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Abstract

Background: Yeast deletion-mutant collections have been successfully used to infer the mode-of-action of drugs
especially by profiling chemical-genetic and genetic-genetic interactions on a genome-wide scale. Although tens
of thousands of those profiles are publicly available, a lack of an accurate method for mining such data has been a
major bottleneck for more widespread use of these useful resources.

Results: For general usage of those public resources, we designed FitRankDB as a general repository of fitness
profiles, and developed a new search algorithm, FitSearch, for identifying the profiles that have a high similarity
score with statistical significance for a given fitness profile. We demonstrated that our new repository and
algorithm are highly beneficial to researchers who attempting to make hypotheses based on unknown modes-of-
action of bioactive compounds, regardless of the types of experiments that have been performed using yeast
deletion-mutant collection in various types of different measurement platforms, especially non-chip-based
platforms.

Conclusions: We showed that our new database and algorithm are useful when attempting to construct a
hypothesis regarding the unknown function of a bioactive compound through small-scale experiments with a
yeast deletion collection in a platform independent manner. The FitRankDB and FitSearch enhance the ease of
searching public yeast fitness profiles and obtaining insights into unknown mechanisms of action of drugs.
FitSearch is freely available at http://fitsearch.kaist.ac.kr.

Background
The collection of yeast deletion strains has been a power-
ful tool for systematic genome-wide functional analysis. A
budding yeast deletion-mutant library has been available
for more than ten years [1], and recently a fission yeast
collection has also become available [2]. In particular,
strain-specific molecular barcodes allow quantitative func-
tional profiling of pooled deletion strains by using a TAG
oligonucleotide microarray [3]. Among many types of
functional profiles, the chemical-genetic profiles express
quantitative values of growth defects of deletion strains in
the presence of certain chemicals. The compendium of

chemical-genetic profiles of heterozygous and homozy-
gous deletion strains for a large number of chemicals has
been successfully used to identify direct target proteins of
drugs [4,5] as well as exploring their modes-of-action
[6,7]. Such profile data can also be a valuable resource for
many other applications in chemical genomics. In S. cere-
visiae, thousands of chemical-genetic profiles have been
generated so far and are publicly available [8]. Fitness data
have been deposited in a recently developed public data-
base called fitDB [8]; this database, however, only provides
limited tools such as an online-interface for searching with
keywords such as yeast ORFs or drug names.
In a large-scale study using a single measurement plat-

form, researchers can easily compare fitness profiles using
several well-known similarity measures. Then, by cluster-
ing the profiles, they can group bioactive compounds with
a similar mode-of-action and make a plausible hypothesis
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about the unknown mode-of-action of a drug [7]. How-
ever, chemical-genetic profiles can be generated using
many different measurement platforms such as DNA
chip-based parallel measurements [4,5,7,9], high-density
colony measurement on agar plates [10], high-density well
plate-based optical density [11] or fluorescence [12] mea-
surements in liquid culture. Moreover, the fitness scores
can be expressed in many different ways (i.e., fold-ratio, z-
score, p-value, ranks, or binary values expressing growth
defects). Such difficulties complicate the process of relat-
ing one profile to another. This problem becomes more
severe when only a limited number of yeast fitness profiles
for a drug of interest are available, and more so when such
profiles have been generated by non-chip-based measure-
ment platforms. In such cases, it is very difficult to per-
form data-mining against the tens of thousands of public
fitness profiles that may contain valuable information on
the mode-of-action of the drug of interest.
In this study, we developed FitRankDB as a general

repository of fitness profiles, and FitSearch as a new fit-
ness similarity search algorithm which compares fitness
profiles and calculates their similarity score and the cor-
responding statistical significance, regardless of the types
of experimental setup by which they have been generated
(Figure 1). The FitRankDB and FitSearch web service
provides an uncomplicated means for searching tens of
thousands of public yeast fitness profiles and obtaining
insight into unknown modes-of-action of drugs.

Methods
The ultimate objective of FitSearch is to provide a com-
putational tool for interpreting any type of yeast fitness
profiles in terms of the mode-of-action of a drug through
comparison of various types of yeast fitness profiles and
publicly available functional annotations. To do this, we
first needed to create a general repository of yeast fitness
profiles combined with genetic interaction information.
Next, and more importantly, we needed a universal simi-
larity measure for comparing profiles in a biologically
meaningful way. Finally, for efficient and wider use of the
resources, it was necessary to develop an easy-to-use
public server in which users can choose and run several
web applications, depending on their specific needs.

FitRankDB, a general repository of yeast fitness profiles
Genome-wide yeast fitness profiles, using a yeast deletion
library, have been used to infer the mode-of-action of a
drug, genetic interactions, such as synthetic lethality, and
functional annotation of unknown genes. We categorized
those fitness profiles according to a yeast deletion library
and a treatment, and collected them from public resources
(Table 1). To make our collection a general repository for
yeast fitness profiles, we defined a flexible standard file for-
mat using YAML (YAML Ain’t Markup Language) to

express all relevant information available. This yeast fitness
YAML (called FitYAML) is a very simple format, which
consists of three-letter keywords and their corresponding
values. Currently, 32 three-letter keywords are defined, but
this definition is scalable (see keyword definitions and
download FitYAML at the website). Our internal curation
system automatically extracts ranks of raw fitness scores
and experimental information from FitYAML, and stores
them into FitRankDB. For efficient computation,
FitRankDB has two types of databases, Berkeley DB for
rank information, and MySQL for experimental informa-
tion. In addition, we collected various functional module
definitions, such as protein complexes, to assist biological
interpretation of fitness profiles into FitRankDB.
Biogrid is a manually curated database, which provides

various types of genetic interactions. It also contains
information that enables us to distinguish query genes
from array genes in a genetic interaction assay. To con-
struct genetic-genetic profiles from the biogrid genetic
interaction data, we extracted only the synthetic lethality
(SL), synthetic growth defect (SD) and phenotypic
enhancement (PE) datasets in S. cerevisiae, and ranked
the array genes corresponding to each query gene
according to the degree of growth defect: SL > SD > PE.
In this procedure, array genes against the same query
gene reported in different papers are merged (named
‘Biogrid merged’) or are separately deposited (named
‘Biogrid individual’) in FitRankDB. In addition, array
genes against a query gene are assumed to be genes of
strains with significant growth defects determined by
genome-scale screening, and the query gene considered
to be identified from a genetic treatment, such as gene
knockout. Other large genetic interaction datasets from
Epistatic Mini Array Profiles (E-MAP), were downloaded
at http://interactome-cmp.ucsf.edu and deposited into
FitRankDB in a similar way: ‘chromosome function
E-MAP’ [13], ‘signaling E-MAP’ [14], ‘early secretory
pathway E-MAP’ [15] and ‘RNA processing E-MAP’
[16].

FitSearch, a rank cutoff optimizer as a search engine
Suppose that we are investigating whether two chemicals
share a similar mode-of-action. One way to do this is to
measure the similarity between the two fitness profiles of
chemicals that may have been generated from different
measurement platforms. Then, a requisite property for a
new similarity measure is that the more similar the
modes-of-action of the two chemicals are, the greater the
similarity score should be. Realizing that the main diffi-
culty in developing a biologically meaningful similarity
measure arises from the fact that the profiles may have
been generated from different types of experimental setup
and that their fitness values may have been expressed in
different ways, we first transformed the fitness values of
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each strain into their ranks. Next, considering that only
the highly ranked strains that are significantly affected by a
given chemical treatment are informative for inferring its

mode-of-action, we chose the rank cutoff values for the
two fitness profiles. Unlike previous methods where cutoff
values were chosen rather arbitrarily, we developed an

Figure 1 Overall scheme of FitSearch. Although researchers have only one or two yeast fitness profiles to their drugs of interest that have
unknown toxicity mechanisms, they can easily perform data-mining against tens of thousands of public fitness profiles in order to obtain insight
into the mechanism through the FitSearch website (http://fitsearch.kaist.ac.kr). When any type of yeast fitness profile is submitted as a query in
the website, a similarity search to other public resources is performed by rank-cutoff optimizer through the FitSearch engine, which is a newly
developed method using rank-based overlapping statistics (see the details in the Methods). Since available public resources are deposited in
FitRankDB as a general repository for the FitSearch engine (see the details in the Methods), the similarity search can be performed more
efficiently, thoroughly, and rapidly in the FitSearch website. Finally, users scrutinize characteristics of a list of drugs similar to their drug of interest
and obtain clues or plausible hypotheses, which could also help them to design further bioassays.

Table 1 Different types of yeast fitness profiles deposited in FitRankDB.

Type of treatment Type of genome-wide deletion library Type of fitness profile Profile #

Chemical effect1 Homozygous deletion strains3 Chemical-genetic (Hom) 918

Chemical effect Heterozygous deletion strains3 Chemical-genetic (Het) 1,530

Genetic effect2 Homozygous deletion strains Genetic-genetic (Hom) 12,419

See the details at http://pombe.kaist.ac.kr/fitsearch/statistics/
1 For example, drug, bioactive compounds or natural crude extracts
2 For example, knock-out, over-expression or mutation of a gene
3 Homozygous (or haploid) and heterozygous (or diploid) deletion collections of S. cerevisiae and S. pombe are commercially available at Open Biosystems (http://
www.openbiosystems.com) and Bioneer (http://pombe.bioneer.co.kr), respectively.
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efficient dynamic programming algorithm to choose the
two optimal rank cutoff values.
This algorithm named “rank cutoff optimizer” finds

the optimal rank cutoffs by maximizing the statistical
significance for overlap of the same set of strains in the
two lists. The probability of overlapping by chance is
known to follow the hyper-geometric distribution [17].
Suppose that there are mij strains that co-occur in both
the query profile, with the rank cutoff i, having qi strains
and the target profile, with the rank cutoff j, having tj
strains. Then the probability of such co-occurrence hap-
pening by random chance, p(mij), is given by

p(mij) =
C(qi,mij)C(n − qi, tj − mij)

C(n, tj)
(1)

where n is the total number of strains, and C(n, m) is
the number of ways of choosing m strains out of n
strains. Of particular interest is the cumulative probabil-
ity of p(m),

Hp(mij, qi, tj;n) =
min(qi,tj)∑

m=mij

p(m) (2)

which is simply the p-value. In addition, a p-value
considering multiple hypothesis correction is defined
using Bonferroni correction, which is a stringent correc-
tion method, given by

p̃ = Np (3)

where N is represents the number of tests. This cor-
rection eventually increases the p-value. The rank cutoff
optimizer calculates the optimal rank cutoffs, i* and j*,
by minimizing the p-value, i.e.,

(i∗, j∗) = arg min
i,j=1..k

Hp(mij, qi, tj;n) (4)

and reports both the overlapping significance defined
as -log10(p-value) and the overlapping score, which is
the Tanimoto coefficient given by

T =
mi∗j∗

qi∗ + tj∗ − mi∗j∗
(5)

We will explain the rank cutoff optimizer step by step
with a toy example. Suppose that we have two fitness
profiles, one as a query and the other as a target. The
first step is to convert the fitness values of each strain
into their ranks as shown in Figure 2A. After each rank
in the query and the target is sorted by their corre-
sponding strain names as shown in Figure 2A, the rank
matches of each strain can be expressed as a “match
matrix” (M) as shown in the upper panel of Figure 2B.
In the M, the rows represent the ranks in the query,
and columns represent the ranks in the target, and the

value indicates the strain number with the same rank in
both the query and the target.
Step 2. Constructing an accumulated match matrix

(A): Efficient calculation of the match number accumu-
lated under all possible rank-cutoffs of the query and
the target can be achieved by dynamic programming as
follows:

Aij = Mij + Aij−1 + Ai−1j − Ai−1j−1 (6)

In the equation (6), Mij is the match number in the
rank i of the query and the rank j of the target, and Aij

is the match number accumulated under the rank-cutoff
i of the query and the rank-cutoff j of the target, which
is schematically depicted in Figure 2B. This accumulated
match matrix (A) provides the objective function, Hp,
with all possible parameters for optimization. In A,
values represent mij as the overlapped strain number in
the equation (2), its row-names qi indicate the query
strain number and column-names tj indicate the target
strain number in their respective rank-cutoffs i and j,
and the column or row length n represents the size of
the population. In the toy example of Figure 2, the max-
imal rank-cutoff k is set to the same as n.
Step 3. Finding the optimal rank-cutoffs from a

cumulative hyper-geometric p-value matrix (P): The
cumulative hyper-geometric p-values are calculated
through the equation (2) of the objective function, Hp
for all possible rank-cutoffs, stored in the P, and then
used to find the rank-cutoffs with the minimized p-
value as described in the equation (1). In the toy exam-
ple of Figure 2, the query rank-cutoff of 5 and the target
rank-cutoff of 5 show the minimal p-value, 0.004 (Figure
2C). This means that the best significant relationship
between the query and the target in terms of overlap is
observed at those rank-cutoffs, which are termed opti-
mal rank-cutoffs in our study.
After this optimization, we can define the similarity

between the query and the target at their optimal rank-
cutoffs. In our study, we use two values: one is the mini-
mized p-value as an overlapping significance, and the
other is the Tanimoto coefficient as an overlapping
score.

Web application as the user interface
To search the similarities with all the profiles deposited
in the FitRankDB using the rank-cutoff optimizer
against a query profile, we provide users with two web
frontends (Table 2). This web application uses a python-
based Django framework and the rank-cutoff optimizer
as the third party program implemented by C program.
Significant top search results can be differently inter-
preted according to the types of query and target. Some
clear interpretations are shown in Table 3.
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Figure 2 Toy example showing how the rank-cutoff optimizer works. (A) Ranks of each strain in virtual two query and target yeast fitness
profiles to be compared are supposed to be deposited in Fit-RankDB. These profiles are also supposed to be generated using a virtual yeast
deletion library comprising strain a to j. (B) Efficient calculation of a match number (or an overlapped strain number) accumulated under all
possible rank-cutoffs of the query and the target by Dynamic programming (see the details in the Methods). For this calculation, first, rank
matches of each strain should be expressed as the match matrix (M). In the M matrix, its row represents ‘ranks in the query’, its column ‘ranks in
the target’, and its value ‘the strain number with same rank in the query and the target’. Then, the current accumulated match number (in red-
colored cell in the A matrix) is calculated by adding the current match number (in the orange-colored cell in the M matrix) to the previous
accumulated match number (sky-colored cell plus purple-colored cell minus gray-colored cell in the A matrix). In this way, the accumulated
match numbers regarding to all possible rank-cutoffs are efficiently calculated and stored in the A matrix. (C) The matrix of cumulative hyper-
geometric p-values (P) is filled by calculating the equation (2) as the objective function (Hp) regarding to all possible rank-cutoffs, and used to
find the rank-cutoffs with the minimized p-value as described in the equation (3), called optimal rank-cutoffs. The A matrix provides all of the
parameters needed for equations (2) and (3) as follows: Its values represent the overlapped strain number in the equation (2); its row-names, the
query strain number; its column-names, the target strain number in their respective rank-cutoffs; and its column or row length, the size of
population. When the maximal rank-cutoff is set to 10 in the toy example, the query rank-cutoff 5 and the target rank-cutoff 5 shows the
minimal p-value, 0.004. At those optimal rank-cutoffs, overlapping significance (hyper-geometric p-value) and overlapping score (Tanimoto
coefficients) can be expressed as the similarity between the query and the target.

Lee et al. BMC Genomics 2013, 14(Suppl 1):S6
http://www.biomedcentral.com/1471-2164/14/S1/S6

Page 5 of 11



Results
In FitSearch, we consider the following two design princi-
ples, universality and simplicity (See details in Methods).
In brief, we adopt the use of rank statistics to compare
two fitness profiles. This implies that any type of fitness
scores can be universally converted into their correspond-
ing ranks. The similarity of the two rank-transformed pro-
files can be easily calculated by rank-based comparison
methods if we consider all of the profiles. In most situa-
tions, however, except for a relatively small number of
top-ranked strains that are severely affected by the given
drug, most strains can be considered as producing noise
signals. Therefore, removal of such non-informative
strains is necessary in order to calculate more accurate
similarity measures and to make more meaningful com-
parison between profiles that may have been generated
from different experimental treatments. An important
question then arises: how should we define informative or
non-informative strains? In other words, how should we
set the optimal rank cutoffs for the two given profiles?
The rank cutoff is an arbitrary value, can vary depending
on viewpoint of the researcher, and is difficult to choose
in advance for a pair of profiles.
We solved this problem using an optimization method.

Among all possible combinations of rank-cutoff values for
a pair of profiles, FitSearch finds the optimal rank cutoffs
by minimizing the p-value for the co-occurrence of the
same set of strains in the two lists by chance, and finally
returns two types of scores at those optimal rank cutoffs,
viz., the Tanimoto coefficient and the p-value (Figure 2).
These two scores based on overlapping strains efficiently
display the similarity between profiles (Figure 3). Research-
ers do not need to define the cutoff values, which are auto-
matically calculated by an internal optimizer in FitSearch.
To investigate whether FitSearch correctly identified

fitness profiles sharing a similar mode-of-action, we

performed a series of case studies, and validated the
results by using prior knowledge and by performing
experiments.

Case study 1: comparing chemical-genetic profiles from
different measurement platforms
Several high-throughput fitness profile datasets generated
by using different platforms were deposited in
FitRankDB. For example, the compendium named ‘Cell,
2004’ [4] contains heterozygous fitness profiles from the
Merck company and fitDB collection [8], and ‘Cell, 2006’
contains homozygous fitness profiles from the Boone
group [7]. In addition, the compendium named ‘Science,
2008’ [8] contains both homozygous and heterozygous
fitness profiles from the fitDB collection. In this case
study, we tested whether our method successfully identi-
fied the correct relationships between the chemical-
genetic profiles generated from different measurement
platforms.
Clustering the drugs according to the similarity between

their corresponding chemical-genetic profiles provides
insights into the unknown modes-of-action of drugs. This
has been well demonstrated in ‘Cell, 2006’ where fitness
profile data were generated from the platform using gen-
ome-wide homozygous deletion strains (i.e. a haploid col-
lection). To generalize such an approach, we developed a
method for measuring the similarity between chemical-
genetic profiles generated by various types of measure-
ment platforms (see Methods for details). We tested our
new method using the chemical-genetic profiles of clotri-
mazole, latrunculin B, beomyl and cisplatin in ‘Cell, 2006’
as a query, and searched the combined database of
‘Science, 2008’ and ‘Cell, 2006’ which contain roughly
1,000 profiles. Under appropriate two-way cutoffs of over-
lapping score and significance, the top-ranked target pro-
files were either fitness profiles of the query drugs from

Table 2 Available frontends in FitSearch web site.

Option Description

FitSearchp Search pre-compiled fitness rank database (FitRankDB) with a fitness profile of user.

FitSearchd Search FitRankDB with the profile specified in FitRankDB.

There are more details in ‘help’ page in the web site.

Table 3 Biological interpretation about similarity between two fitness profiles

Query fitness profile Target fitness profile Biological interpretation of similar target treatment

Chemical-genetic (Hom) Chemical-genetic
(Hom)

Chemical effect (i.e. drug toxicity) with similar mode-of-action

Chemical-genetic (Het) Chemical-genetic (Het) Chemical effect with similar mode-of-action; Finding common direct drug target
protein

Chemical-genetic (Hom) Genetic-genetic (Hom) Genetic effect (i.e. knock-out and mutations) on direct drug target protein gene

Chemical/genetic-genetic (Hom/
Het)

Biological
functional annotation:
-Gene ontology
-Protein complexes

Biological functions related to chemical or genetic effect

Lee et al. BMC Genomics 2013, 14(Suppl 1):S6
http://www.biomedcentral.com/1471-2164/14/S1/S6

Page 6 of 11



different platforms or those of chemicals known to have a
common mode-of-action in common with the query
(Additional file 1). For example, the best hits for clotrima-
zole (0.4 μM) in ‘Cell, 2006’ are clotrimazole with a differ-
ent dose (2 μM) in ‘Science, 2008’ and fluconazole (0.03
μM) in ‘Cell, 2006’ (Figure 3B). In addition, most of the
target profiles of azoles from different platforms are listed
in the top ranks.
In the case of genome-wide heterozygous deletion

strains (i.e. a diploid collection), the main application of
the chemical-genetic profiles is to find direct drug target
protein candidates by screening drug-induced haploinsuf-
ficient strains [4,5]. Grouping of similar chemical-genetic
profiles is not a typical approach, but was introduced to
discover common targets and associated cellular functions
for multiple classes of drugs [5,18]. To investigate the
potential of FitSearch in a diploid collection, we selected
as a query the yeast fitness profile of 5-flourouracil (5-FU),
one of chemical-genetic profiles reported in ‘Cell, 2004’

which was the first compendium of chemical-genetic pro-
files based on a diploid collection. Even though this
compendium was generated using roughly half of the gen-
ome-wide deletion strains, this study demonstrated that it
was possible to identify the direct target protein of the
drug and reported a novel target of 5-FU. We searched
FitRankDB with 5-FU as a query using the FitSearchd pro-
gram (Table 2). As expected, fitness profiles of 5-FU with
different doses and generated from different platforms
resided in the top ranks (Figure 3A). Additionally, similar
chemicals, such as 5-fluorodeoxyuridine and 5-fluorocyto-
sine showed high similarities. A synergistic effect of meth-
otrexate and 5-fluorouracil was also detected by the
similarity search.

Case study 2: comparing chemical-genetic profiles and
genetic-genetic profiles
In principle, deletion of a gene that encodes the target
of an inhibitory compound should cause cellular effects

Figure 3 Plot of an overlapping score and an overlapping significance as two-way cutoffs to show the most similar chemical or
genetic effects to a query’s effect. (A) Two-way cutoff plot of the most similar chemical effects to the 5-Fluorouracil’s effect. (B) Two-way
cutoff plot of similar chemical effects to clotrimazole’s effect. (C) Two-way cutoff plot of the most similar genetic effects to clotrimazole’s effect.
(D) Two-way cutoff plot of the most similar chemical effects to DAPG’s effect. Target sources mean public chemical-genetic or genetic-genetic
yeast profiles.
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that are similar to the inhibition of the target by drug
treatment. In a proof-of-principle experiment, it was
shown that for five different chemicals the chemical-
genetic profiles were highly similar to the genetic inter-
action profiles of the target gene or genes in the target
pathway [19]. To generalize this approach, we created a
comprehensive compendium of global genetic interac-
tion profiles by combining the interaction data from
Biogrid [20] and E-MAP. Biogrid was deposited into
FitRankDB in the forms of ‘Biogrid individual’ and ‘Bio-
grid merged’ (see Method for details).
For testing, we used the four chemical-genetic profiles

of clotrimazole, latrunculin B, beomyl and cisplatin in
‘Cell, 2006’ as a query, and searched ‘Biogrid individual’,
‘Biogrid merged’ and ‘E-MAP’ to find the target profiles.
We found that the top-ranked target profiles were rele-
vant to the known mode-of-action of the query chemi-
cals (Additional file 1). In particular, the target profile of
ERG11 was detected at the first rank (Figure 3C); ERG
11 is known to be a direct target protein of clotrimazole.

Case study 3: experimental validation
FitSearch is most beneficial to researchers who have per-
formed a small-scale experiment using a yeast deletion
collection. In a small-scale experiment, researchers usually
generate one or two chemical-genetic profiles by colony-
or OD-based platforms. That makes it difficult to perform
data mining from public resources that were typically gen-
erated by chip-based platforms. To investigate how useful
FitSearch is for a small-scale experiment, it was applied to
obtain a hypothesis on the toxicity and mechanism of
action of 2,4-diacetylphloroglucinol (2,4-DAPG). 2,4-
DAPG is an antibiotic produced by Pseudomonas fluores-
cens that plays a key role in the ability of the bacterium to
suppress phytopathogenic fungi. 2,4-DAPG has broad
antibiotic activity, affecting organisms ranging from bac-
teria to higher plants. The biosynthesis and regulation of
2,4-DAPG in P. fluorescens has been well described. How-
ever, the mode of action of the antibiotic against target
fungi has not been described in detail.
For testing, we selected common mutants in a haploid

collection that showed significant growth defects in col-
ony- and OD-based screening when exposed to DAPG
(manuscript in preparation), and transformed them into
binary query profiles. Public chemical-genetic profiles
from ‘Cell, 2006’ and ‘Science, 2008’ were used as the tar-
get sources for a similar mode-of-action drug search and
public genetic-interaction datasets of ‘Biogrid individual’,
‘Biogrid merged’, and ‘E-MAP’ were used as the target
sources to find the direct drug target candidates. Under
appropriate two-way cutoffs of overlapping score and sig-
nificance, (1R, 2S, 5R)-2-isopropyl-5-methylcyclohexanol
(menthol), sodium azide, and hydrogen peroxide were
found to have similar toxicity and mechanism of action to

2,4-DAPG (Figure 3D and Additional file 1). However, no
genetic effect similar to 2,4-DAPG chemical effect was
detected.

Predicting gene-gene interactions
A genetic interaction can be defined as a synergetic phe-
notype that cannot be elucidated by simply combining the
phenotypes of distinct gene perturbations. A typical way
to detect genetic interaction is to make use of synthetic
lethal genetic screens and synthetic dosage lethal screens.
However, due to the vast number of gene-gene combina-
tions, genome-wide screening had not been possible until
the Synthetic Genetic Array (SGA) method [21] became
available. Recently, genome-scale SGA analysis was used
to chart the genetic interaction map in budding yeast [22].
The profiles of quantitative scores of genes in SGA screen
were stored in FitRankDB. In addition, we tested whether
our FitSearch algorithm could reveal genetic interactions.
We carried out FitSearchd (Table 2) for all genetic fitness
profiles in FitRankDB first and predicted genetic interac-
tions if the two genetic profiles had a significant p-value
and Tanimoto coefficient (p-value < 1e-10, Tc > 0.1).
About 12% of interactions predicted in this study are real
genetic interactions according to the work by Costanzo et
al. [22]. All other interactions would be either false posi-
tives or novel genetic interactions not previously detected.
In Table 4, we compiled the top-10 list of these interac-
tions sorted by Tanimoto coefficient. Although the results
we obtained are not included in previous SGA screening
work, there is clear evidence supporting that these pre-
dicted interactions are not false positives. These results
indicate that FitSearch can find new genetic interactions,
which cannot be identified by SGA analysis and that these
two techniques can complement each other.

Discussion
Yeast deletion collections have been successfully used to
infer modes-of-actions of drugs especially by profiling
chip-based chemical-genetic and genetic-genetic interac-
tions on a genome-wide scale [4,5,7,9]. In addition, tens of
thousands of those profiles are publicly available. However,
if researchers only have a few yeast profiles to their drugs
of interest with unknown toxicity mechanisms, it is not
easy to compare them with public resources to investigate
whether similar profiles exist. One of the main reasons is
that, typically, the chemical-genetic profiles have been gen-
erated on non-chip based measurement platforms, such as
a simple 96-well spotting assay or high-density colony
measurement on an agar plate [10], high-density well
plate-based optical density [11], or fluorescence [12] mea-
surements in a liquid culture. Furthermore, different fit-
ness scoring methods are also problematic. Therefore,
there is an urgent need for developing platform- and
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scoring method-independent ways to compare fitness pro-
files for more efficient utilization of the public resources.
In previous studies, the conventional similarity mea-

sures, such as the Pearson correlation coefficient, were
typically used for comparing fitness profiles. However,
such simple similarity measures can be applied only to
the profiles generated by well-controlled experiments
using a single measurement platform. The probability of
chance overlap by chance between two profiles was also
used to measure their similarity, but was only applicable
to fitness profiles with pre-defined significant thresholds
[19]. Such thresholds are typically arbitrary and vary
depending on the experimental setup and the research-
er’s viewpoint. This requires a more universal and simple
way to measure similarities.
Here, we demonstrated the general usability of FitSearch

as a new similarity measure of yeast fitness profiles by lit-
erature-based and experimental case studies. In the first
literature-based case study, we tested whether our new
method was able to find drugs with similar modes-of-
action even if their fitness profiles had been generated by
different measurement platforms. A previous study showed
that similarities of chemical-genetic profiles generated
from the same platform tended to imply similar modes-of-
action of drugs [7]. Our new similarity measure, FitSearch,
can generalize such an approach even with chemical-
genetic profiles obtained from different experimental plat-
forms. For example, we showed that drugs very similar or
the same as 5-FU and clotrimazole were detected in the
top rank after FitSearch (Figure 3A and 3B).
In the second literature-based case study, we tested

whether the new method could be applied to measure
the similarity between a chemical-genetic profile and a
genetic-interaction profile. In principle, deletion of a
gene that encodes the target of an inhibitory compound
should cause cellular effects that are similar to inhibition
of the target by a drug treatment. This proof-of-principle

experiment was successfully performed [19]. Our Fit-
Search is a generalization of this type of approach. We
showed that the target protein of clotrimazole, ERG 11
was detected using chemical- and genetic-genetic profiles
generated in different platforms (Figure 3C).
FitSearch benefits researchers performing small-scale

experiments using yeast deletion collection because in
these studies, only one or two chemical-genetic profiles
are generated by colony- or OD-based platforms. This
makes it difficult to perform data mining from public
resources, as these data are typically generated on the
chip-based platforms. An example is a recent study
(manuscript in preparation) that generated yeast fitness
profiles to 2,4-DAPG, an antibiotic with a poorly under-
stood mode-of-action. Through similarity searching of
FitRankDB using the web-frontend, FitSearchp (Table 2),
we found three similar compounds; menthol, sodium
azide and H2O2 in the top rank (Figure 3D). Menthol is
known to cause a perturbation in the lipid fraction of the
membrane, altered membrane permeability and conse-
quential leakage of intracellular materials [23]. Sodium
azide has been known as a rapid and reversible inhibitor
of the cytochrome c oxidase-respiratory chain complex
IV, through enhanced cytochrome c holoenzyme disso-
ciation [24]. Membrane associated protein kinase C activ-
ity can also be altered by sodium azide [24]. Marino et al.
[25] reported that sodium azide increases intracellular
calcium in mammalian systems, causing azide neurotoxi-
city. Hydrogen peroxide (H2O2) can damage proteins,
lipids, and DNA. The primary source of reactive oxygen
species such as H2O2 is free-leakage of electrons, which
is generated by the mitochondrial respiratory system.
Based on the modes-of-action of these three similar
drugs, it was suggested that mechanism of action of 2,4-
DAPG may involve disturbing cell membrane permeabil-
ity, triggering of a reactive oxygen burst, and interruption
of cell homeostasis.

Table 4 FitSearch can detect genetic interactions that cannot be detected by SGA analysis.

Rank Gene1 Gene2 Tc P-value Note

1 YPL022W RAD1 YML095C RAD10 1 3.44E-29 Single-stranded DNA endonucleases (with each other)

2 YDL040C NAT1 YHR013C ARD1 0.94 1.18E-317 Subunit of the N-terminal acetyltransferase NatA (Nat1p, Ard1p, Nat5p)

3 YCR009C RVS161 YDR388W RVS167 0.91 3.37E-114 Manually curated by [27]

4 YPL020C ULP1 YKR082W NUP133 0.91 3.79E-28 Overexpression of ULP1 rescues a nup133 rad27 or nup60 rad27 double
mutant [28]

5 YJL194W CDC6 YHR118C ORC6 0.91 1.42E-72 ORC6-rxl and chromosomal deletion of the Cdc6 leads to slow growth
phenotype [29]

6 YMR125W STO1 YPL178W CBC2 0.88 2.62E-40 Both are subunits of cap-binding protein complex

7 YMR224C MRE11 YNL250W RAD50 0.88 1.34E-171 MRE11 is a subunit of a complex with Rad50p and Xrs2p

8 YBR175W SWD3 YAR003W SWD1 0.88 4.12E-54 Both are subunits of the COMPASS (Set1C) complex

9 YDR166C SEC5 YLR166C SEC10 0.86 2.30E-32 Both are subunits of the exocyst complex

10 YNL041C COG6 YNL051W COG5 0.8 1.56E-96 Both are components of the conserved oligomeric Golgi complex

The table shows the top 10 results that are not included in the genetic interaction list by SGA analysis [22]. Notes without references are retrieved from the
Saccharomyces Genome Database (SGD) [26]. P-values, here, are corrected considering multiple tests.
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Conclusions
Yeast deletion collections have been successfully used to
infer mode-of-actions of drugs, in particular by profiling
chip-based chemical-genetic and genetic-genetic interac-
tions on a genome-wide scale. For optimal use of public
resources, we designed FitRankDB as a general reposi-
tory of fitness profiles, and developed FitSearch as a
new similarity measure between such profiles. We
showed that our new repository and algorithm are bene-
ficial to researchers who are attempting to obtain
hypothesis regarding the unknown modes-of-action of a
bioactive compound through a small-scale experiment
with yeast deletion collections from different platforms,
specifically non-chip based platforms.

Additional material

Additional file 1: Summary of FitSeach results of Clotrimazole,
Latrunculin B, Benomyl, Cisplatin, and 2,4-DAPG.
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