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Abstract

Background: MicroRNAs (miRNAs) play a critical role in down-regulating gene expression. By coupling with
Argonaute family proteins, miRNAs bind to target sites on mRNAs and employ translational repression. A large
amount of miRNA-target interactions (MTIs) have been identified by the crosslinking and immunoprecipitation
(CLIP) and the photoactivatable-ribonucleoside-enhanced CLIP (PAR-CLIP) along with the next-generation
sequencing (NGS). PAR-CLIP shows high efficiency of RNA co-immunoprecipitation, but it also lead to T to C
conversion in miRNA-RNA-protein crosslinking regions. This artificial error obviously reduces the mappability of
reads. However, a specific tool to analyze CLIP and PAR-CLIP data that takes T to C conversion into account is still
in need.

Results: We herein propose the first CLIP and PAR-CLIP sequencing analysis platform specifically for miRNA target
analysis, namely miRTarCLIP. From scratch, it automatically removes adaptor sequences from raw reads, filters low
quality reads, reverts C to T, aligns reads to 3’UTRs, scans for read clusters, identifies high confidence miRNA target
sites, and provides annotations from external databases. With multi-threading techniques and our novel C to T
reversion procedure, miRTarCLIP greatly reduces the running time comparing to conventional approaches. In
addition, miRTarCLIP serves with a web-based interface to provide better user experiences in browsing and
searching targets of interested miRNAs. To demonstrate the superior functionality of miRTarCLIP, we applied
miRTarCLIP to two public available CLIP and PAR-CLIP sequencing datasets. miRTarCLIP not only shows comparable
results to that of other existing tools in a much faster speed, but also reveals interesting features among these
putative target sites. Specifically, we used miRTarCLIP to disclose that T to C conversion within position 1-7 and
that within position 8-14 of miRNA target sites are significantly different (p value = 0.02), and even more significant
when focusing on sites targeted by top 102 highly expressed miRNAs only (p value = 0.01). These results comply
with previous findings and further suggest that combining miRNA expression and PAR-CLIP data can improve
accuracy of the miRNA target prediction.

Conclusion: To sum up, we devised a systematic approach for mining miRNA-target sites from CLIP-seq and PAR-
CLIP sequencing data, and integrated the workflow with a graphical web-based browser, which provides a user
friendly interface and detailed annotations of MTIs. We also showed through real-life examples that miRTarCLIP is a
powerful tool for understanding miRNAs. Our integrated tool can be accessed online freely at http://miRTarCLIP.
mbc.nctu.edu.tw.
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Background
MicroRNAs (miRNAs) are about 22-nucletide-length
endogenous non-coding RNA molecules that suppress
target gene expression. Functional miRNAs typically
form RNA-induced silencing complexes (RISCs) that
hybridize complementary sequences at 3’-untranslated
regions (3’ UTRs) of target genes to either degrade
mRNA molecules or suppress protein translation [1]. In
animals and plants, miRNAs regulate many cellular pro-
cesses including cell proliferation, differentiation, apop-
tosis and development [2]. miRNA regulation could be
the etiological factor of many diseases including cancer,
as well as neurological, and cardiovascular disorders [3].
Biologists have discovered that, on each miRNA, the
second to seventh nucleotides (position 2-7) called “seed
region” is indispensable for miRNA-target interactions
(MTIs) [4]. The seed region in miRNAs should match
with the 3’ UTR sequence complementarily. So far, the
conventionally approaches to verify MTIs such as the
reporter assay are still time consuming and incapable of
handling the large-scale screening.
Recent works demonstrated that the novel miRNAs,

miRNA expression, or MTIs can be uncovered in a
large scale by using the next-generation sequencing
(NGS) technology. For example, miRDeep [5] predicts
the novel miRNAs in NGS data according to a probabil-
istic model of miRNA biogenesis. Its newest version,
miRDeep2 [6], reaches the accuracy around 98.6%-
99.9%. Additionally, several tools or web servers were
used to identify novel miRNAs or detect miRNA expres-
sion levels via NGS such as deepBase [7], Geoseq [8],
miRanalyzer [9], SeqBuster [10], mirTools [11], DSAP
[12], miRNAkey [13] and miRExpress [14].
Ultraviolet (UV) crosslinking and immunoprecipitation

(CLIP) was used to identify specific protein-RNA interac-
tion. Functional miRNA was loaded into Argonate protein
and then bound to their target gene to slicing gene expres-
sion. Hence the function of Argonate-mRNA-miRNA
complex can be verified through CLIP technology. Nowa-
days, ChIP-seq technology study in protein-DNA interac-
tion by high-throughput sequencing, CLIP-seq technology
has been developed to identify protein-RNA interaction by
high-throughput sequencing. In 2009, Chi et al.[15] pio-
neered the use of crosslinking and immunoprecipitation
(CLIP) method combining with the next-generation
sequencing (NGS) technology to discover MTIs in order
to obtain Argonaute proteins with mRNA molecules (i.e.,
targets) in mouse brain. Furthermore, Hafner et al. [16]
developed a modified CLIP method, namely Photoactiva-
table-Ribonucleoside-Enhanced Crosslinking and Immu-
noprecipitation (PAR-CLIP), to enhance the resolution of
the original CLIP method. PAR-CLIP enhances protein-
RNA crosslinking by introducing photoactivatable ribonu-
cleoside (4-thiouridine, 4SU) into RNAs, makes RNAs

sustain in ultra-violet light (UV) with higher energies.
Thus, tighter binding was created and results in higher
efficiency of RNA co-immunoprecipitation. However it
also leads to T to C conversion in the miRNA-RNA-
protein crosslinking regions due to the fact that thymine
tends to be replaced by 4SU, which could be misidentified
as cytosine.
Recently, more and more research groups investigated

large-scale MTIs using the CLIP-seq [17-20], and there are
several databases, such as CLIPZ [21], starBase [22], doR-
iNA [23], and TarBase 6.0 [24], compile public available
CLIP and PAR-CLIP sequencing datasets and use their in-
house software toolkits to analyze the raw data. Among
them, only the CLIPZ provides a free web-based analytics
environment to the public, and users have to upload their
data to the server, which is impractical due to the huge size
of the raw sequences and the limited internet bandwidth.
Regarding to standalone tools, PARalyzer [25] is the only
one that focuses on PAR-CLIP dataset analysis so far, and
its execution time is not satisfactory. In other words, there
are only two public available tools that are capable of ana-
lyzing CLIP and PAR-CLIP sequencing data, and none of
them were designed specifically for MTIs.
We herein propose the first CLIP and PAR-CLIP

sequencing analysis platform specifically for miRNA tar-
get analysis, namely miRTarCLIP. We devised a unique
C to T reversion in its workflow to significantly reduce
its running time, and included other novel features (see
below), which increase miRTarCLIP’s functionality. In
addition, miRTarCLIP serves with a web-based interface
to provide better user experiences in browsing and
searching targets of interested miRNAs.

Results
An overview of the miRTarCLIP system
miRTarCLIP consists of six steps (see Methods for
details). It automatically removes adaptor sequences from
raw reads, filters low quality reads, reverts C to T, aligns
reads to 3’UTRs, scans for read clusters, identifies high
confidence miRNA target sites, and provides annotations
from external databases (Figure 1 and Figure 2). All of
the clusters and miRNA target sites and annotations
from external databases are automatically presented in a
web-based browser created according to a template. The
browser also provides a summary table of putative
miRNA target sites with scores from TargetScan, target
site locations, target gene annotations, and seed region
types. In addition, this system takes advantage of the
multi-threading technology to enhance the performance.

The comparison with other CLIP-seq/ PAR-CLIP
databases and tools
As mentioned above, several databases and tools, CLIPZ,
doRiNA, starBase, and PARalyzer analyze CLIP/PAR-CLIP
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sequencing datasets. Table 1 lists the major differences
among several resources for CLIP/PAR-CLIP data analysis.
CLIPZ provides a web service environment for online ana-
lysis. PARalyzer [25] is the only stand-alone tool before
this work, but it only handles PAR-CLIP data and does
not provide a graphical interface. Here, our miRTarCLIP
is implemented as a stand-alone tool, which can analyze
the new CLIP-seq/PAR-CLIP data on users’ local desk-
tops. It provides high-confidence miRNA-target sites with
information in detail and presents them in a web-based
interface.
Most uniquely, miRTarCLIP performs a C to T rever-

sion in its workflow for PAR-CLIP dataset, which works
along with multithreading techniques to significantly
reduce the running time. After mapping reverted reads
to 3’ UTRs (see Methods), miRTarCLIP clusters reads to
search for possible miRNA target sites and uses TargetS-
can to identify miRNAs that target them. If a candidate
miRNA and its target sites had experimental verifications

according to miRTarBase, the systems will rank these
MTIs on the top of the list in a web-based browser.

Applying miRTarCLIP to a CLIP-seq dataset
To demonstrate how our system works on CLIP-seq data,
it is necessary to apply a dataset for analysis. Additional
file 1 shows the web interface of the miRTarCLIP analys-
ing a CLIP-seq data from Chi et al. [15] (BrainA_130_50_-
fastq). In Additional file 1, Lamc1 and mmu-miR-124
were input in the “Gene Symbol” box and the “miRNA
name” box respectively. Lamc1 and miR-124 were chosen
because this MTI (miR-124::Lamc1) was experimentally
verified by Chi et al. [15]. Figure 3 summarizes the com-
plete annotations and visualization results. In Figure 3A,
all possible miRNA-target sites in a read cluster are shown
with the miRNA seeds on top. In this case, the read cluster
in Lamc1 3’ UTR (position 2418-2449) suggests a candi-
date AGO-Lamc1-miRNA terney complex. According to
miRNA expression and the context scores given by

Figure 1 The system flow of miRTarCLIP. The miRTarCLIP system flow consists of three parts: (A) preparation of the CLIP/PAR-CLIP sequencing
data; (B) loading the raw data into the miRTarCLIP’s core algorithms; and (C) presenting the analysis in a web-based browser.
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TargetScan, miRTarCLIP ranks mmu-miR-124a the most
possible miRNA that is involved in this MTI, which is as
what we anticipated. Figure 3B gives the locations of
miRNA target sites (i.e., miRNA_start and miRNA_end)
and the context score from TargetScan.

Applying miRTarCLIP to a PAR-CLIP sequencing dataset
We took the AGO1 PAR-CLIP sequencing dataset
(SRR048973) from Hafner et al. [16] as an example.
According to Hafner et al. [16], miR-103a is a highly
expressed miRNA and it targets PAG1. Hafner et al. [16]

indicated a high T to C conversion at the region between
8th -13th nucleotide in the miRNA target sites. miRTar-
CLIP identified the same region (position 9 in this case)
that contains the most T to C conversion (Figure 4). The
system also provides multiple sequence alignments for
visualizing conserved target sites among 23 species
(Additional file 2). In this case, miR-103a target sites in
PAG1 are clearly the conserved ones, but they are less
likely targeted in rats because this region is not shown in
the alignment (see Additional file 2, 10116 is a taxonomy
id of rat). Figure 3 and 4 indicate that miRTarCLIP can

Figure 2 The miRTarCLIP’s core algorithms. miRTarCLIP automatically removes adaptor sequences from raw reads, filters low quality reads,
reverts C to T, aligns reads to 3’UTRs, scans for read clusters, identifies high confidence miRNA target sites, and provides annotations from
external databases.

Table 1 The comparison of miRTarCLIP with other related CLIP/PAR-CLIP sequencing resources

CLIPZ doRiNA StarBase PARalyzer miRTarCLIP

Resource type Database/Web tool Database Database Standalone tool Standalone tool

Data type Both Both Both PAR-CLIP Both

Mapping reference Genome/transcript - - Genome 23way transcript 3’UTR

miRNA-target
interaction

ElMMo [35] PicTar [36] Seed-rule [29] Seed-rule [29] TargetScan, [29,30]
miRTarBase [31]

Visualization Browser Yes Yes Yes No Yes
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produce similar results of the original study and provide
novel insights of MTIs.

The statistic of T to C conversion sites in the Hafner et al.
[16] PAR-CLIP sequencing dataset
The PAR-CLIP reveals a higher efficiency in RNA co-
immunoprecipitation than the regular CLIP. The PAR-
CLIP incorporates 4-thiouridine (4SU) into transcripts and
applies more energetic UV to enhance the crosslinking
between proteins and RNAs, but it also produces artificial
T to C conversion. Reads with these errors are difficult to
map. Therefore, existing tool, like PARalyzer [25], allows a
read to have two mismatches against the reference. How-
ever, it dramatically increases the search space and time
needed for finding a good match, and in some cases, it
could lead to mistaken mappings (see Discussions).

Hafner et al. [16] and PARalyzer’s authors [25] indicated
in their works that the ratio of T to C conversion is high
in position 8 to 13 of the target sites. The high ratio is
considered an evident sign of real miRNA target sites in
PAR-CLIP data. To confirm this, we compared the T to C
conversion rate within position 1-7 to that within position
8-14 of miRNA target sites, the results indicate that the T
to C conversion is significantly different in these two
regions (p value = 0.02, by one- tailed Student’s T test, see
Figure 5A, Additional file 3, Table 2). To further under-
stand the association between T to C conversion levels
and high-confidence MTIs, we looked for only highly
expressed miRNAs and their target sites. The results show
that the T to C conversion rates differ in an even higher
degree between these regions (p value = 0.01. See Figure
5B, Table 2 and Additional file 3). These two results

Figure 3 mmu-miR-124a targets Lamc1 in the Chi et al. CLIP dataset. (A) A read cluster in Lamc1 3’ UTR (position 2418-2449) indicates a
candidate AGO-Lamc1-miRNA terney complex (shown in the red sequence within the green rectangle). Above that, a pile of miRNA seed
sequences are provided according to the TargetScan. The seed of miR-124 is highlighted in a red box. All the reads of this cluster are aligned
underneath the 3’ UTR sequence of Lamc1. Red letters in reads are mismatches. (B) Detailed positions and TargetScan context scores of MTIs.
According to TargetScan, “seed match” 1 indicates 7mer-A1, which implies perfect match in position 2-7 of the mature miRNA and the
nucleotide at position 1 is A in the mRNA target site (defined by TargetScan). Others TargetScan score such as local AU, position, TA, SPS,
context+ score, and score percentile are are also defined by TargetScan6.2.
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suggest that by incorporating miRNA expression, it is pos-
sible to reduce the false positives in finding miRNA tar-
gets. The rules of miRNA target prediction usually put
constraints on the sequence conservation and miRNA
seed regions [4]. Therefore, we also tested whether the
conservation and seed regions play a role here. Analytical
results indicate that all of the nonconserved seed regions
(i.e., N78, N8, N7, see Figure 5, Table 2) and total
miRNA/CN7 miRNA-target do not exhibit significant dif-
ference (p value > 0.05) (Figure 5A, Table 2 and Additional
file 3). The results suggest the importance of seeds and
conservation. Above results consent with the finding that
T to C conversion is located in non-complementary
regions of the ternary AGO complex [16,26].

Conclusions and discussion
This work develops an integrated approach to analyze
CLIP/PAR-CLIP sequencing data in order to identify the
miRNA target site. User can study interesting miRNAs or
genes/transcripts via a web-based interface. Moreover,

the entire source code of miRTarCLIP is freely available
on the internet for bioinformatics experts to improve and
extend our system.
Comparing with other strategies that allow 2 mis-

matches in mapping (e.g., PARalyzer [25]), this study
introduces a C to T reversion step that tolerates 1 mis-
match to reduce the computationally costs and mistaken
mapping. Although by doing so (see Methods), we are not
free from wrong alignments, but since we only introduce
one type of variants (T/C), the chance of getting wrong is
only a fraction of what PARalyzer [25] does (allowing one
more mismatch actually introduces all pairwise combina-
tions of four nucleotides).
Comparing with the original study (Hafner et al.[16]),

this study gets the similar results regarding to the statistic
of T to C conversion ratio between specific regions. Our
analysis further indicates that the regions with high con-
vertion frequency are outside of the seed regions in the
conserved targets (Figure 6C). The interesting association
between T to C conversion levels and high-confidence

Figure 4 hsa-miR-103a targets PAG1 in the Hafner et al. PAR-CLIP dataset. Similar to Figure 3. (A) Specifically to PAR-CLIP dataset, green
letters in reads denote the T to C conversion sites. The site with the highest conversion ratio is marked in the purple box. (B) Seed match 2
means that perfect match in position 2-8 of the mature miRNA.
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Figure 5 Comparison of T to C conversion ratio between 8-14 mer and 1-7mer target sites in the Hafner et al. PAR-CLIP sequencing
data. C: Conserved, N: Nonserved, 7: 7mer seed matching, 8: 8mer seed matching. For example: The CN78 group consists of miRNA target sites
within Conserved, Nonconserved UTRs with both 7mer and 8mer matching. In panel J to R, we used only top 102 expressed miRNAs (from
Hefner et al.) to calculate the ratios. (A) All miRNAs (B) top 102 expressed miRNAs. Astric marks indicates significant differnece between position
8-14 and 1-7 (p value < 0.05).
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MTIs is also investigated using miRTarCLIP. More
experimental evidences are needed in the future to clarify
the underlying biology.
There are more than 2,000 miRNAs discovered in

humans (according to the miRBase version 19), but only
less than 300 of them had their MTIs understood by the

researchers (according to the miRTarBase version 2.5).
The large-scale technologies for discovering MTIs such
as CLIP-seq/PAR-CLIP-seq will play a key role in
miRNA related studies. We strongly believe miRTar-
CLIP will be an important resource for the society to
reveal more mechanisms of miRNA post-translational
regulation.

Materials and methods
CLIP-seq and PAR-CLIP datasets
Chi et al. [15] recently analyzed MTIs in the mouse
brain tissue by high throughput sequencing and CLIP.
Hafner et al.[16] modified the original CLIP methods
by incorporating 4-thiouridine (4SU) into transcripts
to increase the efficiency of crosslinking and provide
high resolution in protein-RNA binding sites. The raw
data of AGO1-AGO4 can be obtained from Gene
Expression Omnibus (GEO: GSM545212, GSM545213,
GSM545214, GSM545215). The sequencing raw data
of these two studies are used in this proposed miRTar-
CLIP system.

Table 2 Comparison of the T to C conversion ratio in
different MTI sets

Total miRNA Highly expressed miRNA

CN78 0.020 0.011

CN8 0.008 0.010

CN7 0.137 0.047

C78 0.004 0.013

C8 0.014 0.016

C7 0.014 0.030

N78 0.210 0.055

N8 0.050 0.055

N7 0.357 0.096

MTI sets marked in red have higher T to C conversion ratios in 8th to 14th
regions (p value < 0.05. See Figure 5)

Figure 6 The distribution of mismatch ratio in the Hafner et al. PAR-CLIP sequencing dataset. The red lines indicates the miRNA seed
regions.
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Information of miRNA and miRNA targets
The miRNA related information, including the accessions
and miRNA sequences were obtained from miRBase
release 18 [27,28]. microRNA indexes are created to
replace miRNA names because of the inconsistency of
miRNA naming among different versions of miRBase. The
miRNA target prediction and 3’ UTR data are obtained
from TargetScan release 6.2 [29,30]. The experimentally
confirmed MTIs were collected from miRTarBase release
2.5 [31], which was developed previously by our group.

miRTarCLIP analysis pipeline
Figure 2 illustrates the analysis flow of miRTarCLIP pipe-
line. The FASTX-Toolkit [32], SRA-Toolkit [33], and bow-
tie [34] was incorporated into the miRTarCLIP analysis
pipeline. The pipeline has six steps: (1) adapter trimming,
(2) quality control, (3) C to T reversion, (4) read align-
ment, (5) cluster analysis, (6) MTI identification analysis.
We also take advantage of multi-threading to enhance the
performance of the algorithms.

Step 1: adapter trimming for sequencing reads
This step removes the adapter sequence, if any, at the 3’
end of each read. If a trimmed read is shorter than 15
nucleotides or contains any ambiguous nucleotides, the
reads are discarded.

Step 2: quality control of sequencing reads
Following the adapter trimming step, we scan the quality
at the tail of each read. The elimination rules are based on
the phred quality score. Notably, the nucleotides at the 3’
end are removed when their phred scores are lower than
20. Similarly, a reads is discarded if its length less than 15
nucleotides after the tail trimming. Reads with the same
sequences are collapsed into one to save the time for map-
ping duplicates.

Step 3: cytosine to thymine reversion for PAR-CLIP data
PAR-CLIP technology is implemented by incorporating 4-
thiouridone (4SU) to cause thymidine to cytidine transi-
tion in the RNA binding protein sites on transcripts. For
each cytidine in a read, this step will create a new read
with that C converted to T. For instance, a read sequence,
AATGCTCAATGGCGA, will be converted to AATGTT-
CAATGGCGA, AATGCTTAATGGCGA, and AATGCT-
CAATGGTGA. All four sequences (i.e., one original read
and three converted reads) are used to align against the
references.

Step 4: aligning sequencing reads against reference
sequences
miRNAs target mRNAs at 3’ UTRs, so instead of aligning
reads to the entire genome, we use exclusively the 3’
UTR sequences from TargetScan. The reads are mapped

with at most one mismatch. Other tools, like PARalyzer
[25] uses two mismatches to address the T to C conver-
sion issue in PAR-CLIP dataset. However, allowing two
mismatches in mapping (e.g., using bowtie) is very time
consuming and error-prone. To resolve this problem, a
better strategy is to revert C back to T in reads (as
described in Step 3), and align them to the references
with at most one mismatch, in which reduces the compu-
tational costs. We have tested our results with published
PAR-CLIP data from Hafner et al.[16] (SRX020783). We
validated the fact that our C to T reversion combining
with one mismatch mapping tolerance in bowtie is more
efficient than doing mapping directly by allowing 2 mis-
matches. The result shows that we reduced the computa-
tion time by two folds and generated 0.64 folds output
despite our C to T reversion introduced 7 folds of extra
input (Table 3).

Step 5: cluster searching and analysis
These reads are clustered based on their minimum overlap
between each other, at least 20% of the reads in a cluster
should have the T to C conversion; the minimum number
of reads in a cluster is five reads. In the PAR-CLIP dataset,
a cluster reads should contain at least 20% of the T to C
conversion. Whether the cluster sequence is a possible tar-
get site is confirmed using the miRNA seed region
sequences extracted from miRBase.

Step 6: miRNA-target interaction (MTI) analysis
The clustering results are used to search for possible
miRNA target sites by TargetScan. If a candidate target
site is experimentally validated according to miRTarBase,
the system will display it on the top. Other candidates will
be ranked according to the context scores assigned by
TargetScan.

Availability and requirements
miRTarCLIP software was implemented by PHP pro-
gramming language and integrated FASTX-Toolkit,

Table 3 Comparison of computational time and bowtie
mapping

miRTarCLIP PARalyzer Comparison

Times (sec)

C to T program 11.7 -

Bowtie 135 301.7

Total 146.7 301.7 2 folds

Bowtie input and output

Input reads 6429483 919698 7 folds

Output reports 10785713 16895608 0.64 folds

# Dataset: PAR-CLIP data from Hafner et. al. (SRX020783).

# Bowtie parameter: one mismatch in miRTarCLIP and two mismatch in
PARalyzer.

# System: Linux x64, Intel(R) Xeon(R) CPU E5620 @ 2.40GHz, 16G RAM.
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SRA-Toolkit and a bowtie program written in C++ pro-
gramming language. The software can be executed in 32
or 64 bit Linux machine. The software and case study
results can be accessed online at http://miRTarCLIP.
mbc.nctu.edu.tw.

Additional material

Additional file 1: The web-based browser interface of the
miRTarCLIP system.

Additional file 2: The multiple species sequence alignment viewer.

Additional file 3: The distribution of T to C conversion ratio around
target sites in the Hafner et al. PAR-CLIP sequencing data.

Acknowledgements
The authors would like to thank the National Science Council of the
Republic of China for financially supporting this research under Contract No.
NSC 101-2311-B-009-003-MY3 and NSC 100-2627-B-009-002. This work was
supported in part by the UST-UCSD International Center of Excellence in
Advanced Bio-engineering sponsored by the Taiwan National Science
Council I-RiCE Program under Grant Number: NSC 100-2911-I-009-101, and
Veterans General Hospitals and University System of Taiwan (VGHUST) Joint
Research Program under Grant Number: VGHUST101-G5-1-1. This work was
also partially supported by MOE ATU.

Author details
1Institute of Bioinformatics and Systems Biology, National Chiao Tung
University, Hsin-Chu 300, Taiwan. 2Graduate Institute of Biomedical
Informatics, Taipei Medical University, Taiwan. 3Department of Biological
Science and Technology, National Chiao Tung University, Hsin-Chu 300,
Taiwan. 4Department of Obstetrics and Gynecology, Hsinchu Mackay
Memorial Hospital, Hsinchu, Taiwan. 5Mackay Medicine, Nursing and
Management College, Taipei, Taiwan. 6Department of Medicine, Mackay
Medical College, New Taipei City, Taiwan.

Authors’ contributions
CHC carried out all experimental concepts, wrote part of the program and
the manuscript. JHH organized the study, and write the manuscript. FML
carried out some experimental concepts and assisted in the design of the
study. MTC assisted in the design of the study and programming. SDH, THC,
SLW, SS, and CCH assisted in the design of the study. HDH managed the
study in the initial model, and assisted write and revise the manuscript. All
authors read and approved the final manuscript.

Declarations
The authors approve the submission of this paper to BMC Genomics for
publication. The payment of a publishing charge to BioMed Central for this
article was supported by National Science Council of the Republic of China,
No. NSC 101-2311-B-009-003-MY3 and NSC 100-2627-B-009-002. This
publishing charge was supported in part by the UST-UCSD International
Center of Excellence in Advanced Bio-engineering sponsored by the Taiwan
National Science Council I-RiCE Program under Grant Number: NSC 101-
2911-I-009-101, and Veterans General Hospitals and University System of
Taiwan (VGHUST) Joint Research Program under Grant Number: VGHUST101-
G5-1-1. This publishing charge was also partially supported by MOE ATU.
This article has been published as part of BMC Genomics Volume 14
Supplement 1, 2013: Selected articles from the Eleventh Asia Pacific
Bioinformatics Conference (APBC 2013): Genomics. The full contents of the
supplement are available online at http://www.biomedcentral.com/
bmcgenomics/supplements/14/S1.

Competing interests
The authors declare that they have no competing interests.

Published: 21 January 2013

References
1. Bartel DP: MicroRNAs: genomics, biogenesis, mechanism, and function.

Cell 2004, 116(2):281-297.
2. Krol J, Loedige I, Filipowicz W: The widespread regulation of microRNA

biogenesis, function and decay. Nat Rev Genet 2010, 11(9):597-610.
3. Esteller M: Non-coding RNAs in human disease. Nat Rev Genet 2011,

12(12):861-874.
4. Bartel DP: MicroRNAs: target recognition and regulatory functions. Cell

2009, 136(2):215-233.
5. Friedlander MR, Chen W, Adamidi C, Maaskola J, Einspanier R, Knespel S,

Rajewsky N: Discovering microRNAs from deep sequencing data using
miRDeep. Nat Biotechnol 2008, 26(4):407-415.

6. Friedlander MR, Mackowiak SD, Li N, Chen W, Rajewsky N: miRDeep2
accurately identifies known and hundreds of novel microRNA genes in
seven animal clades. Nucleic Acids Res 2012, 40(1):37-52.

7. Yang JH, Shao P, Zhou H, Chen YQ, Qu LH: deepBase: a database for
deeply annotating and mining deep sequencing data. Nucleic Acids Res
2010, 38(Database):D123-130.

8. Gurtowski J, Cancio A, Shah H, Levovitz C, George A, Homann R,
Sachidanandam R: Geoseq: a tool for dissecting deep-sequencing
datasets. BMC Bioinformatics 2010, 11:506.

9. Hackenberg M, Sturm M, Langenberger D, Falcon-Perez JM, Aransay AM:
miRanalyzer: a microRNA detection and analysis tool for next-generation
sequencing experiments. Nucleic Acids Res 2009, 37(Web Server):W68-76.

10. Pantano L, Estivill X, Marti E: SeqBuster, a bioinformatic tool for the
processing and analysis of small RNAs datasets, reveals ubiquitous
miRNA modifications in human embryonic cells. Nucleic Acids Res 2010,
38(5):e34.

11. Zhu E, Zhao F, Xu G, Hou H, Zhou L, Li X, Sun Z, Wu J: mirTools: microRNA
profiling and discovery based on high-throughput sequencing. Nucleic
Acids Res 2010, 38(Web Server):W392-397.

12. Huang PJ, Liu YC, Lee CC, Lin WC, Gan RR, Lyu PC, Tang P: DSAP: deep-
sequencing small RNA analysis pipeline. Nucleic Acids Res 2010, 38(Web
Server):W385-391.

13. Ronen R, Gan I, Modai S, Sukacheov A, Dror G, Halperin E, Shomron N:
miRNAkey: a software for microRNA deep sequencing analysis.
Bioinformatics 2010, 26(20):2615-2616.

14. Wang WC, Lin FM, Chang WC, Lin KY, Huang HD, Lin NS: miRExpress:
analyzing high-throughput sequencing data for profiling microRNA
expression. BMC Bioinformatics 2009, 10:328.

15. Chi SW, Zang JB, Mele A, Darnell RB: Argonaute HITS-CLIP decodes
microRNA-mRNA interaction maps. Nature 2009, 460(7254):479-486.

16. Hafner M, Landthaler M, Burger L, Khorshid M, Hausser J, Berninger P,
Rothballer A, Ascano M Jr, Jungkamp AC, Munschauer M, et al:
Transcriptome-wide identification of RNA-binding protein and microRNA
target sites by PAR-CLIP. Cell 2010, 141(1):129-141.

17. Zisoulis DG, Lovci MT, Wilbert ML, Hutt KR, Liang TY, Pasquinelli AE,
Yeo GW: Comprehensive discovery of endogenous Argonaute binding
sites in Caenorhabditis elegans. Nature structural & molecular biology 2010,
17(2):173-179.

18. Leung AK, Young AG, Bhutkar A, Zheng GX, Bosson AD, Nielsen CB,
Sharp PA: Genome-wide identification of Ago2 binding sites from mouse
embryonic stem cells with and without mature microRNAs. Nat Struct
Mol Biol 2011, 18(2):237-244.

19. Jungkamp AC, Stoeckius M, Mecenas D, Grun D, Mastrobuoni G, Kempa S,
Rajewsky N: In vivo and transcriptome-wide identification of RNA
binding protein target sites. Mol Cell 2011, 44(5):828-840.

20. Gottwein E, Corcoran DL, Mukherjee N, Skalsky RL, Hafner M, Nusbaum JD,
Shamulailatpam P, Love CL, Dave SS, Tuschl T, et al: Viral microRNA
targetome of KSHV-infected primary effusion lymphoma cell lines. Cell
Host Microbe 2011, 10(5):515-526.

21. Khorshid M, Rodak C, Zavolan M: CLIPZ: a database and analysis
environment for experimentally determined binding sites of RNA-
binding proteins. Nucleic Acids Res 2011, 39(Database):D245-252.

22. Yang JH, Li JH, Shao P, Zhou H, Chen YQ, Qu LH: starBase: a database for
exploring microRNA-mRNA interaction maps from Argonaute CLIP-Seq
and Degradome-Seq data. Nucleic acids research 2011, 39(Database):
D202-209.

23. Anders G, Mackowiak SD, Jens M, Maaskola J, Kuntzagk A, Rajewsky N,
Landthaler M, Dieterich C: doRiNA: a database of RNA interactions in

Chou et al. BMC Genomics 2013, 14(Suppl 1):S2
http://www.biomedcentral.com/1471-2164/14/S1/S2

Page 10 of 11

http://miRTarCLIP.mbc.nctu.edu.tw
http://miRTarCLIP.mbc.nctu.edu.tw
http://www.biomedcentral.com/content/supplementary/1471-2164-14-S1-S2-S1.doc
http://www.biomedcentral.com/content/supplementary/1471-2164-14-S1-S2-S2.doc
http://www.biomedcentral.com/content/supplementary/1471-2164-14-S1-S2-S3.doc
MicroRNAs: genomics, biogenesis, mechanism, and functionBartelDPCell2004116228129710.1016/S0092-8674(04)00045-514744438The widespread regulation of microRNA biogenesis, function and decayKrolJLoedigeIFilipowiczWNat Rev Genet201011959761020661255Non-coding RNAs in human diseaseEstellerMNat Rev Genet2011121286187410.1038/nrg307422094949MicroRNAs: target recognition and regulatory functionsBartelDPCell2009136221523310.1016/j.cell.2009.01.00219167326Discovering microRNAs from deep sequencing data using miRDeepFriedlanderMRChenWAdamidiCMaaskolaJEinspanierRKnespelSRajewskyNNat Biotechnol200826440741510.1038/nbt139418392026miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal cladesFriedlanderMRMackowiakSDLiNChenWRajewskyNNucleic Acids Res2012401375210.1093/nar/gkr688324592021911355deepBase: a database for deeply annotating and mining deep sequencing dataYangJHShaoPZhouHChenYQQuLHNucleic Acids Res201038DatabaseD12313010.1093/nar/gkp943280899019966272Geoseq: a tool for dissecting deep-sequencing datasetsGurtowskiJCancioAShahHLevovitzCGeorgeAHomannRSachidanandamRBMC Bioinformatics20101150610.1186/1471-2105-11-506297230320939882miRanalyzer: a microRNA detection and analysis tool for next-generation sequencing experimentsHackenbergMSturmMLangenbergerDFalcon-PerezJMAransayAMNucleic Acids Res200937Web ServerW687610.1093/nar/gkp347270391919433510SeqBuster, a bioinformatic tool for the processing and analysis of small RNAs datasets, reveals ubiquitous miRNA modifications in human embryonic cellsPantanoLEstivillXMartiENucleic Acids Res2010385e3410.1093/nar/gkp1127283656220008100mirTools: microRNA profiling and discovery based on high-throughput sequencingZhuEZhaoFXuGHouHZhouLLiXSunZWuJNucleic Acids Res201038Web ServerW39239710.1093/nar/gkq393289613220478827DSAP: deep-sequencing small RNA analysis pipelineHuangPJLiuYCLeeCCLinWCGanRRLyuPCTangPNucleic Acids Res201038Web ServerW38539110.1093/nar/gkq392289616820478825miRNAkey: a software for microRNA deep sequencing analysisRonenRGanIModaiSSukacheovADrorGHalperinEShomronNBioinformatics201026202615261610.1093/bioinformatics/btq49320801911miRExpress: analyzing high-throughput sequencing data for profiling microRNA expressionWangWCLinFMChangWCLinKYHuangHDLinNSBMC Bioinformatics20091032810.1186/1471-2105-10-328276736919821977Argonaute HITS-CLIP decodes microRNA-mRNA interaction mapsChiSWZangJBMeleADarnellRBNature20094607254479486273394019536157Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIPHafnerMLandthalerMBurgerLKhorshidMHausserJBerningerPRothballerAAscanoMJrJungkampACMunschauerMCell2010141112914110.1016/j.cell.2010.03.009286149520371350Comprehensive discovery of endogenous Argonaute binding sites in Caenorhabditis elegansZisoulisDGLovciMTWilbertMLHuttKRLiangTYPasquinelliAEYeoGWNature structural & molecular biology201017217317910.1038/nsmb.174523235501Genome-wide identification of Ago2 binding sites from mouse embryonic stem cells with and without mature microRNAsLeungAKYoungAGBhutkarAZhengGXBossonADNielsenCBSharpPANat Struct Mol Biol201118223724410.1038/nsmb.1991307805221258322In vivo and transcriptome-wide identification of RNA binding protein target sitesJungkampACStoeckiusMMecenasDGrunDMastrobuoniGKempaSRajewskyNMol Cell201144582884010.1016/j.molcel.2011.11.009325345722152485Viral microRNA targetome of KSHV-infected primary effusion lymphoma cell linesGottweinECorcoranDLMukherjeeNSkalskyRLHafnerMNusbaumJDShamulailatpamPLoveCLDaveSSTuschlTCell Host Microbe201110551552610.1016/j.chom.2011.09.012322287222100165CLIPZ: a database and analysis environment for experimentally determined binding sites of RNA-binding proteinsKhorshidMRodakCZavolanMNucleic Acids Res201139DatabaseD24525210.1093/nar/gkq940301379121087992starBase: a database for exploring microRNA-mRNA interaction maps from Argonaute CLIP-Seq and Degradome-Seq dataYangJHLiJHShaoPZhouHChenYQQuLHNucleic acids research201139DatabaseD20220910.1093/nar/gkq1056301366421037263doRiNA: a database of RNA interactions in post-transcriptional regulationAndersGMackowiakSDJensMMaaskolaJKuntzagkARajewskyNLandthalerMDieterichCNucleic acids research201240DatabaseD180186324501322086949TarBase 6.0: capturing the exponential growth of miRNA targets with experimental supportVergoulisTVlachosISAlexiouPGeorgakilasGMaragkakisMReczkoMGerangelosSKozirisNDalamagasTHatzigeorgiouAGNucleic acids research201240DatabaseD222229324511622135297PARalyzer: definition of RNA binding sites from PAR-CLIP short-read sequence dataCorcoranDLGeorgievSMukherjeeNGottweinESkalskyRLKeeneJDOhlerUGenome Biol2011128R7910.1186/gb-2011-12-8-r79330266821851591Structure of an argonaute silencing complex with a seed-containing guide DNA and target RNA duplexWangYJuranekSLiHShengGTuschlTPatelDJNature2008456722492192610.1038/nature07666276540019092929The microRNA RegistryGriffiths-JonesSNucleic Acids Res200432DatabaseD10911130875714681370miRBase: integrating microRNA annotation and deep-sequencing dataKozomaraAGriffiths-JonesSNucleic acids research201139DatabaseD15215710.1093/nar/gkq1027301365521037258Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targetsLewisBPBurgeCBBartelDPCell20051201152010.1016/j.cell.2004.12.03515652477Weak seed-pairing stability and high target-site abundance decrease the proficiency of lsy-6 and other microRNAsGarciaDMBaekDShinCBellGWGrimsonABartelDPNat Struct Mol Biol201118101139114610.1038/nsmb.2115319005621909094miRTarBase: a database curates experimentally validated microRNA-target interactionsHsuSDLinFMWuWYLiangCHuangWCChanWLTsaiWTChenGZLeeCJChiuCMNucleic Acids Res201139DatabaseD16316910.1093/nar/gkq1107301369921071411FASTQ/A short-reads pre-processing toolsFASTX-Toolkithttp://hannonlab.cshl.edu/fastx_toolkit/The Sequence Read Archive: explosive growth of sequencing dataKodamaYShumwayMLeinonenRInternational Nucleotide Sequence Database CNucleic Acids Res201240DatabaseD5456324511022009675Ultrafast and memory-efficient alignment of short DNA sequences to the human genomeLangmeadBTrapnellCPopMSalzbergSLGenome Biol2009103R2510.1186/gb-2009-10-3-r25269099619261174Inference of miRNA targets using evolutionary conservation and pathway analysisGaidatzisDvan NimwegenEHausserJZavolanMBMC Bioinformatics200786910.1186/1471-2105-8-69183842917331257Combinatorial microRNA target predictionsKrekAGrunDPoyMNWolfRRosenbergLEpsteinEJMacMenaminPda PiedadeIGunsalusKCStoffelMNat Genet200537549550010.1038/ng153615806104
MicroRNAs: genomics, biogenesis, mechanism, and functionBartelDPCell2004116228129710.1016/S0092-8674(04)00045-514744438The widespread regulation of microRNA biogenesis, function and decayKrolJLoedigeIFilipowiczWNat Rev Genet201011959761020661255Non-coding RNAs in human diseaseEstellerMNat Rev Genet2011121286187410.1038/nrg307422094949MicroRNAs: target recognition and regulatory functionsBartelDPCell2009136221523310.1016/j.cell.2009.01.00219167326Discovering microRNAs from deep sequencing data using miRDeepFriedlanderMRChenWAdamidiCMaaskolaJEinspanierRKnespelSRajewskyNNat Biotechnol200826440741510.1038/nbt139418392026miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal cladesFriedlanderMRMackowiakSDLiNChenWRajewskyNNucleic Acids Res2012401375210.1093/nar/gkr688324592021911355deepBase: a database for deeply annotating and mining deep sequencing dataYangJHShaoPZhouHChenYQQuLHNucleic Acids Res201038DatabaseD12313010.1093/nar/gkp943280899019966272Geoseq: a tool for dissecting deep-sequencing datasetsGurtowskiJCancioAShahHLevovitzCGeorgeAHomannRSachidanandamRBMC Bioinformatics20101150610.1186/1471-2105-11-506297230320939882miRanalyzer: a microRNA detection and analysis tool for next-generation sequencing experimentsHackenbergMSturmMLangenbergerDFalcon-PerezJMAransayAMNucleic Acids Res200937Web ServerW687610.1093/nar/gkp347270391919433510SeqBuster, a bioinformatic tool for the processing and analysis of small RNAs datasets, reveals ubiquitous miRNA modifications in human embryonic cellsPantanoLEstivillXMartiENucleic Acids Res2010385e3410.1093/nar/gkp1127283656220008100mirTools: microRNA profiling and discovery based on high-throughput sequencingZhuEZhaoFXuGHouHZhouLLiXSunZWuJNucleic Acids Res201038Web ServerW39239710.1093/nar/gkq393289613220478827DSAP: deep-sequencing small RNA analysis pipelineHuangPJLiuYCLeeCCLinWCGanRRLyuPCTangPNucleic Acids Res201038Web ServerW38539110.1093/nar/gkq392289616820478825miRNAkey: a software for microRNA deep sequencing analysisRonenRGanIModaiSSukacheovADrorGHalperinEShomronNBioinformatics201026202615261610.1093/bioinformatics/btq49320801911miRExpress: analyzing high-throughput sequencing data for profiling microRNA expressionWangWCLinFMChangWCLinKYHuangHDLinNSBMC Bioinformatics20091032810.1186/1471-2105-10-328276736919821977Argonaute HITS-CLIP decodes microRNA-mRNA interaction mapsChiSWZangJBMeleADarnellRBNature20094607254479486273394019536157Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIPHafnerMLandthalerMBurgerLKhorshidMHausserJBerningerPRothballerAAscanoMJrJungkampACMunschauerMCell2010141112914110.1016/j.cell.2010.03.009286149520371350Comprehensive discovery of endogenous Argonaute binding sites in Caenorhabditis elegansZisoulisDGLovciMTWilbertMLHuttKRLiangTYPasquinelliAEYeoGWNature structural & molecular biology201017217317910.1038/nsmb.174523235501Genome-wide identification of Ago2 binding sites from mouse embryonic stem cells with and without mature microRNAsLeungAKYoungAGBhutkarAZhengGXBossonADNielsenCBSharpPANat Struct Mol Biol201118223724410.1038/nsmb.1991307805221258322In vivo and transcriptome-wide identification of RNA binding protein target sitesJungkampACStoeckiusMMecenasDGrunDMastrobuoniGKempaSRajewskyNMol Cell201144582884010.1016/j.molcel.2011.11.009325345722152485Viral microRNA targetome of KSHV-infected primary effusion lymphoma cell linesGottweinECorcoranDLMukherjeeNSkalskyRLHafnerMNusbaumJDShamulailatpamPLoveCLDaveSSTuschlTCell Host Microbe201110551552610.1016/j.chom.2011.09.012322287222100165CLIPZ: a database and analysis environment for experimentally determined binding sites of RNA-binding proteinsKhorshidMRodakCZavolanMNucleic Acids Res201139DatabaseD24525210.1093/nar/gkq940301379121087992starBase: a database for exploring microRNA-mRNA interaction maps from Argonaute CLIP-Seq and Degradome-Seq dataYangJHLiJHShaoPZhouHChenYQQuLHNucleic acids research201139DatabaseD20220910.1093/nar/gkq1056301366421037263doRiNA: a database of RNA interactions in post-transcriptional regulationAndersGMackowiakSDJensMMaaskolaJKuntzagkARajewskyNLandthalerMDieterichCNucleic acids research201240DatabaseD180186324501322086949TarBase 6.0: capturing the exponential growth of miRNA targets with experimental supportVergoulisTVlachosISAlexiouPGeorgakilasGMaragkakisMReczkoMGerangelosSKozirisNDalamagasTHatzigeorgiouAGNucleic acids research201240DatabaseD222229324511622135297PARalyzer: definition of RNA binding sites from PAR-CLIP short-read sequence dataCorcoranDLGeorgievSMukherjeeNGottweinESkalskyRLKeeneJDOhlerUGenome Biol2011128R7910.1186/gb-2011-12-8-r79330266821851591Structure of an argonaute silencing complex with a seed-containing guide DNA and target RNA duplexWangYJuranekSLiHShengGTuschlTPatelDJNature2008456722492192610.1038/nature07666276540019092929The microRNA RegistryGriffiths-JonesSNucleic Acids Res200432DatabaseD10911130875714681370miRBase: integrating microRNA annotation and deep-sequencing dataKozomaraAGriffiths-JonesSNucleic acids research201139DatabaseD15215710.1093/nar/gkq1027301365521037258Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targetsLewisBPBurgeCBBartelDPCell20051201152010.1016/j.cell.2004.12.03515652477Weak seed-pairing stability and high target-site abundance decrease the proficiency of lsy-6 and other microRNAsGarciaDMBaekDShinCBellGWGrimsonABartelDPNat Struct Mol Biol201118101139114610.1038/nsmb.2115319005621909094miRTarBase: a database curates experimentally validated microRNA-target interactionsHsuSDLinFMWuWYLiangCHuangWCChanWLTsaiWTChenGZLeeCJChiuCMNucleic Acids Res201139DatabaseD16316910.1093/nar/gkq1107301369921071411FASTQ/A short-reads pre-processing toolsFASTX-Toolkithttp://hannonlab.cshl.edu/fastx_toolkit/The Sequence Read Archive: explosive growth of sequencing dataKodamaYShumwayMLeinonenRInternational Nucleotide Sequence Database CNucleic Acids Res201240DatabaseD5456324511022009675Ultrafast and memory-efficient alignment of short DNA sequences to the human genomeLangmeadBTrapnellCPopMSalzbergSLGenome Biol2009103R2510.1186/gb-2009-10-3-r25269099619261174Inference of miRNA targets using evolutionary conservation and pathway analysisGaidatzisDvan NimwegenEHausserJZavolanMBMC Bioinformatics200786910.1186/1471-2105-8-69183842917331257Combinatorial microRNA target predictionsKrekAGrunDPoyMNWolfRRosenbergLEpsteinEJMacMenaminPda PiedadeIGunsalusKCStoffelMNat Genet200537549550010.1038/ng153615806104
http://www.ncbi.nlm.nih.gov/pubmed/14744438?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20661255?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20661255?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22094949?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19167326?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18392026?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18392026?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21911355?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21911355?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21911355?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19966272?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19966272?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20939882?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20939882?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19433510?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19433510?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20008100?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20008100?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20008100?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20478827?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20478827?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20478825?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20478825?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20801911?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19821977?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19821977?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19821977?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19536157?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19536157?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20371350?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20371350?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/23235501?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/23235501?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21258322?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21258322?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22152485?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22152485?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22100165?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22100165?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21087992?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21087992?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21087992?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21037263?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21037263?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21037263?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22086949?dopt=Abstract


post-transcriptional regulation. Nucleic acids research 2012, 40(Database):
D180-186.

24. Vergoulis T, Vlachos IS, Alexiou P, Georgakilas G, Maragkakis M, Reczko M,
Gerangelos S, Koziris N, Dalamagas T, Hatzigeorgiou AG: TarBase 6.0:
capturing the exponential growth of miRNA targets with experimental
support. Nucleic acids research 2012, 40(Database):D222-229.

25. Corcoran DL, Georgiev S, Mukherjee N, Gottwein E, Skalsky RL, Keene JD,
Ohler U: PARalyzer: definition of RNA binding sites from PAR-CLIP short-
read sequence data. Genome Biol 2011, 12(8):R79.

26. Wang Y, Juranek S, Li H, Sheng G, Tuschl T, Patel DJ: Structure of an
argonaute silencing complex with a seed-containing guide DNA and
target RNA duplex. Nature 2008, 456(7224):921-926.

27. Griffiths-Jones S: The microRNA Registry. Nucleic Acids Res 2004,
32(Database):D109-111.

28. Kozomara A, Griffiths-Jones S: miRBase: integrating microRNA annotation
and deep-sequencing data. Nucleic acids research 2011, 39(Database):
D152-157.

29. Lewis BP, Burge CB, Bartel DP: Conserved seed pairing, often flanked by
adenosines, indicates that thousands of human genes are microRNA
targets. Cell 2005, 120(1):15-20.

30. Garcia DM, Baek D, Shin C, Bell GW, Grimson A, Bartel DP: Weak seed-
pairing stability and high target-site abundance decrease the proficiency
of lsy-6 and other microRNAs. Nat Struct Mol Biol 2011, 18(10):1139-1146.

31. Hsu SD, Lin FM, Wu WY, Liang C, Huang WC, Chan WL, Tsai WT, Chen GZ,
Lee CJ, Chiu CM, et al: miRTarBase: a database curates experimentally
validated microRNA-target interactions. Nucleic Acids Res 2011,
39(Database):D163-169.

32. FASTX-Toolkit: FASTQ/A short-reads pre-processing tools.[http://
hannonlab.cshl.edu/fastx_toolkit/].

33. Kodama Y, Shumway M, Leinonen R, International Nucleotide Sequence
Database C: The Sequence Read Archive: explosive growth of
sequencing data. Nucleic Acids Res 2012, 40(Database):D54-56.

34. Langmead B, Trapnell C, Pop M, Salzberg SL: Ultrafast and memory-
efficient alignment of short DNA sequences to the human genome.
Genome Biol 2009, 10(3):R25.

35. Gaidatzis D, van Nimwegen E, Hausser J, Zavolan M: Inference of miRNA
targets using evolutionary conservation and pathway analysis. BMC
Bioinformatics 2007, 8:69.

36. Krek A, Grun D, Poy MN, Wolf R, Rosenberg L, Epstein EJ, MacMenamin P,
da Piedade I, Gunsalus KC, Stoffel M, et al: Combinatorial microRNA target
predictions. Nat Genet 2005, 37(5):495-500.

doi:10.1186/1471-2164-14-S1-S2
Cite this article as: Chou et al.: A computational approach for
identifying microRNA-target interactions using high-throughput CLIP
and PAR-CLIP sequencing. BMC Genomics 2013 14(Suppl 1):S2.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

Chou et al. BMC Genomics 2013, 14(Suppl 1):S2
http://www.biomedcentral.com/1471-2164/14/S1/S2

Page 11 of 11

http://www.ncbi.nlm.nih.gov/pubmed/22086949?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22135297?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22135297?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22135297?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21851591?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21851591?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19092929?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19092929?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19092929?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14681370?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21037258?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21037258?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15652477?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15652477?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15652477?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21909094?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21909094?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21909094?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21071411?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21071411?dopt=Abstract
http://hannonlab.cshl.edu/fastx_toolkit/
http://hannonlab.cshl.edu/fastx_toolkit/
http://www.ncbi.nlm.nih.gov/pubmed/22009675?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22009675?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19261174?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19261174?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17331257?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17331257?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15806104?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15806104?dopt=Abstract

	Abstract
	Background
	Results
	Conclusion

	Background
	Results
	An overview of the miRTarCLIP system
	The comparison with other CLIP-seq/ PAR-CLIP databases and tools
	Applying miRTarCLIP to a CLIP-seq dataset
	Applying miRTarCLIP to a PAR-CLIP sequencing dataset
	The statistic of T to C conversion sites in the Hafner et al. 16 PAR-CLIP sequencing dataset

	Conclusions and discussion
	Materials and methods
	CLIP-seq and PAR-CLIP datasets
	Information of miRNA and miRNA targets
	miRTarCLIP analysis pipeline
	Step 1: adapter trimming for sequencing reads
	Step 2: quality control of sequencing reads
	Step 3: cytosine to thymine reversion for PAR-CLIP data
	Step 4: aligning sequencing reads against reference sequences
	Step 5: cluster searching and analysis
	Step 6: miRNA-target interaction (MTI) analysis

	Availability and requirements
	Acknowledgements
	Author details
	Authors' contributions
	Declarations
	Competing interests
	References

