
PROCEEDINGS Open Access

Accelerating read mapping with FastHASH
Hongyi Xin1, Donghyuk Lee1, Farhad Hormozdiari2, Samihan Yedkar1, Onur Mutlu1*, Can Alkan3*

From The Eleventh Asia Pacific Bioinformatics Conference (APBC 2013)
Vancouver, Canada. 21-24 January 2013

Abstract

With the introduction of next-generation sequencing (NGS) technologies, we are facing an exponential increase in
the amount of genomic sequence data. The success of all medical and genetic applications of next-generation
sequencing critically depends on the existence of computational techniques that can process and analyze the
enormous amount of sequence data quickly and accurately. Unfortunately, the current read mapping algorithms
have difficulties in coping with the massive amounts of data generated by NGS.
We propose a new algorithm, FastHASH, which drastically improves the performance of the seed-and-extend type
hash table based read mapping algorithms, while maintaining the high sensitivity and comprehensiveness of such
methods. FastHASH is a generic algorithm compatible with all seed-and-extend class read mapping algorithms.
It introduces two main techniques, namely Adjacency Filtering, and Cheap K-mer Selection.
We implemented FastHASH and merged it into the codebase of the popular read mapping program, mrFAST.
Depending on the edit distance cutoffs, we observed up to 19-fold speedup while still maintaining 100%
sensitivity and high comprehensiveness.

Introduction
Massively parallel sequencing, or so-called next-generation
sequencing (NGS), technologies have substantially chan-
ged the way biological research is performed since 2000
[1]. With these new DNA sequencing platforms, we can
now investigate human genome diversity between popula-
tions [2], find genomic variants that are likely to cause dis-
eases [3-8], and investigate the genomes of the great ape
species [9-14] and even ancient hominids [15,16] to under-
stand our own evolution. Despite all the revolutionary
power these new sequencing platforms offer, they also
present difficult computational challenges due to 1) the
massive amount of data produced, 2) shorter read lengths,
resulting in more mapping locations and 3) higher sequen-
cing errors when compared to the traditional capillary-
based sequencing.
With NGS platforms, such as the popular Illumina

platform, billions of raw short reads are generated at a
fast speed. Each short read represents a contiguous DNA

fragment (i.e., 100 base-pairs (bp)) from the sequencing
subject. After the short reads are generated, the first step
is to map (i.e., align) the reads to a known reference gen-
ome. The mapping process is computationally very
expensive since the reference genome is very large (e.g.,
the human genome has 3.2 gigabase-pairs). The software
performing the mapping, called the mapper, has to search
(query) a very large reference genome database to map
millions of short reads. Even worse, each short read may
contain edits (base-pairs different from the reference
fragment, including mismatches, insertions and dele-
tions) which requires expensive approximate searching.
In addition, the ubiquitous common repeats and segmen-
tal duplications within the human genome complicate
the task since a short read from such a genome segment
corresponds to a large number of mapping locations in
the reference genome.
To simplify searching a large database such as the

human genome, previous work has developed several algo-
rithms that fall into one of the two categories: seed-and-
extend heuristic methods and suffix-array mapping
methods.
The seed-and-extend heuristic is developed based on

the observation that for a correct mapping, the short

* Correspondence: onur@cmu.edu; calkan@cs.bilkent.edu.tr
1Depts. of Computer Science and Electrical and Computer Engineering,
Carnegie Mellon University, Pittsburgh, PA, 15213, USA
3Dept. of Computer Engineering, Bilkent University, Ankara, 06800, Turkey
Full list of author information is available at the end of the article

Xin et al. BMC Genomics 2013, 14(Suppl 1):S13
http://www.biomedcentral.com/1471-2164/14/S1/S13

© 2013 Xin et al.; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

mailto:onur@cmu.edu
mailto:calkan@cs.bilkent.edu.tr
http://creativecommons.org/licenses/by/2.0


query read and its corresponding reference fragment,
which is the piece of the reference genome that the query
read should map to, must share some brief regions
(usually 10-100 base-pair-long) of exact or inexact
matches. These shorter shared regions, which indicate
high similarity between the query read and the reference
fragment, are called seeds. By identifying the seeds of a
query read, the mapper narrows down the searching
range from the whole genome to only the neighborhood
region of each seed. Seeds are generated by preprocessing
the reference genome and storing the locations of their
occurrences in the reference genome in a separate data
structure. During mapping, a seed-and-extend mapper
first analyzes the query read to identify the seeds. Then,
the mapper tries to extend the read at each of the seed
locations via dynamic programming algorithms such as
the Smith-Waterman [17] or Neddleman-Wunsch [18]
algorithm.
On the other hand, the suffix-array mapping methods

analyze the reference genome and transfer the reference
genome into a suffix-array data structure, which mimics a
suffix-tree of the reference genome. Each edge of this suf-
fix-tree is labeled with one of the four base-pair types and
each node containing all occurrence locations of a suffix.
Walking through the tree from the root to leaf while con-
catenating all the base-pairs on the edges along the path
together forms a unique suffix of the reference genome.
Every leaf node of the tree stores all mapping locations of
this unique suffix in the reference genome. Searching for a
query read is equivalent to walking through the reference
suffix-tree from the root to a leaf node following the query
read’s sequence. If there exists a path from the root to a
leaf such that the corresponding suffix of the path matches
the query read, then all the locations stored in the leaf
node are returned as mapping locations. Suffix array uses
the Burrows-Wheeler Transform [19] and the Ferragina-
Manzini index [20] to mimic the suffix-tree traversal pro-
cess with much smaller memory footprint.
Several mappers have been developed over the past few

years. These mappers can be classified into two categories
based on their mapping algorithms: 1) hash table based,
seed-and-extend mappers (hash table based mappers)
similar to the popular BLAST [21] method, such as
mrFAST/mrsFAST [22,23], MAQ [24], SHRiMP [25],
Hobbes [26], drFAST [27] and RazerS [28]; and 2) suffix-
array and genome compression based mappers that utilize
the Burrows-Wheeler Transform and the Ferragina-
Manzini index (BWT-FM) such as BWA [29], Bowtie [30],
and SOAP2 [31]. Both types of read mapping algorithms
have different strengths and weaknesses. To measure the
performance of different mappers, three general metrics
are introduced: speed in performing the mapping, sensitiv-
ity in mapping reads in the presence of multiple edits
(including mismatches, insertions and deletions) and

comprehensiveness in searching for all mapping locations
across the reference genome. The hash table based map-
pers are much slower, albeit more sensitive, more compre-
hensive and more robust to sequence errors and genomic
diversity than suffix-array based mappers. For these rea-
sons, hash table based mappers are typically more suitable
when comparing the genomes of different species, such as
mapping reads generated from a gorilla genome to the
human reference genome, or when mapping reads to
highly repetitive genomic regions where structural variants
are more likely to occur [32-34]. On the contrary, suffix-
array based mappers (with the BWT-FM optimization)
offer very high mapping speed (up to 30-fold faster than
hash table based mappers), but their mapping sensitivity
and comprehensiveness suffer when the edit distance
between the read and the reference fragment is high or
when the diversity of the read increases (e.g., when map-
ping reads from other species). Their fast speed makes the
suffix-array based mappers the first choice in single
nucleotide polymorphism (SNP) discovery studies where
sensitivity is less important. In this work, we focus on
increasing the speed of hash table based mappers while
preserving their high sensitivity and comprehensiveness.
The relatively slow speed of hash table based mappers is

due to their high sensitivity and comprehensiveness. Such
mappers first index fixed-length seeds (also called k-mers),
typically 10-13 base-pair-long DNA fragments from the
reference genome, into a hash table or a similar data struc-
ture. Next, they divide each query read into smaller fixed-
length seeds to query the hash table for their associated
seed locations. Finally, they try to extend the read at each
of the seed locations by aligning the read to the reference
fragment at the seed location via dynamic programming
algorithms such as Needleman-Wunsch [18] and Smith-
Waterman [17], or simple Hamming distance calculation
for greater speed at the cost of missing potential mappings
that contain insertions/deletions (indels). For simplicity,
the rest of the paper will use the term “k-mer” represent-
ing the term “fixed-length seed”. We will also use the
terms “location” and “seed location” interchangeably.
Using real data generated with the NGS platforms, we

observed that most of the locations fail to provide correct
alignments. This is because the size of the k-mers that
form the hash table’s indices are typically very short (e.g.,
12 bp as default for mrFAST/mrsFAST). These short
k-mers appear in the reference genome much more fre-
quently than the undivided, hundreds of base-pair-long
query read. As a result, only a few of the locations of a k-
mer, if any, provide correct alignments. Naively extending
(aligning the read to the reference genome) at all of the
locations of all k-mers only introduces unnecessary com-
putation. In this paper, we define the seed locations that
the read cannot align to as “false” locations. Reducing
unnecessary computation associated with the large

Xin et al. BMC Genomics 2013, 14(Suppl 1):S13
http://www.biomedcentral.com/1471-2164/14/S1/S13

Page 2 of 13



number of false locations is the key to improving hash
table based mappers’ speed.
In this paper, we propose a new algorithm, FastHASH,

that dramatically improves the speed of hash table based
algorithms while maintaining their sensitivity and compre-
hensiveness. We introduce two key ideas for this purpose.
First, we drastically reduce the potential locations consid-
ered for the extend step while still preserving comprehen-
siveness. We call this method Cheap K-mer Selection.
Second, we quickly eliminate most of the false locations
without invoking the extend step in the early stages of
mapping. This method is called Adjacency Filtering. We
tested FastHASH by incorporating it into the mrFAST
[22] codebase. Our initial CPU implementation of Fas-
tHASH provides up to 19-fold speedup over mrFAST,
while still preserving comprehensiveness.
In the next section, we describe the basics and the

characteristics of Cheap K-mer Selection and Adjacency
Filtering. In the Mechanisms section, we present the
mechanism of FastHASH in detail. In the Results section,
we present the performance of mrFAST with FastHASH
compared to the baseline mrFAST and several other read
mapping tools. We then present more analysis in the
Analysis section and draw conclusions in the Conclusion
and Discussion section.

Observation and insight
Hash table based mappers
Hash table based mappers map query reads to a known
reference genome under a user defined edit distance e.
With the edit distance e, the mappers search for locations
where there are fewer than e edits (including mismatches,
insertions or deletions) between the query read and the
reference fragment. Typically, they follow a “seed-and-
extend” procedure. These mappers index the reference
genome and store the contents in a hash table. The hash
table maps all lexicographical permutations of a fixed-
length k-mer (typically 10-13 bp) as keys to the corre-
sponding occurrence locations in the reference genome
for each k-mer as contents. The indexing procedure is per-
formed only once. During the mapping stage the mapper
uses the previously generated hash table to search for seed
locations.
Figure 1 shows the flow chart of a typical hash table

based mapper during the mapping stage. The mapper fol-
lows six steps to map a query read to the reference gen-
ome. In step 1, the mapper divides the query read into
smaller k-mers, with each k-mer of equal length as the
hash table keys. In step 2, several of these k-mers are
selected as query k-mers. Query k-mers are then fed to
the hash table as inputs. The hash table returns the loca-
tion lists for each query k-mer. The location list stores all
the occurrence locations of the query k-mer in the refer-
ence genome. In step 3, the mapper probes the location

lists of all k-mers belonging to the query read. For each
location, the mapper accesses the reference genome and,
in step 4, retrieves the reference fragment from the refer-
ence genome at the seed location’s neighborhood. In step
5, the mapper aligns the query read against the reference
fragment using the Hamming distance or more compli-
cated dynamic programming algorithms such as the edit
distance [35], Needleman-Wunsch, or Smith-Waterman,
to verify if the number of edits between the query read
and the reference fragment exceeds the user-set edit dis-
tance e. This step is also called the “verification step”.
One can think of this step as a complicated fuzzy string
matching procedure that tries to match the base-pairs
between the query read and the reference fragment, with
some edits permitted. We will use the term “alignment”
or “verification” to refer to this step for the rest of the
paper. Finally in step 6, the mapper processes the next
location in the location list and repeats step 4 and step 5
until all the locations of the k-mer are processed. This
entire process (from step 2 to step 6) is performed for
each k-mer in the query read.

Key observation
Hash table based mappers are computationally more
expensive than suffix-array alternatives. Unlike suffix-
array based mappers which quickly return the mapping
locations at the leaf nodes of the suffix-tree, hash table
based mappers try to calculate the optimal alignment
for all query k-mers’ locations. Mappers that are capable
of aligning even in the presence of edits are the most
sensitive, yet slowest, since these dynamic programming
algorithms typically run in O(l2) time (where l is the
length of the reads). This can be reduced to O(2el) if
the number of allowed indels are reduced to e.
We experimentally tested the behavior of a hash table

based mapper mrFAST [22] to identify the performance
bottlenecks. We observed that the dynamic programming
alignment algorithm (step 5) occupies over 90% of the
execution time while most locations fail to pass the align-
ment verification. Due to the short k-mer size (10-13 bp)
and the repetitive nature of most genomes (including
human), the location list of a k-mer may contain many
locations to which the full query read does not map. Yet
the mapper still tries to align the query read to all of the
extra locations (step 5) since it has no knowledge of which
seed locations provide correct mapping beforehand.
Within a k-mer’s location list, we define those locations

that pass alignment verification (step 5) as “true locations”
and other locations that fail the verification as “false loca-
tions”. The false locations do not provide mapping results.
Figure 2 gives an example of true locations versus false
locations. In Figure 2, we have the location lists of the
same query read from Figure 1. From the figure, we may
conclude that location 212 is more likely to be a “true

Xin et al. BMC Genomics 2013, 14(Suppl 1):S13
http://www.biomedcentral.com/1471-2164/14/S1/S13

Page 3 of 13



location”, since all k-mers have locations adjacent to loca-
tion 212 stored in their location lists (e.g., 224, 236 etc.).
Other locations are less likely to be a “true location” as
they are more isolated (e.g., 1121, 9812, etc.). However,
existing mappers do not exploit this observation. As a
result, the mapper examines all seed locations while wast-
ing a lot of computation resources on verifying false loca-
tions (white blocks in Figure 2).
Verification of the vast number of false locations greatly

degrades the performance of the mapper as it consumes a
massive amount of unnecessary computation and memory
bandwidth. To verify a location, the mapper has to 1)
access the reference genome sequence starting at the seed
location to get the reference fragment and then 2) invoke
a complex programming algorithm to align the query read
to the reference fragment. Performing these costly opera-
tions for a high number of false locations will only waste
computational resources as false locations, by definition,
do not provide any valid mappings. Therefore improving
the performance of hash table based mappers strongly
depends on efficiently reducing the number of false loca-
tions before the verification step.

Insight
There are two main directions to ameliorate the compu-
tational cost imposed by the false locations. First, one can

apply a filter within the seed locations and only extend
on “true locations” to reduce unnecessary computation.
Second, one can select only the k-mers with low occur-
rence frequency in the reference as query k-mers to
avoid probing long location lists, reducing the number of
locations to examine. In this work, we propose two new
mechanisms that address both directions.
Our first method aims to filter out the obviously false

locations. Our observation is that by collecting a com-
mon set of adjacent locations from the location lists of all
the k-mers, we can quickly distinguish obviously false
locations from possibly true locations and skip the unne-
cessary verification steps for the false locations. The basic
idea is as follows: A potential seed location from one k-
mer’s location list can return a correct mapping (under
the given edit distance e) only if other adjacent k-mers of
the read are also located at adjacent locations in the
reference genome (e.g., in Figure 2, location 212 in first
k-mer’s list, location 224 in the second k-mer’s list, loca-
tion 236 in the third k-mer’s location list, and so on).
Consequently, by checking if all k-mers have the corre-
sponding adjacent locations stored inside their location
lists, we may quickly identify false locations without the
alignment step (e.g., in Figure 2, location 1121 from the
first k-mer’s location list is an easily detectable false loca-
tion since no other k-mer contains adjacent locations in

Figure 1 Hash table based mapping. The flow chart of hash table based mappers. 1) Divide the query read into smaller k-mers. 2) Search
each k-mer in the hash table which is previously generated from the reference genome. 3) Probe location lists. 4) Retrieve the reference
sequence starting at the seed location. 5) Align the read against the reference sequence. 6) Move to the next location and redo steps 4 and 5.

Figure 2 True vs. false locations. Example of true locations vs. false locations. Only the true locations provide correct mapping results.

Xin et al. BMC Genomics 2013, 14(Suppl 1):S13
http://www.biomedcentral.com/1471-2164/14/S1/S13

Page 4 of 13



their location lists). To tolerate edits, at most e k-mers
are allowed to fail the adjacent location searching step.
Otherwise, the number of edits (mismatches and in/dels)
between the query read and the reference fragment must
be greater than e, and thus the location should be
rejected before the verification step (step 5). We call this
method Adjacency Filtering (AF).
Note that AF does not guarantee correct mappings;

instead, it rejects obviously false locations. For comput-
ing the actual number, location, and content of edits
(including sequence errors) the alignment step (step 5)
is still needed. Nevertheless, AF detects a large fraction
of the false locations (more than 99% on average based
on our empirical evaluations) and removes them from
consideration for verification.
Our second method, Cheap K-mer Selection (CKS) tries

to minimize verification operations by preferentially select-
ing and using as seeds those k-mers from the query reads
that occur infrequently in the reference genome. For a
query read, the amount of alignment computation (step 5)
is proportional to the number of locations stored in the
location lists of the query k-mers. We observed that select-
ing different k-mers to query the hash table may heavily
affect the mapper’s performance, since the reference hash
table is heavily unbalanced. Due to the repetitive nature of
most genomes and the very short k-mer length, some
k-mers have very large location lists (called high frequency
k-mers) and others have much smaller location lists (called

low frequency k-mers), as Figure 3 shows. Probing large
location lists burdens the mapper since it has to verify a
large number of locations; thus, we call these high fre-
quency k-mers as expensive k-mers. On the other hand,
k-mers with smaller location lists are denoted as cheap
k-mers. Our insight is that, for a correct mapping, both
cheap and expensive k-mers have the true locations stored
in their location lists. However, expensive k-mers have
several orders of magnitude more false locations than
cheap k-mers, due to their repeating nature in the refer-
ence genome. As a result, selecting cheap k-mers instead
of expensive ones as query k-mers reduces the number of
locations to be verified (steps 3 to 6) without affecting the
mapper’s sensitivity. Sensitivity is guaranteed by selecting
multiple cheap locations to ensure that their combined
coverage includes all possible editing scenarios (having no
more than e mismatches, insertions or deletions. e.g., in
Figure 2, when e = 3, by selecting four non-overlapping
cheap k-mers, we ensure finding all mappings with at
most three edits since three edits can alter at most three
k-mers).
With AF eliminating unnecessary computation to detect

false locations and CKS reducing the number of false loca-
tions, our new algorithm, FastHASH, is able to minimize
unnecessary computation and focus on mapping only at
possible true locations, which provides drastic speedup
over previous hash table based mappers, as our experi-
mental results show.

Figure 3 A example of imbalanced hash table entires. A snapshot of the hash table. Some k-mers have very large location lists, while others have
much shorter lists. For example, AAAAAAAAAAAA has over one million entries into reference genome whereas TGAACG-TAACAA has only 2.

Xin et al. BMC Genomics 2013, 14(Suppl 1):S13
http://www.biomedcentral.com/1471-2164/14/S1/S13

Page 5 of 13



Mechanisms
Adjacency filtering (AF)
Adjacency Filtering (AF) uses the location lists retrieved
from the hash table to detect false locations. Since the
location lists are stored contiguously as sorted arrays in
the hash table, it is easy to prefetch these lists into the
CPU cache. Moreover, the location lists exhibit high
temporal locality. Once fetched into the cache, the loca-
tion lists of the k-mers can be used to verify all seed
locations, and thus will be reused many times. Unlike
traditional hash table based mappers which try to
extend at all potential seed locations and perform many
unpredictable reference genome lookups, FastHASH
with AF only accesses the reference genome when it is
confident that the seed location is very likely to be a
true location.
Briefly, FastHASH divides a read into consecutive

k-mers and tests whether k-mers that are adjacent to
each other within the read are also found at adjacent
positions within the reference. For example, let us
assume that the size of the k-mers in the hash table is k =
12, the length of the query read is 84 base-pairs (bp), and
the mapper’s edit distance is set to e = 0, which allows no
edits. The mapper first divides the read into 7 consecutive
k-mers of length 12 bp each, and then uses the locations
of these k-mers in the hash table as seeds. As the left half
of Figure 4 shows, for a true location m (where the query
read perfectly maps to the reference), the first k-mer of
the read is at location m, the second k-mer is at m + 12,
third k-mer is at m + 24; and this pattern continues up to
the 7th k-mer, which is located at m + 72. Similarly, if m
is an unknown seed location and we want to know
whether the location is a true location or false location,
we can simply verify whether m is stored in the first k-
mer’s location list, m + 12 in the second k-mer’s location
list, and so on, as shown in the right half of Figure 4.
Here, we define k-mers for which we can and adjacent k-
mers at adjacent locations as correct k-mers, and others
as edited k-mers. Now suppose that the read contains
some edits from the reference fragment; then such edits
must affect at least one k-mer, which in turn alters the k-
mer to be different from the reference fragment, becom-
ing an edited k-mer. As a result, the corresponding

adjacent location will not show up in the location list of
the edited k-mer. By simply testing if all the correspond-
ing adjacent locations are present in all of the adjacent
k-mers’ location lists, we can detect edits without actually
aligning the read to the reference fragment.
If some finite number of edits are allowed, for example

up to a total of e mismatches, then it is possible that a
location still provides a correct mapping with at most e
edited k-mers (as in the worst case, each edited k-mer
contains only one edit). Here we explain how AF pro-
vides edit tolerance in two steps: We first explain how
AF handles mismatches and then describe how insertions
and deletions are handled. With at most e mismatches, in
the worst case (i.e., when the mismatches are spread
across e k-mers), a mapping location can still lead to a
valid mapping with at most e k-mers failing the adjacent
location test. In essence, to incorporate e mismatches
into AF with a read divided into N k-mers, we require at
least N - e k-mers with corresponding adjacent locations
in their location lists. Otherwise, the location is marked
as a false location and rejected before further operations.
Allowing insertions and deletions is similar but requires
a little bit more analysis. Additionally to the above obser-
vation, an insertion or deletion not only fails the search-
ing of the adjacent location for the edited k-mer, but also
shifts all the downstream k-mers as well, as shown in
Figure 5. In the presence of insertions or deletions, the
AF requirement is further relaxed from requiring search-
ing for a single adjacent location to searching for an adja-
cent range. For example, if the user allows one insertion/
deletion, then instead of searching location m in the first
k-mer’s location list, we now search for locations [m - 1,
m + 1] in the first k-mer’s location list, [m + 11, m + 13]
in the second k-mer’s location list and so on. To sum up,
with at most e edits (mismatches, insertions or deletions),
a potential location passes AF only if N - e k-mers find
corresponding adjacent location ranges within their loca-
tion lists, with adjacent range defined as [-e, +e] deviation
range from the adjacent location. Otherwise, the location
is marked as a false location and the mapper moves to
the next location (step 3).
The power of AF comes from detecting and rejecting

most of the false locations before verification. Not only

Figure 4 An example of Adjacency Filtering. The insight behind adjacency filtering: For a perfect mapping, all adjacent k-mers within a read
should also be at adjacent locations within the reference. This is equivalent to searching for adjacent locations in adjacent k-mers’ location lists.

Xin et al. BMC Genomics 2013, 14(Suppl 1):S13
http://www.biomedcentral.com/1471-2164/14/S1/S13

Page 6 of 13



does AF prevent unnecessary computation (step 5), but
it also prevents expensive unnecessary memory accesses
to the reference genome to retrieve the reference frag-
ment (step 4). For a false location, other than the query
k-mer itself, usually the rest of the read is completely
different from the reference genome. We observed in
real data sets that even with high edit distance e = 5,
only a small fraction (usually less than 1%) of the loca-
tions pass AF and are marked as potential true locations
for further verification. As a result, AF is effective at
detecting and rejecting false locations.
However, AF also comes with its own computational

cost. To test a potential location, AF conducts N searches
for adjacent locations, one for each k-mer’s location list.
Additionally, AF does not guarantee that the remaining
seed locations will have fewer than e edits after alignment,
since multiple edits might reside in a single edited k-mer.
In such cases, AF will not be able to tell exactly how many
edits there are, so it conservatively assumes there is only
one edit per edited k-mer and passes the location to the
verification step (step 5). During the alignment step, a
dynamic programming algorithm extracts detailed editing
information and verify if the mapping is indeed correct.
To summarize, for true mapping locations (with fewer
than e edits), AF introduces extra computation. Neverthe-
less, AF is cost-efficient because the number of the loca-
tions that pass AF is marginal compared to the number of
locations that are correctly filtered out.

Cheap K-mer selection (CKS)
Although AF reduces memory lookups, it also incurs a
penalty in detecting false locations: AF searches the cor-
responding adjacent locations for every k-mer. This is in
fact a quick lookup in the location lists: as the location
lists are sorted, we can use binary search. Nevertheless,
for longer reads with many k-mers, AF can be a costly
process. From our experiments, we see that AF reduces
the alignment calculation (step 4 and 5) by over 90% but
provides only 2x speedup. After profiling the execution,
we observe that AF has become the new bottleneck by
occupying over 90% of the execution time.

The core problem stems from the imbalance of the
hash table. Most location lists in the hash table for the
human genome have very few locations. However, there
are also location lists with cardinality greater than 1 mil-
lion. Even though such k-mers are only a small portion
of the hash table, we encounter them frequently with
real data. These high frequency (or expensive) k-mers
mostly correspond to poly-N tracks and microsatellites
[36], and such sequences have many copies in the
human reference genome. These expensive k-mers also
introduce many false locations. When we use such
expensive k-mers to query the hash table, all of the loca-
tions in their entries will go through the AF test, which
is a search-heavy (i.e., computationally expensive)
process.
FastHASH actively selects cheaper k-mers over more

expensive k-mers as query k-mers. There will be fewer
false locations and fewer invocations to AF with cheaper
query k-mers. Note that, for any read, both cheap and
expensive k-mers will have the same true locations in their
location lists. However, since by definition expensive
k-mers are more frequent in most genomes, including the
human genome, they will contain substantially more seed
locations than cheaper k-mers, thus imposing more com-
putational cost to both AF and the subsequent verification
step. Instead, starting the AF and then the alignment with
the cheap query k-mers relieves the mapper of this cost
while preserving all the true locations.
We implemented the selection of cheap k-mers as a

simple quicksort operation before querying the k-mers
in the hash table. For each query read, instead of simply
selecting the first e+1 k-mers to search in the hash
table, FastHASH first sorts all k-mers by the cardinal-
ities of their location lists, and then selects the cheapest
e+1 k-mers (i.e., those k-mers that have the smallest
cardinality of their location lists). Note that selecting
e+1 k-mers as query k-mers guarantees full sensitivity
under edit distance e.
In summary, Cheap K-mer Selection (CKS) reduces

the number of AF and verification operations by using a
computationally cheap operation: quicksort. There are

Figure 5 An example of Adjacency Filtering with errors. An example of insertion tolerance. Because of an insertion on the 6th k-mer, the 6th

k-mer becomes an edited k-mer and the mapper cannot find this k-mer’s adjacent location. Even worse, the insertion also shifts all down
stream k-mers to the left by 1-bp. However the 7th k-mer is still considered as a “correct k-mer” since it has location m+71, which is in the
adjacent range [m+71, m+73], in its location list.

Xin et al. BMC Genomics 2013, 14(Suppl 1):S13
http://www.biomedcentral.com/1471-2164/14/S1/S13

Page 7 of 13



other mechanisms to further reduce the number of the
false locations with more complex computation and
more memory accesses, as done by Ahmadi et al. [26].
In their work “Hobbes”, instead of simply dividing the
read contiguously, Ahmadi et al. test all possible ways of
dividing a query read into multiple k-mers and select
only the cheapest division (the way of dividing the query
read that returns the cheapest set of k-mers). However,
to assess the cost of one possible division of the query
read into k-mers, Hobbes has to access the hash table
multiple times to get the location list length for each k-
mer belonging to the division. We believe Hobbes may
not be cost-efficient compared to CKS for two reasons:
1) With CKS, the query k-mers are already very cheap.
From our observation, most of the query k-mers have
fewer than ten locations after CKS. 2) Hobbes incurs
tens to hundreds of accesses to the hash table with only
slightly cheaper query k-mers than CKS. The benefit of
having a slightly cheaper query k-mer set is very likely
offset by the cost of having many long latency memory
accesses to the hash table. In fact, CKS avoids examin-
ing a lot of the false locations with very few memory
accesses (O(log N) accesses, where N is the number of
k-mers to which a query read can divide).

Methodology
We implemented FastHASH on top of mrFAST version
2.1.0.6, creating a new version, mrFAST-2.5.0.0. To assess
the performance of FastHASH, we compared the perfor-
mance of the new mrFAST-2.5.0.0 against several popular
read mappers currently available including Bowtie, BWA,
RazorS and mrFAST-2.1.0.6, both on simulated and real
data sets. We evaluated the mappers with respect to three
metrics: speed, sensitivity and comprehensiveness. We also
tried to benchmark Hobbes but its very large memory
footprint resulted in page thrashing, greatly degrading per-
formance. As a result, we do not report the performance
results of Hobbes.
Speed is how fast a mapper maps reads to the reference

genome, and is defined as the execution time of the binary
measured by the Linux utility “time”. Sensitivity is defined
as the fraction of reads where the mapper finds at least
one mapping. A higher mapper sensitivity correlates to an
improved ability to tolerate edits. Comprehensiveness is
how many true locations the mapper finds for a given
read. A higher mapper comprehensiveness correlates to a
more thorough ability to search the reference genome.
We tested speed, sensitivity and comprehensiveness

with different edit distances e from 1 to 5 for all map-
pers with three real data sets. Then, we mapped three
simulated data sets with a fixed edit distance 3. Since
Bowtie does not support any edit distance greater than
3, we only have results for Bowtie with edit distances 1,

2 and 3. RazerS supports edit distance via a percent
identity setting. In order to provide fair comparison, we
chose the edit percentage as close to the edit distance
as possible. For simulated reads, we guarantee each read
contains at most 3 edits from the reference genome. As
a result, a fully sensitive mapper should be able to map
all simulated reads with edit threshold greater than or
equal to 3.
Real Data: We used three different real data sets to eval-

uate the performance of different mappers. All sequence
data sets were generated using the Illumina platform. The
first set (set 1; 160 bp per read, 1 million reads) consists of
reads from an individual obtained from the 1000 Genomes
project [2] sequenced with the Illumina platform. The sec-
ond set (set 2; 101 bp per read, 500,000 reads) is generated
from a chimpanzee genome [37], and the third set (set 3;
70 bp per read, 500,000 reads) is generated from an oran-
gutan genome [38]. In our benchmarks, we mapped all
reads to the current human reference genome assembly
(GRCh37, hg19).
Simulated Data: We generated three simulated data sets

from the current human reference genome assembly
(hg19). For each set, we generated 50,000 random reads
from the first 20 chromosomes summing up to 1 million
reads for each set. The sets differ in their read lengths:
72 bp, 108 bp, and 180 bp. For each read, we simulated
the read errors and edits by randomly altering or insert-
ing/deleting 0 to 3 base-pairs. Each set is mapped to the
human reference genome (hg19).
We ran all mappers in single user mode on a Linux

machine with a 3.2 GHz Intel i7 Sandy Bridge CPU and
16 GB DDR3-1333 main memory.

Results
As Additional file 1 shows, hash table based mappers
such as mrFAST-2.1.0.6 and RazerS suffer from low per-
formance (slow speed) compared to BWA and Bowtie.
As we will show in the “Analysis” section, this is mainly
due to the massive amount of false locations. FastHASH
(mrFAST-2.5.0.0) greatly improves mapping speed over
mrFAST-2.1.0.6 (e.g., up to 19 times for e = 3, depend-
ing on the data set), and is even faster than BWA under
certain circumstances (e.g., for set 1, when edit distance
is greater than 3). Meanwhile, FastHASH preserves the
important sensitivity and comprehensiveness properties
of the previous version of mrFAST, mrFAST-2.1.0.6.
Figure 6 presents the speedup of FastHASH (mrFAST-

2.5.0.0) over mrFAST (mrFAST-2.1.0.6) across different
edit distance values on different data sets. Notice that as
edit distance e increases, the speedup decreases. This is
expected since a higher e results in diminished CKS
benefits. We provide further details in the “Analysis”
section.

Xin et al. BMC Genomics 2013, 14(Suppl 1):S13
http://www.biomedcentral.com/1471-2164/14/S1/S13

Page 8 of 13



Table 1 shows the sensitivity of different mappers on
simulated data sets. For a simulated data set, since all
the reads are generated from the reference human gen-
ome and are guaranteed to have fewer than 3 edits (mis-
match, insertion or deletion), an ideal mapper should be
able to map all 1 million reads. In reality, due to perfor-
mance constraints or simply mapping limitations, most
mappers do not guarantee full sensitivity. mrFAST on
the other hand, achieves 100% sensitivity. We clearly see
that mrFAST with FastHASH retains 100% sensitivity of
mrFAST-2.1.0.6 on simulated data sets. In fact, since
mrFAST-2.5.0.0 includes several minor bug fixes, the
sensitivity is slightly higher than the earlier mrFAST,
mrFAST-2.1.0.6. Note that a higher e always leads to
more mappings and should intuitively be slower. How-
ever, for some input sets, FastHASH counter-intuitively
runs faster for higher edit distances than lower edit dis-
tances. This is because mrFAST uses Intel SSE SIMD
code extensions [39] which marginally alters the mapper
algorithm used based on the edit distance. In particular,
the algorithm for e = 4 is slightly faster than that for e =
3. Generally, however, all mappers are slower with

higher edit distances as expected. We also show further
analysis in the “Analysis” section.
Figure 7 shows that the memory usage of mrFAST-

2.5.0.0 does not change significantly compared to
mrFAST-2.1.0.6.

Analysis
In this section, we analyze the benefits of Adjacency Fil-
tering and Cheap K-mer Selection. The benefits are
shown in Figure 8 (note that the y-axis is logarithmically
scaled).
As discussed in the previous section, mrFAST-2.1.0.6,

like other hash based mappers, suffers greatly from
extending on a large number of false locations. Figure 8
(a) presents the number of true locations out of all
potential locations: only 0.007% of the potential loca-
tions (seeds) provide correct alignment on average.
We can clearly see the incremental benefits of AF and

CKS when mapping 1 million simulated reads of 180 bp
in length (Figure 8(b) and Figure 8(c)). As discussed
above, a very small fraction of the seed locations pass the
verification step of mrFAST (Figure 8(a)). Adjacency

Figure 6 Speedup of FastHASH. Speedup factor of FastHASH (mrFAST-2.5.0.0) over mrFAST-2.1.0.6, with different read sets.

Xin et al. BMC Genomics 2013, 14(Suppl 1):S13
http://www.biomedcentral.com/1471-2164/14/S1/S13

Page 9 of 13



filtering substantially decreases the number of seed loca-
tions by eliminating false locations as seen in Figure 8(b).
This way, AF saves many unnecessary memory accesses
since now only the locations that pass AF will proceed to
further verification. On average, AF filters out approxi-
mately 99.8% of all false locations. Figure 8(c) shows the
benefit of having both AF and CKS. From Figure 8(c), we
see that CKS reduces the number of overall potential
locations, which reduces the amount of AF computation.
On average, CKS eliminates 95.4% of all seed locations
without degrading the sensitivity of the mapper (as seen
in Table 1).
In the Result section, we showed that the speedup

gained by using FastHASH reduces as edit distance
increases. This is because as e increases, CKS starts to
select more expensive k-mers, as Figure 9 shows, pro-
viding less reduction of false locations.

Conclusions and discussion
Next generation sequencing platforms continue to evolve
at a fast rate. New technologies are frequently introduced
that offer different strengths; each, however, has unique
biases. The current trend is to generate longer reads,
with newer technologies such as the nanopore sequen-
cing, at the cost of increased error rates. While the sux-
array based mappers offer tremendous read mapping
speed, they also suffer greatly with higher error rates and
longer read lengths. Seed-and-extend hash table based
mappers are more robust to these changes, but they are
also very slow for mapping short reads.
In this paper, we analyzed seed-and-extend, hash table

based read mapping algorithms and proposed a new
optimization algorithm called FastHAST that provides
up to 19-fold speedup over the best previous seed-and-
extend mapper. FastHASH provides a potential solution

Table 1 Simulated Set

Data Set Mapper Time (min.:sec.) Reads Mapped Map Locations

Set 4 mrFAST-2.5.0.0 158:13 1000000 112638835

mrFAST-2.1.0.6 531:48 1000000 112638623

Bowtie-0.12.8 27:12 831211 95923952

BWA-0.6.1 35:55 978102 65489552

Set 5 mrFAST-2.5.0.0 30:38 1000000 26957339

mrFAST-2.1.0.6 455:40 1000000 26957196

Bowtie-0.12.8 14:47 747457 22039633

BWA-0.6.1 30:35 952953 23468560

Set 6 mrFAST-2.5.0.0 19:34 1000000 4484323

mrFAST-2.1.0.6 380:28 1000000 4484055

Bowtie-0.12.8 12:07 614827 3303329

BWA-0.6.1 24:34 883520 4427109

Comparison of mapping sensitivity across the selected mappers using three simulated reads (Sets 4, 5 and 6) with read lengths of 72, 108 and 180 basepairs
respectively. Each benchmark is referenced against the human reference genome using an edit distance of 3.

Figure 7 Memory usage of different mappers. Memory usage comparison across different popular mappers.

Xin et al. BMC Genomics 2013, 14(Suppl 1):S13
http://www.biomedcentral.com/1471-2164/14/S1/S13

Page 10 of 13



to the speed inefficiency problem of hash table based
mappers as a generic algorithm that can be implemen-
ted in with any such read mapper.
Although our current implementation of FastHASH is

on a CPU based system, we also have a preliminary
implementation on a GPU based system, which we aim
to develop further. Another future direction to improve
FastHASH is to develop a hybrid indexing strategy that

efficiently merges Burrows-Wheeler Transform and the
Ferragina-Manzini indexing with FastHASH to increase
seed size for longer (>1 kbp) reads while keeping the
memory footprint low.
Together with additional GPU-based improvements

for the alignment step of read mapping, FastHASH pro-
mises to accelerate read mapping further while main-
taining the sensitivity of hash table based mappers to

Figure 8 Improvement breakdown of AF and CKS. Breakdown of incremental improvement by AF and CKS. a) mrFAST, b) mrFAST with AF, c)
mrFAST with AF and CKS.

Figure 9 Effectiveness of CKS across different edit distances. The figure shows the fraction of the seed locations that pass CKS. Lower values
are better. As the edit distance increases, CKS becomes less effective since a larger fraction of locations pass CKS.

Xin et al. BMC Genomics 2013, 14(Suppl 1):S13
http://www.biomedcentral.com/1471-2164/14/S1/S13

Page 11 of 13



help cope with the overwhelming data deluge created by
next generation sequencing.

Additional material

Additional file 1: Performance on Real Data Sets. Performance
comparison between different methods, while using three different data
sets. Set 1 is a set of 1 million reads of length 160 bp obtained from a
human genome sequenced within the 1000 Genomes Project. Set 2 is
composed of 500,000 reads of length 101 bp generated from a
chimpanzee genome, and Set 3 is from an orangutan genome with
reads of length 75 bp (500,000 reads). We select edit distance values
from 1 to 5 in order to compare the speed (time), sensitivity (Reads
Mapped) and comprehensiveness (Map Locations) of each mapper.

Acknowledgements
We thank F. Hach for his help in editing the mrFAST source code to
integrate the FastHASH mechanism. This work was supported, in part, by an
NIH grant HG006004 to O.M. and C.A., and a Marie Curie Career Integration
Grant (PCIG10-GA-2011-303772) within the 7th European Community
Framework Programme to C.A.

Author details
1Depts. of Computer Science and Electrical and Computer Engineering,
Carnegie Mellon University, Pittsburgh, PA, 15213, USA. 2Dept. of Computer
Science, University of California Los Angeles, Los Angeles, CA, 90095, USA.
3Dept. of Computer Engineering, Bilkent University, Ankara, 06800, Turkey.

Authors’ contributions
HX and DL designed the FastHASH algorithm. HX, DL, and FH implemented
the described methods. SY performed comparisons and helped HX and DL
perform the analyses. OM and CA conceived and planned the experiments,
and supervised HX and DL for the algorithm development. All authors
contributed to the writing of the manuscript.

Declarations
The publication costs for this article were funded by the NIH grant
HG006004 to O.M. and C.A.
This article has been published as part of BMC Genomics Volume 14
Supplement 1, 2013: Selected articles from the Eleventh Asia Pacific
Bioinformatics Conference (APBC 2013): Genomics. The full contents of the
supplement are available online at http://www.biomedcentral.com/
bmcgenomics/supplements/14/S1.

Competing interests
The authors declare that there are no competing interests.

Published: 21 January 2013

References
1. Brenner S, Johnson M, Bridgham J, Golda G, Lloyd DH, Johnson D, Luo S,

McCurdy S, Foy M, Ewan M, Roth R, George D, Eletr S, Albrecht G,
Vermaas E, Williams SR, Moon K, Burcham T, Pallas M, DuBridge RB,
Kirchner J, Fearon K, i Mao J, Corcoran K: Gene expression analysis by
massively parallel signature sequencing (MPSS) on microbead arrays.
Nat Biotechnol 2000, 18(6):630-4.

2. 1000 Genomes Project Consortium: A map of human genome variation
from population-scale sequencing. Nature 2010, 467:1061-1073.

3. Antonacci F, Kidd JM, Marques-Bonet T, et al: Characterization of six
human disease-associated in-version polymorphisms. Hum Mol Genet
2009, 18:2555-2566.

4. Antonacci F, Kidd JM, Marques-Bonet T, et al: A large and complex
structural polymorphism at 16p12.1 underlies microdeletion disease risk.
Nat Genet 2010, 42:745-750.

5. Bailey JA, Eichler EE: Primate segmental duplications: crucibles of
evolution, diversity and disease. Nat Rev Genet 2006, 7:552-564.

6. Bailey JA, Gu Z, Clark RA, Reinert K, Samonte RV, Schwartz S, Adams MD,
Myers EW, Li PW, Eichler EE: Recent segmental duplications in the human
genome. Science 2002, 297:1003-1007.

7. Bailey JA, Kidd JM, Eichler EE: Human copy number polymorphic genes.
Cytogenet Genome Res 2008, 123:234-243.

8. Bailey JA, Yavor AM, Massa HF, Trask BJ, Eichler EE: Segmental duplications:
organization and impact within the current human genome project
assembly. Genome Res 2001, 11:1005-1017.

9. Bailey JA, Yavor AM, Viggiano L, Misceo D, Horvath JE, Archidiacono N,
Schwartz S, Rocchi M, Eichler EE: Human-specific duplication and mosaic
transcripts: the recent paralogous structure of chromosome 22. Am J
Hum Genet 2002, 70:83-100.

10. Bailey JA, Baertsch R, Kent WJ, Haussler D, Eichler EE: Hotspots of
mammalian chromosomal evolution. Genome Biol 2004, 5:R23.

11. Marques-Bonet T, Kidd JM, Ventura M, Graves TA, Cheng Z, Hillier LW,
Jiang Z, Baker C, Malfavon-Borja R, Fulton LA, Alkan C, Aksay G, Girirajan S,
Siswara P, Chen L, Cardone MF, Navarro A, Mardis ER, Wilson RK, Eichler EE:
A burst of segmental duplications in the genome of the African great
ape ancestor. Nature 2009, 457:877-881.

12. Rozen S, Skaletsky H, Marszalek JD, Minx PJ, Cordum HS, Waterston RH,
Wilson RK, Page DC: Abundant gene conversion between arms of
palindromes in human and ape Y chromosomes. Nature 2003,
423:873-876.

13. Scally A, Dutheil JY, Hillier LW, Jordan GE, Goodhead I, Herrero J, Hobolth A,
Lappalainen T, Mailund T, Marques-Bonet T, McCarthy S, Montgomery SH,
Schwalie PC, Tang YA, Ward MC, Xue Y, Yngvadottir B, Alkan C,
Andersen LN, Ayub Q, Ball EV, Beal K, Bradley BJ, Chen Y, Clee CM,
Fitzgerald S, Graves TA, Gu Y, Heath P, Heger A, et al: Insights into
hominid evolution from the gorilla genome sequence. Nature 2012,
483:169-175.

14. Ventura M, Catacchio CR, Alkan C, Marques-Bonet T, Sajjadian S, Graves TA,
Hormozdiari F, Navarro A, Malig M, Baker C, Lee C, Turner EH, Chen L,
Kidd JM, Archidiacono N, Shendure J, Wilson RK, Eichler EE: Gorilla genome
structural variation reveals evolutionary parallelisms with chimpanzee.
Genome Res 2011, 21:1640-1649.

15. Green RE, Krause J, Briggs AW, Maricic T, Stenzel U, Kircher M, Patterson N,
Li H, Zhai W, Fritz MHY, Hansen NF, Durand EY, Malaspinas AS, Jensen JD,
Marques-Bonet T, Alkan C, Prüfer K, Meyer M, Burbano HA, Good JM,
Schultz R, Aximu-Petri A, Butthof A, Höber B, Höner B, Siegemund M,
Weihmann A, Nusbaum C, Lander ES, Russ C, et al: A draft sequence of
the Neandertal genome. Science 2010, 328:710-722.

16. Reich D, Green RE, Kircher M, Krause J, Patterson N, Durand EY, Viola B,
Briggs AW, Stenzel U, Johnson PLF, Maricic T, Good JM, Marques-Bonet T,
Alkan C, Fu Q, Mallick S, Li H, Meyer M, Eichler EE, Stoneking M, Richards M,
Talamo S, Shunkov MV, Derevianko AP, Hublin JJ, Kelso J, Slatkin M,
Pääbo S: Genetic history of an archaic hominin group from Denisova
Cave in Siberia. Nature 2010, 468:1053-1060.

17. Smith TF, Waterman MS: Identification of Common Molecular
Subsequences. Journal of Molecular Biology 1981, 147:195-195.

18. Needleman SB, Wunsch CD: A general method applicable to the search
for similarities in the amino acid sequence of two proteins. Journal of
Molecular Biology 1970, 48:443-453.

19. Burrows M, Wheeler DJ, Burrows M, Wheeler DJ: A block-sorting lossless
data compression algorithm. 1994.

20. Ferragina P, Manzini G, Mäkinen V, Navarro G: Compressed representations
of sequences and full-text indexes. ACM Transactions on Algorithms 2007,
3.

21. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local alignment
search tool. Journal of Molecular Biology 1990, 215:403-410.

22. Alkan C, Kidd JM, Marques-Bonet T, Aksay G, Antonacci F, Hormozdiari F,
Kitzman JO, Baker C, Malig M, Mutlu O, Sahinalp SC, Gibbs RA, Eichler EE:
Personalized copy number and segmental duplication maps using next-
generation sequencing. Nat Genet 2009, 41:1061-1067.

23. Hach F, Hormozdiari F, Alkan C, Hormozdiari F, Birol I, Eichler EE,
Sahinalp SC: mrsFAST: a cache-oblivious algorithm for short-read
mapping. Nat Methods 2010, 7:576-577.

24. Li H, Durbin R: Fast and accurate short read alignment with Burrows-
Wheeler transform. Bioinformatics 2009, 25:1754-1760.

25. Rumble SM, Lacroute P, Dalca AV, Fiume M, Sidow A, Brudno M: SHRiMP:
Accurate Mapping of Short Color-space Reads. PLoS Comput Biol 2009, 5:
e1000386.

Xin et al. BMC Genomics 2013, 14(Suppl 1):S13
http://www.biomedcentral.com/1471-2164/14/S1/S13

Page 12 of 13

http://www.biomedcentral.com/content/supplementary/1471-2164-14-S1-S13-S1.xlsx
Gene expression analysis by massively parallel signature sequencing (MPSS) on microbead arraysBrennerSJohnsonMBridghamJGoldaGLloydDHJohnsonDLuoSMcCurdySFoyMEwanMRothRGeorgeDEletrSAlbrechtGVermaasEWilliamsSRMoonKBurchamTPallasMDuBridgeRBKirchnerJFearonKi MaoJCorcoranKNat Biotechnol2000186630410.1038/7646910835600A map of human genome variation from population-scale sequencing1000 Genomes Project ConsortiumNature20104671061107310.1038/nature09534304260120981092Characterization of six human disease-associated in-version polymorphismsAntonacciFKiddJMMarques-BonetTHum Mol Genet2009182555256610.1093/hmg/ddp187270132719383631A large and complex structural polymorphism at 16p12.1 underlies microdeletion disease riskAntonacciFKiddJMMarques-BonetTNat Genet20104274575010.1038/ng.643293007420729854Primate segmental duplications: crucibles of evolution, diversity and diseaseBaileyJAEichlerEENat Rev Genet2006755256416770338Recent segmental duplications in the human genomeBaileyJAGuZClarkRAReinertKSamonteRVSchwartzSAdamsMDMyersEWLiPWEichlerEEScience20022971003100710.1126/science.107204712169732Human copy number polymorphic genesBaileyJAKiddJMEichlerEECytogenet Genome Res200812323424310.1159/000184713292018919287160Segmental duplications: organization and impact within the current human genome project assemblyBaileyJAYavorAMMassaHFTraskBJEichlerEEGenome Res2001111005101710.1101/gr.GR-1871R31109311381028Human-specific duplication and mosaic transcripts: the recent paralogous structure of chromosome 22BaileyJAYavorAMViggianoLMisceoDHorvathJEArchidiaconoNSchwartzSRocchiMEichlerEEAm J Hum Genet2002708310010.1086/33845841998511731936Hotspots of mammalian chromosomal evolutionBaileyJABaertschRKentWJHausslerDEichlerEEGenome Biol20045R2310.1186/gb-2004-5-4-r2339578215059256A burst of segmental duplications in the genome of the African great ape ancestorMarques-BonetTKiddJMVenturaMGravesTAChengZHillierLWJiangZBakerCMalfavon-BorjaRFultonLAAlkanCAksayGGirirajanSSiswaraPChenLCardoneMFNavarroAMardisERWilsonRKEichlerEENature200945787788110.1038/nature07744275166319212409Abundant gene conversion between arms of palindromes in human and ape Y chromosomesRozenSSkaletskyHMarszalekJDMinxPJCordumHSWaterstonRHWilsonRKPageDCNature200342387387610.1038/nature0172312815433Insights into hominid evolution from the gorilla genome sequenceScallyADutheilJYHillierLWJordanGEGoodheadIHerreroJHobolthALappalainenTMailundTMarques-BonetTMcCarthySMontgomerySHSchwaliePCTangYAWardMCXueYYngvadottirBAlkanCAndersenLNAyubQBallEVBealKBradleyBJChenYCleeCMFitzgeraldSGravesTAGuYHeathPHegerANature201248316917510.1038/nature10842330313022398555Gorilla genome structural variation reveals evolutionary parallelisms with chimpanzeeVenturaMCatacchioCRAlkanCMarques-BonetTSajjadianSGravesTAHormozdiariFNavarroAMaligMBakerCLeeCTurnerEHChenLKiddJMArchidiaconoNShendureJWilsonRKEichlerEEGenome Res2011211640164910.1101/gr.124461.111320228121685127A draft sequence of the Neandertal genomeGreenREKrauseJBriggsAWMaricicTStenzelUKircherMPattersonNLiHZhaiWFritzMHYHansenNFDurandEYMalaspinasASJensenJDMarques-BonetTAlkanCPr�ferKMeyerMBurbanoHAGoodJMSchultzRAximu-PetriAButthofAH�berBH�nerBSiegemundMWeihmannANusbaumCLanderESRussCScience201032871072210.1126/science.118802120448178Genetic history of an archaic hominin group from Denisova Cave in SiberiaReichDGreenREKircherMKrauseJPattersonNDurandEYViolaBBriggsAWStenzelUJohnsonPLFMaricicTGoodJMMarques-BonetTAlkanCFuQMallickSLiHMeyerMEichlerEEStonekingMRichardsMTalamoSShunkovMVDereviankoAPHublinJJKelsoJSlatkinMP��boSNature20104681053106010.1038/nature0971021179161Identification of Common Molecular SubsequencesSmithTFWatermanMSJournal of Molecular Biology198114719519510.1016/0022-2836(81)90087-57265238A general method applicable to the search for similarities in the amino acid sequence of two proteinsNeedlemanSBWunschCDJournal of Molecular Biology19704844345310.1016/0022-2836(70)90057-45420325A block-sorting lossless data compression algorithmBurrowsMWheelerDJBurrowsMWheelerDJ1994Compressed representations of sequences and full-text indexesFerraginaPManziniGM�kinenVNavarroGACM Transactions on Algorithms20073Basic local alignment search toolAltschulSFGishWMillerWMyersEWLipmanDJJournal of Molecular Biology19902154034102231712Personalized copy number and segmental duplication maps using next-generation sequencingAlkanCKiddJMMarques-BonetTAksayGAntonacciFHormozdiariFKitzmanJOBakerCMaligMMutluOSahinalpSCGibbsRAEichlerEENat Genet2009411061106710.1038/ng.437287519619718026mrsFAST: a cache-oblivious algorithm for short-read mappingHachFHormozdiariFAlkanCHormozdiariFBirolIEichlerEESahinalpSCNat Methods2010757657710.1038/nmeth0810-576311570720676076Fast and accurate short read alignment with Burrows-Wheeler transformLiHDurbinRBioinformatics2009251754176010.1093/bioinformatics/btp324270523419451168SHRiMP: Accurate Mapping of Short Color-space ReadsRumbleSMLacroutePDalcaAVFiumeMSidowABrudnoMPLoS Comput Biol20095e100038610.1371/journal.pcbi.1000386267829419461883Hobbes: optimized gram-based methods for efficient read alignmentAhmadiABehmAHonnalliNLiCWengLXieXNucleic Acids Research201140e41331530322199254Sensitive and fast mapping of di-base encoded readsHormozdiariFHachFSahinalpSCEichlerEEAlkanCBioinformatics2011271915192110.1093/bioinformatics/btr303312952421586516RazerS--fast read mapping with sensitivity controlWeeseDEmdeAKRauschTD�ringAReinertKGenome Research2009191646165410.1101/gr.088823.108275212319592482Fast and accurate short read alignment with Burrows-Wheeler TransformLiHDurbinRBioinformatics2009Ultrafast and memory-efficient alignment of short DNA sequences to the human genomeLangmeadBTrapnellCPopMSalzbergSGenome Biol200910R2510.1186/gb-2009-10-3-r25269099619261174SOAP2: an improved ultrafast tool for short read alignmentLiBioinformatics2009Genome structural variation discovery and genotypingAlkanCCoeBPEichlerEENat Rev Genet20111236337610.1038/nrg295821358748Complete Khoisan and Bantu genomes from southern AfricaSchusterSCMillerWRatanATomshoLPGiardineBKassonLRHarrisRSPetersenDCZhaoFQiJAlkanCKiddJMSunYDrautzDIBouardPMuznyDMReidJGNazarethLVWangQBurhansRRiemerCWittekindtNEMoorjaniPTindallEADankoCGTeoWSBuboltzAMZhangZMaQOosthuysenANature201046394394710.1038/nature0879520164927Mapping copy number variation by population-scale genome sequencingMillsREWalterKStewartCHandsakerREChenKAlkanCAbyzovAYoonSCYeKCheethamRKChinwallaAConradDFFuYGrubertFHajirasoulihaIHormozdiariFIakouchevaLMIqbalZKangSKiddJMKonkelMKKornJKhuranaEKuralDLamHYKLengJLiRLiYLinCYLuoRNature2011470596510.1038/nature09708307705021293372Binary codes capable of correcting deletions, insertions, and reversalsLevenshteinVISoviet Physics Doklady1966TurnpennyPEllardSEmery�s Elements of Medical Genetics122005351217323227117The bonobo genome compared with the chimpanzee and human genomesPr�ferKMunchKHellmannIAkagiKMillerJRWalenzBKorenSSuttonGKodiraCWinerRKnightJRMullikinJCMeaderSJPontingCPLunterGHigashinoSHobolthADutheilJKarako�EAlkanCSajjadianSCatacchioCRVenturaMMarques-BonetTEichlerEEAndr�CAtenciaRMugishaLJunholdJPattersonNNature2012486527531349893922722832Comparative and demographic analysis of orang-utan genomesLockeDPHillierLWWarrenWCWorleyKCNazarethLVMuznyDMYangSPWangZChinwallaATMinxPMitrevaMCookLDelehauntyKDFronickCSchmidtHFultonLAFultonRSNelsonJOMagriniVPohlCGravesTAMarkovicCCreeADinhHHHumeJKovarCLFowlerGRLunterGMeaderSHegerANature201146952953310.1038/nature09687306077821270892Intel� SSE4 Programming ReferenceIntel[http://softwarecommunity.intel.com/isn/Downloads/Intel%20SSE4%20Programming%20Reference.pdf]
Gene expression analysis by massively parallel signature sequencing (MPSS) on microbead arraysBrennerSJohnsonMBridghamJGoldaGLloydDHJohnsonDLuoSMcCurdySFoyMEwanMRothRGeorgeDEletrSAlbrechtGVermaasEWilliamsSRMoonKBurchamTPallasMDuBridgeRBKirchnerJFearonKi MaoJCorcoranKNat Biotechnol2000186630410.1038/7646910835600A map of human genome variation from population-scale sequencing1000 Genomes Project ConsortiumNature20104671061107310.1038/nature09534304260120981092Characterization of six human disease-associated in-version polymorphismsAntonacciFKiddJMMarques-BonetTHum Mol Genet2009182555256610.1093/hmg/ddp187270132719383631A large and complex structural polymorphism at 16p12.1 underlies microdeletion disease riskAntonacciFKiddJMMarques-BonetTNat Genet20104274575010.1038/ng.643293007420729854Primate segmental duplications: crucibles of evolution, diversity and diseaseBaileyJAEichlerEENat Rev Genet2006755256416770338Recent segmental duplications in the human genomeBaileyJAGuZClarkRAReinertKSamonteRVSchwartzSAdamsMDMyersEWLiPWEichlerEEScience20022971003100710.1126/science.107204712169732Human copy number polymorphic genesBaileyJAKiddJMEichlerEECytogenet Genome Res200812323424310.1159/000184713292018919287160Segmental duplications: organization and impact within the current human genome project assemblyBaileyJAYavorAMMassaHFTraskBJEichlerEEGenome Res2001111005101710.1101/gr.GR-1871R31109311381028Human-specific duplication and mosaic transcripts: the recent paralogous structure of chromosome 22BaileyJAYavorAMViggianoLMisceoDHorvathJEArchidiaconoNSchwartzSRocchiMEichlerEEAm J Hum Genet2002708310010.1086/33845841998511731936Hotspots of mammalian chromosomal evolutionBaileyJABaertschRKentWJHausslerDEichlerEEGenome Biol20045R2310.1186/gb-2004-5-4-r2339578215059256A burst of segmental duplications in the genome of the African great ape ancestorMarques-BonetTKiddJMVenturaMGravesTAChengZHillierLWJiangZBakerCMalfavon-BorjaRFultonLAAlkanCAksayGGirirajanSSiswaraPChenLCardoneMFNavarroAMardisERWilsonRKEichlerEENature200945787788110.1038/nature07744275166319212409Abundant gene conversion between arms of palindromes in human and ape Y chromosomesRozenSSkaletskyHMarszalekJDMinxPJCordumHSWaterstonRHWilsonRKPageDCNature200342387387610.1038/nature0172312815433Insights into hominid evolution from the gorilla genome sequenceScallyADutheilJYHillierLWJordanGEGoodheadIHerreroJHobolthALappalainenTMailundTMarques-BonetTMcCarthySMontgomerySHSchwaliePCTangYAWardMCXueYYngvadottirBAlkanCAndersenLNAyubQBallEVBealKBradleyBJChenYCleeCMFitzgeraldSGravesTAGuYHeathPHegerANature201248316917510.1038/nature10842330313022398555Gorilla genome structural variation reveals evolutionary parallelisms with chimpanzeeVenturaMCatacchioCRAlkanCMarques-BonetTSajjadianSGravesTAHormozdiariFNavarroAMaligMBakerCLeeCTurnerEHChenLKiddJMArchidiaconoNShendureJWilsonRKEichlerEEGenome Res2011211640164910.1101/gr.124461.111320228121685127A draft sequence of the Neandertal genomeGreenREKrauseJBriggsAWMaricicTStenzelUKircherMPattersonNLiHZhaiWFritzMHYHansenNFDurandEYMalaspinasASJensenJDMarques-BonetTAlkanCPr�ferKMeyerMBurbanoHAGoodJMSchultzRAximu-PetriAButthofAH�berBH�nerBSiegemundMWeihmannANusbaumCLanderESRussCScience201032871072210.1126/science.118802120448178Genetic history of an archaic hominin group from Denisova Cave in SiberiaReichDGreenREKircherMKrauseJPattersonNDurandEYViolaBBriggsAWStenzelUJohnsonPLFMaricicTGoodJMMarques-BonetTAlkanCFuQMallickSLiHMeyerMEichlerEEStonekingMRichardsMTalamoSShunkovMVDereviankoAPHublinJJKelsoJSlatkinMP��boSNature20104681053106010.1038/nature0971021179161Identification of Common Molecular SubsequencesSmithTFWatermanMSJournal of Molecular Biology198114719519510.1016/0022-2836(81)90087-57265238A general method applicable to the search for similarities in the amino acid sequence of two proteinsNeedlemanSBWunschCDJournal of Molecular Biology19704844345310.1016/0022-2836(70)90057-45420325A block-sorting lossless data compression algorithmBurrowsMWheelerDJBurrowsMWheelerDJ1994Compressed representations of sequences and full-text indexesFerraginaPManziniGM�kinenVNavarroGACM Transactions on Algorithms20073Basic local alignment search toolAltschulSFGishWMillerWMyersEWLipmanDJJournal of Molecular Biology19902154034102231712Personalized copy number and segmental duplication maps using next-generation sequencingAlkanCKiddJMMarques-BonetTAksayGAntonacciFHormozdiariFKitzmanJOBakerCMaligMMutluOSahinalpSCGibbsRAEichlerEENat Genet2009411061106710.1038/ng.437287519619718026mrsFAST: a cache-oblivious algorithm for short-read mappingHachFHormozdiariFAlkanCHormozdiariFBirolIEichlerEESahinalpSCNat Methods2010757657710.1038/nmeth0810-576311570720676076Fast and accurate short read alignment with Burrows-Wheeler transformLiHDurbinRBioinformatics2009251754176010.1093/bioinformatics/btp324270523419451168SHRiMP: Accurate Mapping of Short Color-space ReadsRumbleSMLacroutePDalcaAVFiumeMSidowABrudnoMPLoS Comput Biol20095e100038610.1371/journal.pcbi.1000386267829419461883Hobbes: optimized gram-based methods for efficient read alignmentAhmadiABehmAHonnalliNLiCWengLXieXNucleic Acids Research201140e41331530322199254Sensitive and fast mapping of di-base encoded readsHormozdiariFHachFSahinalpSCEichlerEEAlkanCBioinformatics2011271915192110.1093/bioinformatics/btr303312952421586516RazerS--fast read mapping with sensitivity controlWeeseDEmdeAKRauschTD�ringAReinertKGenome Research2009191646165410.1101/gr.088823.108275212319592482Fast and accurate short read alignment with Burrows-Wheeler TransformLiHDurbinRBioinformatics2009Ultrafast and memory-efficient alignment of short DNA sequences to the human genomeLangmeadBTrapnellCPopMSalzbergSGenome Biol200910R2510.1186/gb-2009-10-3-r25269099619261174SOAP2: an improved ultrafast tool for short read alignmentLiBioinformatics2009Genome structural variation discovery and genotypingAlkanCCoeBPEichlerEENat Rev Genet20111236337610.1038/nrg295821358748Complete Khoisan and Bantu genomes from southern AfricaSchusterSCMillerWRatanATomshoLPGiardineBKassonLRHarrisRSPetersenDCZhaoFQiJAlkanCKiddJMSunYDrautzDIBouardPMuznyDMReidJGNazarethLVWangQBurhansRRiemerCWittekindtNEMoorjaniPTindallEADankoCGTeoWSBuboltzAMZhangZMaQOosthuysenANature201046394394710.1038/nature0879520164927Mapping copy number variation by population-scale genome sequencingMillsREWalterKStewartCHandsakerREChenKAlkanCAbyzovAYoonSCYeKCheethamRKChinwallaAConradDFFuYGrubertFHajirasoulihaIHormozdiariFIakouchevaLMIqbalZKangSKiddJMKonkelMKKornJKhuranaEKuralDLamHYKLengJLiRLiYLinCYLuoRNature2011470596510.1038/nature09708307705021293372Binary codes capable of correcting deletions, insertions, and reversalsLevenshteinVISoviet Physics Doklady1966TurnpennyPEllardSEmery�s Elements of Medical Genetics122005351217323227117The bonobo genome compared with the chimpanzee and human genomesPr�ferKMunchKHellmannIAkagiKMillerJRWalenzBKorenSSuttonGKodiraCWinerRKnightJRMullikinJCMeaderSJPontingCPLunterGHigashinoSHobolthADutheilJKarako�EAlkanCSajjadianSCatacchioCRVenturaMMarques-BonetTEichlerEEAndr�CAtenciaRMugishaLJunholdJPattersonNNature2012486527531349893922722832Comparative and demographic analysis of orang-utan genomesLockeDPHillierLWWarrenWCWorleyKCNazarethLVMuznyDMYangSPWangZChinwallaATMinxPMitrevaMCookLDelehauntyKDFronickCSchmidtHFultonLAFultonRSNelsonJOMagriniVPohlCGravesTAMarkovicCCreeADinhHHHumeJKovarCLFowlerGRLunterGMeaderSHegerANature201146952953310.1038/nature09687306077821270892Intel� SSE4 Programming ReferenceIntel[http://softwarecommunity.intel.com/isn/Downloads/Intel%20SSE4%20Programming%20Reference.pdf]
http://www.ncbi.nlm.nih.gov/pubmed/10835600?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10835600?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20981092?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20981092?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19383631?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19383631?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20729854?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20729854?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16770338?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16770338?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12169732?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12169732?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19287160?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11381028?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11381028?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11381028?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11731936?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11731936?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15059256?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15059256?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19212409?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19212409?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12815433?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12815433?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22398555?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22398555?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21685127?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21685127?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20448178?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20448178?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21179161?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21179161?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7265238?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7265238?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/5420325?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/5420325?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2231712?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2231712?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19718026?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19718026?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20676076?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20676076?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19451168?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19451168?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19461883?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19461883?dopt=Abstract


26. Ahmadi A, Behm A, Honnalli N, Li C, Weng L, Xie X: Hobbes: optimized
gram-based methods for efficient read alignment. Nucleic Acids Research
2011, 40:e41.

27. Hormozdiari F, Hach F, Sahinalp SC, Eichler EE, Alkan C: Sensitive and fast
mapping of di-base encoded reads. Bioinformatics 2011, 27:1915-1921.

28. Weese D, Emde AK, Rausch T, Döring A, Reinert K: RazerS–fast read
mapping with sensitivity control. Genome Research 2009, 19:1646-1654.

29. Li H, Durbin R: Fast and accurate short read alignment with Burrows-
Wheeler Transform. Bioinformatics 2009.

30. Langmead B, Trapnell C, Pop M, Salzberg S: Ultrafast and memory-efficient
alignment of short DNA sequences to the human genome. Genome Biol
2009, 10:R25.

31. Li , et al: SOAP2: an improved ultrafast tool for short read alignment.
Bioinformatics 2009.

32. Alkan C, Coe BP, Eichler EE: Genome structural variation discovery and
genotyping. Nat Rev Genet 2011, 12:363-376.

33. Schuster SC, Miller W, Ratan A, Tomsho LP, Giardine B, Kasson LR, Harris RS,
Petersen DC, Zhao F, Qi J, Alkan C, Kidd JM, Sun Y, Drautz DI, Bouard P,
Muzny DM, Reid JG, Nazareth LV, Wang Q, Burhans R, Riemer C,
Wittekindt NE, Moorjani P, Tindall EA, Danko CG, Teo WS, Buboltz AM,
Zhang Z, Ma Q, Oosthuysen A, et al: Complete Khoisan and Bantu
genomes from southern Africa. Nature 2010, 463:943-947.

34. Mills RE, Walter K, Stewart C, Handsaker RE, Chen K, Alkan C, Abyzov A,
Yoon SC, Ye K, Cheetham RK, Chinwalla A, Conrad DF, Fu Y, Grubert F,
Hajirasouliha I, Hormozdiari F, Iakoucheva LM, Iqbal Z, Kang S, Kidd JM,
Konkel MK, Korn J, Khurana E, Kural D, Lam HYK, Leng J, Li R, Li Y, Lin CY,
Luo R, et al: Mapping copy number variation by population-scale
genome sequencing. Nature 2011, 470:59-65.

35. Levenshtein VI: Binary codes capable of correcting deletions, insertions,
and reversals. Soviet Physics Doklady 1966.

36. Turnpenny P, Ellard S: Emery’s Elements of Medical Genetics , 12 2005.
37. Prüfer K, Munch K, Hellmann I, Akagi K, Miller JR, Walenz B, Koren S,

Sutton G, Kodira C, Winer R, Knight JR, Mullikin JC, Meader SJ, Ponting CP,
Lunter G, Higashino S, Hobolth A, Dutheil J, Karakoç E, Alkan C, Sajjadian S,
Catacchio CR, Ventura M, Marques-Bonet T, Eichler EE, André C, Atencia R,
Mugisha L, Junhold J, Patterson N, et al: The bonobo genome compared
with the chimpanzee and human genomes. Nature 2012, 486:527-531.

38. Locke DP, Hillier LW, Warren WC, Worley KC, Nazareth LV, Muzny DM,
Yang SP, Wang Z, Chinwalla AT, Minx P, Mitreva M, Cook L, Delehaunty KD,
Fronick C, Schmidt H, Fulton LA, Fulton RS, Nelson JO, Magrini V, Pohl C,
Graves TA, Markovic C, Cree A, Dinh HH, Hume J, Kovar CL, Fowler GR,
Lunter G, Meader S, Heger A, et al: Comparative and demographic
analysis of orang-utan genomes. Nature 2011, 469:529-533.

39. Intel: Intel® SSE4 Programming Reference., [http://softwarecommunity.intel.
com/isn/Downloads/Intel%20SSE4%20Programming%20Reference.pdf].

doi:10.1186/1471-2164-14-S1-S13
Cite this article as: Xin et al.: Accelerating read mapping with FastHASH.
BMC Genomics 2013 14(Suppl 1):S13.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

Xin et al. BMC Genomics 2013, 14(Suppl 1):S13
http://www.biomedcentral.com/1471-2164/14/S1/S13

Page 13 of 13

http://www.ncbi.nlm.nih.gov/pubmed/22199254?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22199254?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21586516?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21586516?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19592482?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19592482?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19261174?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19261174?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21358748?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21358748?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20164927?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20164927?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21293372?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21293372?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22722832?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22722832?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21270892?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21270892?dopt=Abstract

	Abstract
	Introduction
	Observation and insight
	Hash table based mappers
	Key observation
	Insight

	Mechanisms
	Adjacency filtering (AF)
	Cheap K-mer selection (CKS)

	Methodology
	Results
	Analysis
	Conclusions and discussion
	Acknowledgements
	Author details
	Authors' contributions
	Declarations
	Competing interests
	References

