosaic ― 20 AgaR, AlsR, CelQ, HomR, N

― Universal 1 LexA

― Mosaic 32 AguR, AraR, CggR, DeoR, E

Numbers of regulons for orthologous TFs in Streptococcaceae and Lactobacillaceae a
group; ‘Mosaic’ regulons are present in group but in less than 15 genomes; ‘―’ me
collections of regulons for the Streptococcaceae and
Lactobacillaceae groups (http://regprecise.lbl.gov/RegPre-
cise/collections_tax.jsp).
Overall, the reconstructed regulons were classified into 8

functional groups (Additional file 5). The largest group
counts 56 regulons for carbohydrate and central carbon
metabolism. Three other functional groups of regulons are
involved of stress response (11 regulons), metal homeosta-
sis (9 regulons) and amino acid metabolism (8 regulons).
Small numbers of regulons were reconstructed for cofactor
metabolism (4 regulons), nucleotide metabolism (3 regu-
lons) and fatty acid metabolism (2 regulons). Additionally,
9 reconstructed TF regulons contain genes with unknown
rthologous TFs in Streptococcaceae and Lactobacillaceae

ex

T, FruR, GlnR, HrcA, MalR, NrdR

tR, LacR, MdxR, MleR, MntR, MtaR, MtlR, MurR, NiaR, NrtR, PadR, PerR, PflR,

anR, NmlR, PdxR, RegR, Rgg, RgrA, RliC, SczA, SgaR

xuR, FatR, HxlR, IolR, NihR, RbsR, RpiR, SdaR, XylR, Zur

re shown. 1 ‘Universal’ regulons are present in all 15 studied genomes of the
ans the absence of regulons in this group.

http://regprecise.lbl.gov/RegPrecise/collections_tax.jsp
http://regprecise.lbl.gov/RegPrecise/collections_tax.jsp
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or hypothetical functions, and thus their specific functional
roles and effectors remain unknown. Functional content for
the selected subset of reconstructed regulons is briefly
described below.

Carbohydrate metabolism
Carbohydrates comprise a key source of carbon and energy
for a variety of microorganisms. Genomes from the Lacto-
bacillales order encode a large number of sugar catabolic
pathways and most of these pathways have a mosaic distri-
bution in individual species [28]. This diversity of sugar
catabolic pathways is matched by a large number of
regulatory systems that allow sugar-specific induction of ex-
pression of these pathways.
Here we reconstructed 56 TF regulons that control

the sugar and central carbon metabolism in the
Lactobacillales. In addition to 19 sugar metabolism reg-
ulons that were previously characterized experimentally
in model Lactobacillales species, 6 regulons were recon-
structed by projection from B. subtilis or S. aureus and
31 novel regulons were predicted for the first time in
this work (Additional file 5). Analysis of available experi-
mental data revealed 114 previously known regulatory
interactions involving the sugar metabolism regulators
in model Lactobacillales organisms. Using comparative
genomics, we were able to significantly expand the sugar
metabolism regulatory subnetwork. As an example, the
previously known regulator of hyaluronidase RegR in S.
pneumoniae [29] was predicted to have an expanded reg-
ulon of 12 additional genes involved in the hyaluronate
utilization that is conserved in six Streptococcaceae
genomes (Additional file 6).
About 10 new regulatory interactions per genome were

predicted for carbohydrate metabolism genes using the pro-
jection of known regulons from B. subtilis and S. aureus.
For example, CcpN in B. subtilis was previously described
as a regulator of the gluconeogenesis genes gapB and pckA
[30]. The comparative genomics reconstruction of the
CcpN regulon revealed the pyruvate phosphate dikinase
ppdK, the ccpN gene and the fructose biphosphatase fbp as
novel members of the CcpN regulon in the Lactobacillales
(Additional files 6, 7). Thus, the novel CcpN regulon in the
Lactobacillales have a set of target genes that is completely
different from the known CcpN regulon in B. subtilis, al-
though in both lineages it controls the gluconeogenesis
pathway.
The reconstructed regulatory network includes 52 TFs

that control 38 peripheral sugar utilization pathways, and
10 of these pathways are controlled by more than one TF.
For instance, we reconstructed 5 different TF regulons for
maltose and maltodextrin utilization pathway and 3 TF reg-
ulons for the sucrose catabolism. Two different TF regulons
per one sugar metabolic pathway were described for path-
ways involved in utilization of ascorbate, cellobiose,
gluconate, lactose, N-acetylgalactosamine, ribose and tre-
halose. The observed redundancy in sugar-specific TFs is
explained by (i) non-orthologous replacements of TFs for
the same pathway in different genomes, and (ii) existence
of alternative pathway variants and multiple paralogs regu-
lated by different TFs in the same genome. For example,
two maltose/maltodextrin ABC transporters are controlled
by two non-orthologous TFs from the LacI family in the
Streptococcaceae (Additional file 8). The malEFG operon is
always regulated by MalR protein. The malXCDA operon is
regulated by MalR in four Streptococcus spp. and under
control of MalR2 in three other Streptococcus spp.
Three other sugar utilization pathways in the

Streptococcus spp. are equipped by a redundant set of cata-
bolic genes controlled by multiple non-orthologous regula-
tors. SgaR and SgaR2 from the BglG family control the
ascorbate utilization. The GntR family regulators AgaR and
AgaR2 were predicted to control the N-acetylgalactosamine
utilization gene loci. The cellobilose utilization genes are
regulated by CelR from the BglG family [31] and CelQ from
the ROK family [32]. These functionally redundant sets of
TF regulons indicate a complex evolutionary history of the
sugar utilization subsystems in Firmicutes.

Stress response
We reconstructed totally 11 TF regulons involved in vari-
ous stress responses and drug resistance. These include the
CtsR, HrcA, NmlR, PadR and PerR regulons that were pre-
viously experimentally described in at least one model
Lactobacillales genome. The SOS response regulon LexA
and multidrug resistance regulon YtrA were projected using
the previous knowledge of orthologous regulons in B. subti-
lis [33,34]. Overall, we predicted 13 target operons in the
Lactobacillaceae LexA regulon including some novel func-
tions (e.g. parEC, addBA, nrnA).
The Fur family regulator PerR was previously studied

in S. pyogenes and S. suis, where it co-regulates genes
involved in peroxide stress response and manganese
transport [35,36]. Here we predicted some new members
of the PerR regulon involved in iron transport (fhuADBG,
feoAB, fatDCAB) and iron-sulfur cluster biosynthesis
(sufCDSEB). The latter iron-sulfur cluster biosynthesis op-
eron was previously identified by us as a novel member of
the PerR regulon in the Staphylococcaceae family [12].
Interestingly, we also predicted that in some Streptococcus
spp., PerR controls expression of another TF for manganese
homeostasis, MntR, and these two regulators form a poten-
tial cascade.

Metal homeostasis
The group of reconstructed regulons for metal homeostasis
includes 9 TF regulons. Starting from 24 regulatory interac-
tions previously described in 5 known regulons for model
Lactobacillales organisms, we expanded and projected the
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AdcR, CopR, FlpA, MntR and SczA regulons resulting in
prediction of several new regulatory interactions in the gen-
omes. For instance, we predicted regulation of genes
encoding manganese (mntH) and nickel (nikABCDE)
transporters, heavy metal-transporting ATPase (pmtA), and
mntR gene by the manganese homeostasis regulon MntR
in the Streptococcaceae.
In contrast to the AdcR regulon for control of zinc

homeostasis in the Streptococcaceae, the Lactobacillaceae
species utilize the typical zinc-responsive regulator Zur
from the Fur family. The Zur regulon in the Lactobacilla-
ceae, which was reconstructed by projection from the B.
subtilis Zur regulon, includes the zinc transporter znuABC,
and the zur and rpsN2 genes, the latter encoding a paralog
of the ribosomal protein S14.
Two novel TFs from the ArsR family analyzed in the

Lactobacillaceae are distantly related to the CzcR regulator
of cobalt-zinc-cadmium resistance from Pseudomonas
aeruginosa [37]. The reconstructed CzcR1 and CzcR2 regu-
lons were predicted to control different sets of genes
involved in heavy metal resistance. Another novel regulon,
termed NihR (nickel homeostasis regulator), was predicted
by its conserved co-localization with the nikMQO genes en-
coding a nickel transport system. The predicted NihR regu-
lon also includes the nihR and nixA genes, the latter
encoding a high-affinity nickel permease (Additional file 7).

Amino acids metabolism
Among 8 reconstructed TF regulons for control of
amino acid metabolism, seven regulons have been previ-
ously described in at least one model Lactobacillales
species. For these TF regulons, we projected 56 regula-
tory interactions to additional genomes and predicted
~25 novel regulatory interactions per genome. First, we
predicted the MtaR- and CmbR-dependent regulation of
the mmuMP operon involved in S-methylmethionine
utilization in the Streptococcaceae. Second, we identified
multiple new members of the nitrogen metabolism regu-
lon GlnR in both lineages including the glutamine
transporter gluQHMP, the arginine catabolism genes
arcABC and the aspartate-ammonia ligase asnA. A novel
amino acid metabolism regulon that was inferred for the
first time in this work is operated by a RpiR-like regula-
tor, termed AguR (agmatine utilization regulator), which
was found to be co-localized with agmatine utilization
genes in the Lactobacillaceae genomes.

CRISPR-Cas genes under the control of global regulators
CRISPR-Cas is a recently discovered prokaryotic RNA-
based system for adaptive immunity for defense against
phages, plasmids and other mobile genetic elements
[38,39]. Previously, the expression of CRISPR-Cas genes
has been shown to be regulated by different global TFs,
such as H-NS, Lrp, LeuO [40,41] and Crp [42] in E. coli,
and Rex in Thermotoga maritima [43]. In this work we pre-
dicted some new cases of regulation of CRISPR-Cas genes
in the Lactobacillales genomes. The predicted operon cas9-
cas1-cas2-csn2 is preceded by a candidate CcpA-binding
site in S. agalactiae and S. mutans, whereas in S. agalactiae
and S. equi this operon has a candidate CodY-binding site
in its promoter region. Another putative CRISPR-Cas
operon, cas5-cas8c-cas7-cas1-cas2, is predicted to be regu-
lated by CcpA in S. equi and S. pyogenes. These predicted
regulatory interactions for CRISPR-Cas genes extend our
understanding of regulatory mechanisms for bacterial im-
mune systems.

Evolution of regulons in Lactobacillales
Evolution of orthologous TF regulons
Among 102 TF regulons reconstructed in this work, 46
regulons have orthologous TFs in both studied lineages
of the Lactobacillales (Additional file 5). We compared
the deduced TFBS motifs for the orthologous TF regulons
in the Streptococcaceae and Lactobacillaceae lineages and
classified them into three categories (Additional file 9). Cat-
egory I includes 23 TF regulons with binding motifs that
are well conserved or slightly variable in two lineages.
Category II contains 17 TF regulons with moderately differ-
ent motifs (2 to 4 mismatches in the conserved motif posi-
tions). Category III has 6 remaining TF regulons with
binding motifs that are substantially different between the
Streptococcaceae and Lactobacillaceae. Remarkably, the cat-
egory I is enriched by universal and highly conserved regu-
lators. Thus, it includes all 5 regulons that are universal in
both studied lineages and 10 regulons for TFs that are
universal in the Streptococcaceae and have a mosaic distri-
bution in the Lactobacillaceae. The category I contains the
highest number of global regulons (CcpA, Rex) and mid-
size regulons that control 3 or more target operons per
genome (AdcR, ArgR, CtsR, GlnR, HrcA, MalR, MtaR,
PerR and PurR). The remaining 13 regulons in this category
are local, i.e. containing less than 3 target operons per
genome. In contrast, the categories II and III contain re-
spectively 94% and 100% of local regulons. These observa-
tions suggest that the conservation of TFBS motifs have a
positive correlation with the regulon size. Similar correl-
ation was previously reported for the Staphylococcaceae
spp. [12].
Analysis of conservation of gene contents for orthologous

TF regulons between the two studied lineages classified all
regulons into three different categories. The first group
contains 27 strictly conserved regulons that do not demon-
strate any difference in their gene content or have only
slight changes between the Streptococcaceae and Lactoba-
cillaceae (e.g. an insertion of additional genes into target
operons). The second group includes 16 regulons that have
a common core of conserved genes supplemented by
unique sets of peripheral genes that are substantially
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different between the Streptococcaceae and Lactobacilla-
ceae . This group of partially conserved regulons includes
the global regulons CcpA and Rex and several mid-size reg-
ulons (see below). The third group contains 3 orthologous
regulons, MdxR, NiaR and NrtR, having completely differ-
ent sets of target genes between the Streptococcaceae and
Lactobacillaceae groups, although their corresponding bio-
logical roles are conserved between the studied groups.
High diversity of the latter three regulons can be explained
by redundancy of the respective metabolic systems and
regulatory mechanisms. Thus, MdxR controls the maltose
and maltodextrin utilization and the similar biological role
was assigned to several other TF regulons in the Lactobacil-
lales (see above). The phylogenetic distributions of two
NAD metabolism regulons NiaR and NrtR have an overlap-
ping pattern in many studied genomes (Additional file 5).
In conclusion, we did not observe any correlation between
the conservation of orthologous TF regulon structure and
their cognate binding motifs in the analyzed taxonomic
groups.
The 16 TF regulons with a common core and flexible

set of peripheral genes between the Streptococcaceae and
Lactobacillaceae groups can be classified into three sub-
groups: (i) regulons expanded in the Streptococcaceae
(AdcR, BirA, CopR, GlnR, LacR and MntR); (ii) regulons
expanded in the Lactobacillaceae (HrcA and ScrR), and
(iii) regulons with different peripheral sets of genes in
the Streptococcaceae and Lactobacillaceae (ArgR, CcpA,
CtsR, MalR, NrdR, PerR, PurR and Rex). We prepose
that different sets of peripheral genes in the above 16
regulons have appeared due to independent expansion
of regulons in each lineage. A common core of the ArgR
regulon is formed by genes for the arginine transport
and biosynthesis. The periphery of this regulon in the
Streptococcaceae consists of the argR gene and arcABC
operon for arginine catabolism, whereas the extended
part of the ArgR regulon in the Lactobacillaceae
includes only carbamoyl-phosphate synthase (carAB).
The PurR regulon in the Streptococcaceae is expanded
by genes for metabolism of folate-associated one-carbon
compounds, whereas in the Lactobacillaceae this regu-
lon has additional genes for the adenine and guanine
metabolism (purB and guaB) and ribose-phosphate pyro-
phosphokinase (prsA). Expansion of the PerR regulon in
the Streptococcaceae affects genes for the iron and man-
ganese homeostasis, whereas in the Lactobacillaceae
PerR regulates several additional genes such as a NADH
peroxidase. The CcpA regulon demonstrated the largest
peripheral sets of genes in the studied lineages, 117
operons in the Streptococcaceae and 42 operons in the
Lactobacillaceae. Noteworthy, the CcpA regulon in the
Streptococcaceae is expanded by the CRISPR-Cas cas-
sette genes (see above) and some virulence genes (the
exfoliative toxin A gene shetA and the streptolysin S
biosynthesis operon sagABCEFGHI), suggesting that this
global regulon supplies the link between the carbohy-
drate utilization, virulence and anti-phage immunity.

Non-orthologous displacements of TF regulons
Functional analysis of reconstructed TF regulons in the
Lactobacillales revealed that many biological processes
are regulated by two or more non-orthologous TFs.
These metabolic subsystems with redundant TF regula-
tion include 8 distinct sugar utilization pathways
(see above) and the zinc homeostasis that are controlled
by 20 non-orthologous TFs (Additional file 5). In most
cases, patterns of phylogenetic distribution of non-
orthologous TFs controlling the same biological subsys-
tem complement each other in the analyzed 30 genomes.
Interestingly, there are only four cases in which the non-
orthologous TFs belong to different protein families
(CelR/CelQ, GntR1/GntR2, LacR/LacR2 and AdcR/Zur),
whereas in all remaining cases the identified pairs of
non-orthologous TFs belong to the same TF family and
thus can be classified as cases of xenologous gene re-
placement [44]. The largest number of xenologous repla-
cements of TFs was identified within the LacI family
(Additional file 8).

Interconnectivity in reconstructed TRNs
The cross talk between TF regulons can be identified by
prediction of TFBSs for two or more TFs within the regula-
tory region of the same operon. Numerous target operons
in the reconstructed TRNs are subject to regulation by
multiple TFs. For instance, S. preumoniae has 38 target
operons that share TFBSs for two or more TFs. Regulation
of several target operons by multiple TFs is evolutionary
conserved across a number of related genomes (Table 3).
Three global regulons, CcpA, CodY and Rex, often inter-

connect with each other and also with multiple local TF
regulons. For example, the CcpA regulon overlaps with 31
TF regulons that control the carbohydrate utilization such
as MalR, ScrR, TreR, GalR, FruR, and RegR. The CodY reg-
ulon overlaps with the GlnR and CmbR regulons that con-
trol the nitrogen metabolism and sulfur amino acid
biosynthesis, respectively. A similar situation was previously
observed in S. aureus, where the CcpA regulon overlaps
with numerous local regulons for sugar utilization and the
CodY regulon overlaps with amino acid metabolism regu-
lons [12,45,46]. Similarly, co-regulation of two heat shock
response regulons, HrcA and CtsR, was found both in the
Streptococcaceae and Lactobacillaceae groups, and was also
previously observed in S. aureus [12,47].
Autoregulation of TFs is a regular feature of the

reconstructed regulons. An average portion of the
Lactobacillales TFs with predicted control of their own
expression is 72%. This index slightly varies between the
analyzed genomes and is very close to the percentage of



Table 3 Examples of target operons regulation by multiple TFs

Combinations of TFs Examples

Target operon Genome(s)

Quadruple regulation

AdcR, CcpA, CodY, Rex adhB1 S. agalactiae, S. dysgalactiae

Triple regulation

AdcR, CodY, Rex adhB1 S. equi, S. mitis, S. pyogenes

MtaR, CmbR, HomR metEF S. gallolyticus, S. gordonii, S. mutans, S. pneumoniae

CcpA, MalR, MdxR malXCDA L. plantarum

CcpA, MalR3, MdxR nplT L. plantarum

CcpA, MalR, MdxR malT-mapA-pgmB L. mesenteroides

Double regulation

CcpA, Rex adhE S. mitis, S. sanguinis, L. acidophilus, L. brevis,L. johnsonii

forT S. dysgalactiae, S. equi, S. pyogenes, S. sanguinis, S. uberis

CcpA, MalR ptsG-rgfB S. agalactiae, S. equi, S. gordonii, S. mutans, S. uberis

pulA S. agalactiae, S. equi, S. gordonii, S. mutans, S. pyogenes

HrcA, CtsR groSL all Streptococcaceae, L. fermentum, L. reuteri, P. pentosaceus

hrcA-grpE-dnaKJ L. fermentum, L. plantarum, L. reuteri, L. sakei, P. pentosaceus

CcpA, ScrR scrBR S. gallolyticus, S. gordonii, L. acidophilus, L. johnsonii,

CcpA, TreR trePA S. dysgalactiae, S. pneumoniae, L. mesenteroidesm, O. oeni

CcpA, GalR galKETRM L. casei, L. rhamnosus

lacLM L. fermentum, L. plantarum, L. salivarius, P. pentosaceus

CcpA, CodY livKHMGF S. gordonii, S. mitis, S. sanguinis, S. suis, S. thermophilus

CodY, GlnR gluQHMP S. agalactiae, S. gallolyticus, S. mutans

CcpA, FruR fruRBA L. lactis, S. equi, S. suis, L. helveticus, L. sakei, P. pentosaceus

PerR, MntR mntABC S. equi, S. pyogenes, S. mutans, S. sanguinis, S. uberis

CcpA, RegR hylD-ugl-hylEFG-ohl-regR S. agalactiae, S. pyogenes
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autoregulated TFs that was previously reported for S.
aureus [12].
Multiple regulatory cascades between various TFs were

detected in the studied genomes. For instance, CcpA regu-
lates the codY gene and multiple genes encoding sugar
utilization regulators, such as FruR, ScrR, TreR, and CelR.
Among other identified cascades, CodY controls glnR,
CmbR controls homR and PerR controls mntR in the
Streptococcaceae, whereas CtsR controls hrcA in the Lacto-
bacillaceae. Some cascades, such as the regulation of fruR,
galR, gutR, mtlR, scrR and treR genes by CcpA, are con-
served between the Streptococcaceae and Lactobacillaceae
lineages, whereas the remaining cases of regulatory TF cas-
cades are lineage specific. Comparison with the previously
reconstructed regulatory network of S. aureus [12] showed
that some of the identified Lactobacillales regulatory cas-
cades are also conserved in the Staphylococcaceae. For in-
stance, the CcpA-dependent regulation of fruR, rbsR2, scrR
and treR, as well as the regulation of glnR by CodY and
hrcA by CtsR, are conserved between the two groups. The
conservation of cascades between distantly related genomes
points to the importance of these regulatory interactions in
the Lactobacillales regulatory networks.

Conclusions
The knowledge-based bottom-up approach and com-
parative genomics techniques have been previously suc-
cessively applied for reconstruction of bacterial TRNs in
different groups of genomes [11,12]. Here we tentatively
defined the reference collection of TF regulons in 30
Lactobacillales genomes comprised of 102 orthologous
groups of TFs and ~4100 regulatory interactions (~140 per
genome). The resulting regulatory network contains ~7500
regulated genes (~250 per genome) that are involved in
sugar utilization, stress response, metal homeostasis and
metabolisms of amino acids, fatty acids, nucleotides, and
cofactors. We used a modified workflow for TRN recon-
struction that is characterized by three main innovations:
(1) analysis of two taxonomically related groups of genomes
(the Streptococcaceae and Lactobacillaceae), (2) involve-
ment of numerous experimental data from the literature
about TF regulation in lactic acid bacteria, and (3)
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coordinated reconstruction of multiple TF regulons by a
community of annotators using multi-user web interface of
the RegPredict tool for regulon analysis [18]. By utilizing
the semi-automatic workflow for regulon inference com-
bined with manual curation and regulon annotation we
described the largest reference collection of TF regulons in
lactic acid bacteria do date. The collection also includes the
previously uncharacterized regulons for 47 TFs that
comprise ~1000 target genes (12 – 63 genes per genome).
Thus, a significant number of predicted regulatory interac-
tions and novel TF regulons await future experimental val-
idation. During preparation of this manuscript, Bitoun
et al. experimentally analyzed Rex regulon in the S. mutans
UA159 [48] and confirmed Rex dependent regulation of 4
targets predicted in this work (adhE, rex-guaA, ldh, and
frdCT).
Comparison of the inferred TRNs in the Lactobacillales

genomes reveals interesting trends in the evolution of
TRNs and individual TF regulons. First, we found a positive
correlation between the TFBS motif conservation between
the two lactic acid bacteria lineages and the distribution
and conservation of the respective TF regulons. Second, we
report that in the analyzed collection of Lactobacillales reg-
ulons non-orthologous displacements of TFs occur more
often between structurally related TFs in comparison with
regulators that belong to different protein families.

Methods
Thirty complete genomes of Lactobacillales (Additional
file 1) were downloaded from MicrobesOnline database
[49]. Primary TF sets for each studied genome were
extracted from P2TF (http://www.p2tf.org) database.
Sigma factors and RNA binding proteins were excluded
from the collections. Groups of orthologs were pre-
counted as following. Initially, groups of orthologous
proteins were constructed for every pair of TFs sets. All
pairwise comparisons were done using BLASTP, and bi-
directional best hits (BBHs) were identified if the protein
sequences identity was more 50% and the aligned region
was longer than 2/3 of the length of the shorter protein.
If two paralogous genes from one genome were more
similar to each other than to a BBH partner from an-
other genome, both paralogs were added to the same
orthology cluster. Finally, all orthologous clusters con-
taining common genes were joined together. The clus-
ters were formed using ad-hoc software written using
Oracle RDBMS Express Edition (PL/SQL codes are
available by request). TF families were assigned by
analysis of protein domain structure using the following
databases: CDD [50], Pfam [51], SMART [52], and
MicrobesOnline Domain and Families [49].
For regulon reconstruction we used the previously

established comparative genomics approach (reviewed in
[10]) implemented in the RegPredict Web server
(http://regpredict.lbl.gov) [18]. The approach includes
inference of TFBSs, construction of nucleotide positional
weight matrices (PWMs) for TFBSs motifs, and recon-
struction of regulons in complete genomes on the basis
of prediction of putative TFBSs in promoter gene
regions. To take into account possible lineage specific
changes in TFBSs motifs, we constructed individual
PWMs for the Streptococcaceae and Lactobacillaceae
taxonomic groups.
The three major workflows used for TF regulon recon-

struction are (1) projection and expansion of previously
known regulons from model Lactobacillales organisms,
(2) projection of known regulons from model organisms
belonging to another taxa, and (3) ab initio prediction of
novel regulons (Figure 2).
In workflow 1, the projection and expansion of previ-

ously know TF regulons includes two slightly different
workflows. In workflow 1a, both a set of regulated genes
and TFBSs motif are known, whereas in workflow 1b,
only a set of co-regulated genes is known from the col-
lected experimental data. For previously known TFBSs
motifs, a PWM was built and used for identification of
additional sites in the analyzed genomes using the Run
Profile tool in the RegPredict Web server. All novel true
positive TFBSs were added to the training set and the
updated PWM was constructed and further used for
final regulon reconstruction. For regulons with originally
unknown TFBS motifs, we collected a set of upstream
regions of known TF-regulated genes and their orthologs
and used this set for TFBS identification by the Discover
Profile tool in the RegPredict. The TFBS motif discovery
tool uses the expectation-maximization algorithm for
clustering of all potential motifs with a specified sym-
metry (palindrome, direct or inverted repeat) and finally
optimizes the inferred PWM. In ambiguous cases, puta-
tive regulatory elements were validated by phylogenetic
footprinting [53] using multiple alignments for upstream
non-coding regions of orthologous genes.
In workflow 2, the previously experimentally studied reg-

ulons in other model organisms from the Firmicutes
phylum (B. subtilis or S. aureus) were projected to the
Lactobacillaceae genomes. For TFBS identification, we used
training sets of upstream regions of genes that are consid-
ered as orthologs to the TF-regulated genes from other
model species outside of the Lactobacillales lineage.
Workflow 3 was used for ab initio prediction of novel

TF regulons. Initially, the presumably co-regulated genes
were predicted by the analysis of conserved gene neigh-
borhoods around a putative TF gene. Upstream regions of
presumably co-regulated genes extracted from multiple
Lactobacillales genomes were used for identification of
TFBSs and PWM construction as described above.
The obtained PWMs for known or predicted TFBS

motifs were used for comparative genomics reconstruction

http://www.p2tf.org/
http://regpredict.lbl.gov/
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of regulons in two groups of genomes, the Lactobacillaceae
and Streptococcaceae, using the RegPredict Web server
[18]. Each studied genome was scanned with the con-
structed PWMs using Run Profile tool in RegPredict. The
threshold for site search was defined as a lowest score
observed in the training set. The consistency check ap-
proach [10,54] and/or functional relatedness of candidate
target operons were used to eliminate false positive TFBS
predictions.
A community of annotators consisting of 18 under-

graduate students from Hope College (Holland, MI)
performed initial reconstruction of multiple TF regulons
in the analyzed groups of genomes. This represented a
coordinated annotation effort with expert curators in the
context of a microbiology course. The resulting draft
regulons underwent strict quality control to ensure ac-
curacy of the reconstructions.
Functional gene annotations were uploaded from SEED

[25], UniProt [55] and MicrobesOnline [49]. Multiple align-
ments of protein and DNA sequences were built by
MUSCLE [56]. Phylogenetic trees were constructed using
maximum likelihood algorithm implemented in PHYLIP
package (v 3.69) [57] and visualized via Dendroscope tool
[58]. Complete description of the reconstructed regulons
including TFs, their target genes and operons, and asso-
ciated TFBS were uploaded to the RegPrecise database
(http://regprecise.lbl.gov) [27].
Additional files

Additional file 1: Phylogenetic tree of 30 studied Lactobacillaceae
genomes.- Description of data: Economic impact for each studied
genome is shown in square brackets. The tree is based on approximately
78 universal prokaryotic proteins in the MicrobesOnline database:
http://www.microbesonline.org/cgi-bin/speciesTree.cgi.

Additional file 2: Repertoire of DNA-binding transcriptional factors
identified in 15 Streptococcaceae genomes. Description of data:
Orthologous groups are sorted by TF family and then by conservancy of
each TF group. TFs with regulons reconstructed in this work are
highlighted by light blue.

Additional file 3: Repertoire of DNA-binding transcriptional factors
identified in 15 Lactobacillaceae genomes. Description of data:
Orthologous groups are sorted by TF family and then by conservancy of
each TF group. TFs with regulons reconstructed in this work are
highlighted by light blue.

Additional file 4: Distribution of predicted DNA binding
transcription factors in studied Lactobacillales genomes.

Additional file 5: Collection of TF regulons reconstructed in
Lactobacillales. Description of data: a Novel TF names introduced in this
work are marked by asterisks. b Presence (+) or absence (−) of TFs
orthologs. c Workflow 1, expansion and projection of a regulon previously
characterized in model Lactobacillales organisms: (1a) TFBSs motif was
known, (1b) TFBSs motif was predicted in present work; Workflow 2,
projection of an orthologous regulon from B. subtilis or S. aureus;
Workflow 3, ab initio regulon inference. Regulons previously studied in
model organisms highlighted by green. Names of functional groups are
highlighted in blue.

Additional file 6: Functional content, experimental evidences and
conservation for reconstructed regulons in Streptococcaceae.
Description of data: Regulons are sorted by regulator names. Novel TF
names introduced in this work are marked by asterisks. ‘Conservation of
regulatory interaction’ column shows number of genomes with regulated
gene/ operon (number of genomes having orthologs of operon).

Additional file 7: Functional content, experimental evidences and
conservation for reconstructed regulons in Lactobacillaceae.
Description of data: Regulons are sorted by regulator names. Novel TF
names introduced in this work are marked by asterisks. ‘Conservation of
regulatory interaction’ column shows number of genomes with regulated
operon (number of genomes having orthologs of operon).

Additional file 8: Analysis of LacI family TFs in the studied
Lactobacillales genomes.

Additional file 9: Comparison of predicted binding site motifs
inStreptococcaceae and Lactobacillaceae genomes. Description of
data: 1 Sequences Logos were constructed using WebLogo package
(http://weblogo.berkeley.edu/logo.cgi). 2 NS, number of binding site
sequences used to construct Logo. 3 Category reflects a conservancy
between TFBS motifs in Streptococcaceae and Lactobacillaceae: I, highly
conserved motifs; II, moderately different motifs; III, substantially different
motifs. 4 Number of genomes that contain this regulon. 5 Average
number of target operon in regulon per genome.
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TRN: Transcriptional regulatory network.
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