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Abstract

Background: It is a great challenge of modern biology to determine the functional roles of non-synonymous
Single Nucleotide Polymorphisms (nsSNPs) on complex phenotypes. Statistical and machine learning techniques
establish correlations between genotype and phenotype, but may fail to infer the biologically relevant
mechanisms. The emerging paradigm of Network-based Association Studies aims to address this problem of
statistical analysis. However, a mechanistic understanding of how individual molecular components work together
in a system requires knowledge of molecular structures, and their interactions.

Results: To address the challenge of understanding the genetic, molecular, and cellular basis of complex
phenotypes, we have, for the first time, developed a structural systems biology approach for genome-wide
multiscale modeling of nsSNPs - from the atomic details of molecular interactions to the emergent properties of
biological networks. We apply our approach to determine the functional roles of nsSNPs associated with hypoxia
tolerance in Drosophila melanogaster. The integrated view of the functional roles of nsSNP at both molecular and
network levels allows us to identify driver mutations and their interactions (epistasis) in H, Rad51D, Ulp1, Wnt5,
HDAC4, Sol, Dys, GaINAc-T2, and CG33714 genes, all of which are involved in the up-regulation of Notch and
Gurken/EGFR signaling pathways. Moreover, we find that a large fraction of the driver mutations are neither
located in conserved functional sites, nor responsible for structural stability, but rather regulate protein activity
through allosteric transitions, protein-protein interactions, or protein-nucleic acid interactions. This finding should
impact future Genome-Wide Association Studies.

Conclusions: Our studies demonstrate that the consolidation of statistical, structural, and network views of
biomolecules and their interactions can provide new insight into the functional role of nsSNPs in Genome-Wide
Association Studies, in a way that neither the knowledge of molecular structures nor biological networks alone
could achieve. Thus, multiscale modeling of nsSNPs may prove to be a powerful tool for establishing the functional
roles of sequence variants in a wide array of applications.
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Background

Recent advances in next generation sequencing have gen-
erated abundant genetic variants and “omics” data.
Together, these extremely large, multidimensional data-
sets present an exciting opportunity to identify genes,
and to predict pathways likely to be involved in diseases
and traits. However, these complex data sources plus the
broad spectrum of phenotypes, challenge the quest to
uncover the genetic, molecular, and cellular mechanisms
that underlie phenotypes [1-3]. A major challenge in
deciphering the genetic basis of multigenic diseases or
traits is to distinguish driver mutations that impact the
survival or reproduction of a particular phenotype (e.g.,
cancer) from passengers that do not confer a selective
advantage. Standard genome sequence analysis cannot
detect all driver mutations due to difficulties in the esti-
mation of the background mutation rate and underlying
genetic heterogeneity of adaptive phenotypes [4,5]. Statis-
tical machine learning techniques (e.g., SNAP [6]) pro-
vide an alternate approach by learning from the
annotated mutation data. However, the “black-box” nat-
ure of machine learning makes it difficult to interpret the
novel functional roles of mutations. Parallel to the devel-
opment of new genotyping and phenotyping techniques,
a number of novel computational tools have been devel-
oped to integrate and analyze genetic and omics data
with the aim of establishing statistical causal relationships
between genetic markers, genome-wide molecular signa-
tures, and organismal phenotypes [7-13]. For example,
co-expression and Bayesian network models derived
from DNA variances and genome-wide transcriptional
profiles have been applied to identify causal disease genes
[14], cancer drivers [10,15], and master regulators of can-
cer [16-18]. Although great efforts have been made to
address n<<p problem, where the number of observations
n (e.g., gene expressions in different conditions) is much
smaller than the number of variables or parameters
p (e.g., all measured genes), the power of these statistics-
based techniques is still limited if sample sizes are small.
Moreover, the complex phenotype is often associated
with interactions among multiple causal genes (epistasis),
any of which alone is not sufficient to drive phenotypic
change. It is challenging for statistical methods to identify
epistasis given the large number of possible interactions.
Fundamentally, the “causal” relationships inferred from
these methods are mathematical correlations. They may
not provide biological insight into the underlying mole-
cular and cellular mechanisms that associate genotypes
with phenotypes.

A mechanistic understanding of how individual molecular
components work together in a system, and how the system
is affected and adapted to individual changes, requires
knowledge of molecular structures, their interactions, and
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their conformational dynamics [19]. Conversely, a priori
knowledge of structures, their interactions and dynamics
may facilitate the identification of causal mutations and
their interactions from noisy data even where statistical
techniques fail. In this paper, we have developed an inte-
grated multiscale modeling framework to decipher the
impact of non-synonymous Single Nucleotide Polymorph-
isms (nsSNPs) on the information flow from the activity of
a single molecular component, to the function of the com-
plete molecular machinery, and ultimately to the emergent
properties of the biological network. Conceptually, our
approach is rooted in Crick’s central dogma of molecular
biology and Blois’s scalar theory of biomedical information
[20]. The fundamental concept of scalar theory is that com-
plex phenotypes arise from the emergent properties of
lower scales in the hierarchy which themselves have an
intermediate phenotype (or mesophenotype). Based on sca-
lar theory, an organismal phenotype (e.g., disease) emerges
from dysregulated pathways that can be identified by gen-
ome-wide signatures such as gene expression profiles. The
change of the genome-wide signature between disease and
normal states results from the altered molecular machinery
in the cell, which includes abnormal molecular interactions.
In turn, the molecular interaction is determined predomi-
nately by the shape, dynamics and physiochemical proper-
ties of the associated biomolecules - properties changed by
genetic modifications. From an algorithmic point of view,
the task is to predict the response of the mesophenotype to
the emergent properties of the lower scale, and then use
that prediction as input to the upper scale. This is different
from current paradigms that often bypass one or more
intermediate phenotypes. In practice, each level can be stu-
died independently and then integrated for an improved
outcome (Figure 1). In this paper, our contributions are
three-fold. First, we address the challenges of identifying
causal mutations and epistasis in Genome-Wide Associa-
tion Studies (GWAS) data when the sample size is extre-
mely small. We do so by incorporating a priori knowledge
of protein structure, evolution and interaction, and cellular
signaling and regulatory pathways. In principle, it allows us
to identify driver mutations de novo. Second, we show evi-
dence that a large fraction of driver mutations may be
involved in perturbation of protein-protein interaction and
protein-nucleic acid interactions, and alternation of molecu-
lar allosteric regulation; molecular mechanisms that have
been paid too little attention in GWAS thus far. Third, we
introduce a new method to identify mutation mediated
pathway profiles, which can be used to prioritize driver
mutations and epistasis, by integrating sequence variances,
protein-protein interaction networks, and gene expression
profiles.

To demonstrate the feasibility of our approach, we apply
multiscale modeling to reveal the genetic, molecular, and
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Figure 1 A multiscale modeling strategy to integrate statistical machine learning, protein structural analysis, and biological network

Driver mutation

cellular basis of hypoxia, a physiological condition in
which the cell is deprived of an adequate oxygen supply.
The hypoxia-induced phenotype has been related to multi-
ple pathological conditions including cancer [21]. Cells,
tissues, and organisms have developed different strategies
to survive low oxygen levels; however, the underlying
molecular mechanisms contributing to hypoxia tolerance
remain unclear. To render mammalian cells and tissues
resistant to a low O2 environment, Drosophila melanoga-
ster (D. melanogaster) has been used as a model system to
investigate the mechanisms underlying hypoxia tolerance.
Through long-term laboratory selection, Zhou et al. have
generated D. melanogaster populations that tolerate
severe, normally lethal, levels of hypoxia [22]. Microarray
analysis identified several adaptive changes in the hypoxia-
selected flies [22]. Comparison between the genome
sequences of hypoxia-selected flies and those of controls
identified 107 amino acid mutations in 52 genes [23].
These data provide us with an unparalleled opportunity to
understand the genetic, molecular, and cellular basis of
the hypoxia tolerance phenotype and to develop new com-
putational tools to establish causal genotype-phenotype
associations, which can be validated through controlled
experiments. It is noted that the gene expression profiles
are only measured for one condition in the hypoxia

tolerance phenotype, hence conventional co-expression
approaches are not applicable to this study. Although the
hypotheses generated from this study have been experi-
mentally validated by us and are consistent with experi-
mental results from others, the sensitivity and specificity
of the method has not been fully evaluated. In the future
we will extensively test our method using large case-con-
trol datasets from public databases such as the NCBI data-
base of genotypes and phenotypes (dbGap) [24] and the
Welcome Trust Case Control Consortium (WTCCC) [25].

Results

Knowledge-driven network inference of driver mutations
responsible for hypoxia tolerance

Complex phenotypic changes typically arise from re-regu-
lated cellular signaling and regulatory pathways (core path-
ways). As there are often multiple genes involved in a core
pathway, a large number of combinations of genetic altera-
tions can lead to the up- or down-regulation of a pathway.
Our hypothesis is that driver mutations will collectively
contribute to the re-regulation of a core pathway, which
manifests itself as a change to the genome-wide signature,
measured here by differentially expressed genes between
hypoxia and normoxia phenotypes. In this way it is possible
to identify the pathway involved in genotype-phenotype
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associations from the interacting gene networks that con-
nect the mutated genes to the differentially expressed
genes. The pathway that appears more frequently than by
chance is a potential core pathway. If the hypothesized
core pathway is validated by experiments, or consistent
with prior knowledge, the association with the core path-
way can prioritize the driver mutation. Based on this ratio-
nale, we developed a knowledge-driven network analysis
method (Figure 2). First, both mutated genes and differen-
tially expressed genes are labeled in the protein-protein
interaction (PPI) network. Second, a mutation seeded sub-
network (MSSN) that connects the mutated gene (seed)
and the up- or down-regulated genes (targets) is then iden-
tified for each of the mutated genes if the length of the
path between the mutated gene and the re-regulated gene
is shorter than randomly selected paths. Intuitively, the
mutated gene will have a bigger impact on the differentially
expressed genes if the distance between them is shorter.
Third, the overrepresented biological pathways in the
MSSN are identified using BINGO, a tool for Gene Ontol-
ogy Over-representation Analysis. The most frequently
overrepresented biological pathways for the complete
MSSN are hypothesized to be core pathways, and validated
by experiment. Finally, the putative driver mutations are
ranked by: (1) the statistically significant shortest distance
between the mutated gene and the differentially expressed
genes in the MSSN, and (2) the statically significant
enriched core pathways. This pathway analysis of the
MSSN identifies four core pathways: up-regulated Notch
and Gurken/Epidermal Growth Factor Receptor (EGFR),
and down-regulated Toll and Torso/Receptor Tyrosine
Kinase (RTK) pathways. Using Notch signaling inhibition
and a P-element screen, we have experimentally validated
that the up-regulation of Notch signaling is critical to the
survival of hypoxia tolerant Drosophila strains [23,26].
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Thus the up-regulation of Notch signaling is confirmed as
a driver for hypoxia tolerance in D. melanogaster.
Although more experiments are needed to validate the
direct association of other pathways with hypoxia toler-
ance and their potential cross-talk with Notch signaling,
the mutation could be a driver if it up-regulates Notch sig-
naling. As shown in Table 1, nine MSSNs show statisti-
cally significant enrichment (FDR corrected p-value <
0.05) for up-regulation of Notch signaling pathways and
significantly shorter paths between the mutated gene and
differentially expressed genes. An immediate question is,
what are the underlying molecular mechanisms associated
with these putative driver mutations? If these mutations
are non-neutral at the molecular level, it provides addi-
tional support for our hypothesis.

Structural analysis of functional roles of nsSNPs

Structural modeling of nsSNPs

To better understand the molecular basis of potential
driver mutations, we mapped point mutations to protein
structure models. Among the 52 proteins containing
nsSNPs, none of them have known structures available
in the RCSB Protein Data Bank (PDB) [27]. Homology
models were built for these proteins. The distribution of
the sequence identities associated with the structural
templates used in modeling is shown in Figure 3. 60% of
models are based on a template with a sequence identity
greater than 30%, a common threshold for building reli-
able homology models. These protein models can be
grouped into four categories: 1) Reliable models can be
built and the locations of mutations are close to known
functional sites. Thus, the functional role of nsSNPs can
be predicted in a relatively straightforward manner.
These proteins (6 total) are listed in Additional File 1
table S1 and model structures of these proteins are

PPl Network Mutation Seeded Core Driver
integration Sub-Network pathway mutation
Over-

Shortest' represented " '.O Pathway
path pathway J validation

|

S~

Figure 2 Workflow to determine core pathways and driver mutations. (A) mutated genes (blue filled circle) and differentially expressed
genes (green filled circle) are mapped to a protein-protein interaction network in which the circles and lines represent proteins and interactions
between them, respectively. (B) The shortest-path algorithm is applied to construct subnetworks by linking the mutated genes to up-, or down-
regulated genes, respectively. (C) BINGO is applied to identify overrepresented biological pathways. (D) The experimentally validated driver
pathway is used to rank the driver mutations.




Table 1 Predicted driver mutations and core pathways for hypoxia tolerance in Drosophila melanogaster from multiple evidences.

Mutated Gene Molecular Function

FDR Corrected p-value for the

Shortest-path

Functional role of nsSNP

Expected accuracy (%) of

Human ortholog

(Annotation overrepresentation of signaling Distance (z-score) inferred from structural non-neutral mutation from  and hypoxia
Symbol) pathways up/down modeling SNAP [6] association
Up-regulation Down-regulation
Notch* Gurken/ Toll Torso/RTK
EGFR
Hairless (CG5460)  transcription 1.01e-5 250e-3  823e-3 5.76e-5 244/442 Possible DNA binding 82 Yes [31]
corepressor
Rad51D (CG6318) DNA-dependent 336e-2 1.20e-2 195e-2 142e-3 2.54/4.09 PPI <50 Yes [30]
ATPase
Ulp1 (CG12359) SUMO-specific 468e-2 187e-2 >005 >0.05 1.78/3.86 unknown 63 Yes [43]
protease
Wnt5 (CG6407) receptor binding 267e-2 197e-3  1.06e-2 1.16e-7 1.26/341 unknown 58 Yes [36-42]
HDAC4 (CG1770)  histone deacetylase 4  2.70e-2 4.10e-4  >0.05 5.76e-5 1.11/3.13 AR of catalytic activity <50 Yes [34]
Sol (CG1391) calcium-dependent 151e-2 169e-2  155e-2 2.11e-3 0.33/2.82 unknown <50 unknown
cysteine-type
endopeptidase
Dys (CG34157) Dystrophin 8.28e-5 805e-5 >0.05 3.17e-3 0.38/0.72 AR of substrate binding 70 Yes [32,33]
GalNAC-T2 N-acetylgalactosaminyl 2.59e-3  271e-10 130e-2  3.28e-3 -1.51/0.81 AR of substrate binding <50 Yes [35]
(CG6394) transferase
CG33714 mRNA binding 859%-5 561e-3  151e2  >005 -1.59/0.69 mRNA binding 87 unknown
(CG33714)

*We experimentally validate that the up-regulation of Notch signaling, one of the most frequently overrepresented pathways, confers the hypoxia tolerance in Drosophila melanogaster [23, 26]. PPI: Protein-Protein

Interaction, AR: Allosteric Regulation.
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Figure 3 Distribution of sequence identities between proteins containing nsSNPs and templates in the RCSB PDB.

>70

shown in Additional File 1 Figure S1. 2) Reliable models
can be built but the point mutation cannot be mapped
to any functional sites. This category includes 11 pro-
teins (Table S2). 3) No structural templates can be
found for the domains containing the mutation, but
structural models can be built for other functional
domains of the same protein. 21 proteins are in this
category (Table S3). 4) No structural templates can be
found for the whole protein or any part; 15 proteins are
in this category.

Structural roles of putative driver mutations

For putative mutations in nine genes predicted from net-
work analysis (Table 1), we first analyze if the mutation
might alter substrate binding, catalytic activity, or struc-
tural stability. Interestingly, most of the predicted driver
mutations are surface-exposed, but not located in con-
served functional sites. We hypothesize that they may be
involved in allosteric regulation, protein-protein interac-
tions, or protein-nucleic acid recognition. Co-evolution
analysis is applied to these proteins to identify the corre-
lation between mutated amino acids and functional sites.
The residue couplings were observed in four structures
(HDACH4, Dys, GalNAc-T2, and CG33714). One example
is HDAC4, which belongs to the histone deacetylase
family. As shown in Figure 4, residues that are predicted
to be co-evolved with A1075, one of the mutations in
HDACY4, form zinc binding sites. Among them, the two
His residues around the zinc ion are conserved in all

members of the class Ila histone deacetylase family. The
mutation of residues coordinating the zinc ion was
reported to prevent the association of HDAC4 with the
N-CoR- HDAC3 repressor complex [28], which is
required for HDAC4 to possess histone deacetylase activ-
ity [29]. Thus, A1075 is functionally coupled to the zinc
binding site in HDAC4, and as a consequence, may
remotely regulate its activity. More examples are shown
in the Additional File 1 Figures S2-S4.

In addition to allosteric regulation, the putative driver
mutation may modify protein-protein interactions. This
is the case for Rad51D, as shown in Figure 5. Rad51D
plays a major role in homologous recombination repair
(HRR) of damaged DNA arising during replication or
induced by DNA damaging agents. BRC repeat (BRCA2
in Figure 5) mimics a motif in Rad51D that serves as an
interface for oligomerization between individual Rad51D
monomers. One of the Rad51D mutations, S55N, is close
to the oligomerization interface between individual
Rad51D monomers and hence may impact the formation
of the Rad51D complex, which is associated with the
hypoxia phenotype [30].

Machine learning based prediction of non-neutral nsSNPs
The functional importance of nsSNP is further supported
by SNAP [6], software used to predict a given nsSNP as
neutral or non-neutral with an expected accuracy. In a
benchmark study, SNAP outperformed most similar
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Figure 4 The model structure of HDAC4. The yellow spheres represent mutated amino acid A1075. Green sticks represent residues co-evolved
with A1075. Red circle represents zinc binding sites of HDAC4. This model structure is built using Modeller [65] based on the sequence
alignment between HDAC4 and PDB structure 2VQW. The sequence identity between HDAC4 (819-1223) and 2VQW is 58%.

methods [6]. 23 out of the 107 nsSNPs, located on 18
genes, are predicted as non-neutral with an accuracy of
higher than 58% (SNAP reliability index 0), (Additional
File 1 Table S4). Five predicted non-neutral mutations
are hypothesized as putative drivers. Two of them (H and
CG33714) have an accuracy of over 80%. The remaining
predictions have lower expected accuracies. This could
imply that while the functional impact of each individual
mutation is limited, collectively they may mediate the sig-
naling pathway activity through epistasis.

Several mutations in CG31220 (Additional File 1
Table S4), a serine-type peptidase, are predicted as non-
neutral by SNAP. These mutations are mapped to the

substrate binding sites or other functional important
regions in the structure (Additional File 1 Figure S1).
However, enriched biological pathways associated with
this gene were not detected. More studies are required
to understand how these non-neutral mutations impact
the biological network.

Experimental and literature supports

As discussed above, a complex phenotype rises from re-
regulated biological pathways that themselves result
from the collective effects of multiple genetic mutations
(epistasis). Since the down- or up-regulation of core
pathways directly impacts the organismal phenotype, the
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directly impact the oligomerization of Rad51D.

Figure 5 Model structure for Rad51D. The green and cyan cartoon represents the model structure of Rad51D and BRCA2, respectively. Dotted
spheres represent the mutated amino acids. The red circle indicates the region of the protein-protein interaction interface. Ser55 mutation may

experimental validation of the core pathway would pro-
vide strong evidence to support the predicted driver
mutations that are responsible for the re-regulation of
the core pathway. Indeed, we have experimentally vali-
dated that Notch signaling is the core pathway of
hypoxia tolerance in D. melanogaster. The reduced acti-
vation of Notch signaling by a specific y-secretase inhi-
bitor significantly reduces the survival and life-span of
hypoxia tolerant D. melanogaster strains [23]. The criti-
cal role of Notch signaling in hypoxia tolerance is
further supported by UAS-Gal4 over-expression and
RNAi knockdown of genes involved in Notch signaling
[26]. Other experimental evidence from the literatures,
as detailed below, also support our predictions. The top
ranked H gene (also called hairless) is a well-known reg-
ulator of Notch signaling in D. melanogaster [31]. Dys
encodes the protein dystrophin. Genetic interaction
screens in D. melanogaster have shown that Dys is
involved in interactions with components of the Notch
signaling pathway [32]. Furthermore, the mutation of
the Dys homolog in the mouse model is related to the
up-regulation of the Notch-beta pathway [33]. For other
genes, although little direct experimental evidence sup-
ports an association with hypoxia in D. melanogasta

their functional roles in hypoxia has been demonstrated
in cancer and other human diseases. HDAC4 regulates
hypoxia-inducible factor 1 oo (HIF1 a) and cancer cell
response to hypoxia [34]. GalNAc-T2 is an N-acetyl-
galactoseaminyl transferase that catalyzes the synthesis
of glycosphingolipid (GSL). A recent study has shown
that GSL may directly regulate the activity of Notch sig-
naling [35]. Wnt5 is a ligand to a family of frizzled
receptors, acting as a regulator of Wnt signaling. An
increasing body of evidences suggests that Wnt and
Notch signaling cooperatively determine the fate of cell
development in humans [36-42]. The association
between Rad51D and hypoxia has been demonstrated in
cancer [30]. Ulpl is a SUMO-specific protease that is
essential for the stabilization of HIFla during hypoxia
by removing SUMO and participates in the regulation
of hypoxia-responsive genes [43].

Discussion

The important functional role of allosteric regulation,
protein-protein interactions, and protein-nucleic acid
interactions in sequence variants

In this study, none of the driver mutations associated
with hypoxia are conserved functional site residues, nor
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are they responsible for structural stability. The driver
mutations are hypothesized to be involved in either pro-
tein-protein interactions (in the case of Rad51D), pro-
tein-nucleic acid interaction (e.g., in CG33714), or
allosteric regulation (e.g., in HDAC4). A recent survey
of the structural basis of in-frame mutations in protein-
protein interactions has suggested that changes in speci-
fic interactions play a critical role in pathogenesis [44].
From a network point of view, the modification of pro-
tein-protein interactions, rather than the proteins them-
selves, may have significant impact on network
properties [45]. Recent progress in the ENCODE and
modENCODE projects highlights the critical functional
roles of non-coding DNAs in the regulation of biological
processes [46,47]. As a large number of non-coding
DNAs perform their functions through specific protein-
nucleic acid interactions, the mutations that impact pro-
tein-nucleic acid binding could be directly associated
with phenotype changes. The dysregulation of allosteric
interactions is considered to be another major determi-
nant of disease [48]. During evolution, organisms need
to survive and reproduce in a changed environment. As
such, certain genes need to gain functions and activate
critical pathways. Allosteric regulation is an efficient
way for driver mutations to act since the change of
activity is not constrained to a single molecule, but can
be propagated to a whole network [19]. New computa-
tional methods that are able to identify “hot spots” in
protein-protein interactions, protein-nucleic acid recog-
nition, and allosteric regulations, in which the mutation
may cause the dysregulation of biological pathways, may
have significant impact on the interpretation of Gen-
ome-Wide Association Studies.

The relevance of D. melanogasta driver mutations to
human hypoxia adaption

Recently several studies in hypoxia adaptation in humans
have been performed on Tibetans [49,50], Andeans [50],
and Ethiopians [51]. However, all human studies to date
have adopted limited, sampling-based approaches, such as
genotyping or exome sequencing. The relatively sparse
sampling of the genome makes it harder to identify large-
scale shifts in the allele frequency spectrum associated
with natural selection. Consequently, these studies
restricted subsequent analysis to variants in candidate
genes that are mainly involved in the canonical hypoxia
response (HIF pathway) and related pathways. The identi-
fication of the functional roles of sequence variances in
human orthologs of Drosophila genes may provide critical
insight in the prioritization of candidate genes in human,
which may fail using conventional statistical techniques.
Indeed, the majority of driver mutations identified in this
study are human orthologs and associated with the
hypoxia cellular phenotype, as shown in Table 1.
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Conclusion

Based upon multiscale modeling, we propose that the
up-regulation of Notch and Gurken/EGFR and the down-
regulation of Toll and Torso/RTK pathways are responsi-
ble for hypoxia tolerance. Using integrated structural and
network analysis, we hypothesize that nsSNPs in H,
Rad51D, Ulpl, Sol, Wnt5, CG33714, GalNAc-T2, Dys,
and HDAC4, may all lead to the functional modification
of these genes via allosteric regulation and protein-pro-
tein/DNA/RNA interactions and hence are driver muta-
tions defining the hypoxia tolerance phenotype. Our
predictions are supported by experimental evidence
[23,26]. Moreover, multiscale modeling may identify
potential epistasis using a very small sample size. This
reduces the burden imposed during statistical multiple
testing of large epistasis models. It is anticipated that the
further extension of this multiscale modeling approach to
genome-wide protein-protein interactions, protein-nucleic
acid interactions, and microRNA data will provide a
powerful tool for uncovering the functional roles of both
coding and non-coding sequence variations in GWAS; a
role which neither the knowledge of molecular structures
nor of biological networks alone can achieve. However,
challenges remain in extending multiscale modeling
approaches. New algorithms are required to predict emer-
gent properties, at both molecular and network levels, as
well as to seamlessly model information flow across scales.

Methods

Prediction of non-neutral mutations on nsSNPs from
sequence

A sequence information based method, SNAP [6] is
used to predict the non-neutral (functional effect) and
neutral (no functional effect) nsSNPs.

Knowledge-driven network inference of core pathways
and driver mutations

Overview

The network-based analysis of driver mutation is shown in
Figure 2. The mutated genes and differentially regulated
genes are mapped to a protein-protein interaction (PPI)
network extracted from the STRING Database [52] for D.
melanogaster. A subnetwork that connects a mutated gene
and up-, and down-regulated genes is identified using a
shortest path search of the PPI network. The genes identi-
fied in each subnetwork are subject to Gene Set Enrich-
ment Analysis (GSEA). If the genes in the subnetwork are
enriched by the essential biological processes/pathways,
the mutated gene is a potential driver.

Analysis of differential expressed genes

A cDNA microarray analysis of 13,061 known or pre-
dicted genes from the D. melanogaster genome is per-
formed using the R package [53]. K-nearest neighbors
[54] in the space of genes is used to impute missing
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expression values. The LOWESS normalization method
[55] is used to normalize the raw density data. P-value and
fold change are calculated using the two-sided, two-class
t-test [56]. A Bonferroni-Holm [57] false discovery rate
(FDR) controlling procedure [58,59] is used to adjust the
P-values. The genes are considered to be differentially
expressed between the two samples when the FDR is smal-
ler than 0.05. If the fold change is larger than 1.5-fold for
up-regulated genes and is smaller than 0.67-fold for down-
regulated genes, these genes are considered significantly
differentially expressed.
Subnetwork construction by shortest path search
A program based on Dijkstra’s algorithm [60] is developed
to search for the shortest path from a source node
(mutated gene) to a destination node (differentially
expressed gene) in a protein-protein interaction (PPI) net-
work. A shorter path implies that the mutated gene has
stronger influence on the differentially expressed genes. All
genes along the path form a subnetwork. In order to obtain
a quantitative measurement to distinguish the different
topologies in the subnetworks, a t-value based on Welch’s
t-test is calculated for each mutated gene. The Welch’s t-
test [61] calculates the difference of two populations whose
variances are assumed to be different (unequal sample size
and unequal variance). The t-value is calculated as follows:
{ = X1 X2

2 2
S N

1 + 2
ny np

Where s> is the unbiased estimator of the variance of the
sample and n is the number of participants.

Here the t-value is used to measure the difference
between the identified subnetwork (x,) and a background
random network (x;). Background random networks are
built by randomly selecting one gene as a source node and
a set of other genes as destination nodes. A positive
t-value means a shorter than average path. The mutations
on the genes with statistically significant high t-values are
prioritized as driver mutations.

Gene set overrepresentation analysis to identify driver
biological pathways and mutations

The Biological Networks Gene Ontology Tool (BiNGO)
[62] is applied in Cytoscape’s versatile visualization envir-
onment [63] to determine which biological processes and
molecular functions are significantly overrepresented in
the set of genes involved in each subnetwork. Gene ontol-
ogy [64] terms are ranked according to the False Discovery
Rate (FDR) corrected p-values for each subnetwork. The
statistically significant enriched biological pathways (p-
value < 0.05) are considered as potential core pathways
that contribute to the survival or reproduction of a pheno-
type. This pathway is subject to further validations by
experiments and literature searches. If a subnetwork
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contains the validated core pathway, the mutated gene in
this subnetwork is hypothesized to be a causal gene. Cor-
respondingly, the mutations on this gene are candidate
driver mutations.

Structure-based analysis of driver mutations

Homology modeling and nsSNP mapping

Homology models of proteins are built using Modeller
[65]. Sequence alignments between these proteins and
templates of known structures are obtained from a PSI-
BLAST sequence search [66]. The functional sites are
predicted using SMAP [67-69]. Mutated residues are
mapped onto the model structures and the functional
roles of these residues are predicted according to their
locations on the model structures.

Covariance analysis

Covariance analysis based on multiple sequence align-
ments of proteins in the same Pfam family [70] as the
mutated protein can help identify remote relationships
between mutated residues and other residues within the
protein sequence. The Pfam family is identified by a whole
sequence search. Redundancy of sequences in the Pfam
family is removed using CD-hit [71] with a sequence iden-
tity threshold of 90% [72]. Multiple sequence alignments
among these sequences are built using the MUSCLE soft-
ware [73] with default parameters. Covariance of muta-
tions with other residues is calculated using five different
methods: Statistical Coupling Analysis (SCA) [74]; Explicit
Likelihood of Subset Co-variation (ELSC) [75]; Observed
Minus Expected Squared covariance algorithm (OMES)
[76]; Mutual Information Covariance Algorithm (MI) [77];
and Conservation Algorithm (ConservationSum) [78]. The
residues that are predicted to be coupling with mutations
by at least two methods are considered as co-evolved resi-
dues with the mutated residues.
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