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Abstract

Background: Essential proteins are indispensable for cell survive. Identifying essential proteins is very important for
improving our understanding the way of a cell working. There are various types of features related to the
essentiality of proteins. Many methods have been proposed to combine some of them to predict essential
proteins. However, it is still a big challenge for designing an effective method to predict them by integrating
different features, and explaining how these selected features decide the essentiality of protein. Gene expression
programming (GEP) is a learning algorithm and what it learns specifically is about relationships between variables
in sets of data and then builds models to explain these relationships.

Results: In this work, we propose a GEP-based method to predict essential protein by combing some biological
features and topological features. We carry out experiments on S. cerevisiae data. The experimental results show
that the our method achieves better prediction performance than those methods using individual features.
Moreover, our method outperforms some machine learning methods and performs as well as a method which is
obtained by combining the outputs of eight machine learning methods.

Conclusions: The accuracy of predicting essential proteins can been improved by using GEP method to combine
some topological features and biological features.

Background
Essential proteins are indispensable to support cellular
life [1]. Identifying essential proteins can help us under-
stand the minimal requirements for cell survival, which
plays a significant role in the emerging field of synthetic
biology [2]. Since the deleting, interrupting or blocking
of essential proteins leads to the death of organisms,
essential proteins can serve as candidates of drug-targets
for developing novel therapies of diseases, such as can-
cers or infectious diseases [3]. Moreover, some studies
have pointed out that essential proteins have correlation
with human disease genes [4]. However it is expensive
and time-consuming to experimentally identify essential
proteins.

In recent years, many computational approaches have
been presented to identify essential proteins according
to their features. One group of researchers focus on
detecting essential proteins based on their topological
features in protein-protein interaction (PPI) networks,
since previous studies have shown that the removal of
those proteins with a larger number of neighbours in
PPI networks is more likely to cause the organism to
die [5]. Therefore, many centrality methods have been
come up with such as Degree Centrality (DC) [6],
Betweenness Centrality (BC) [7], Closeness Centrality
(CC) [8], Subgraph Centrality (SC) [9], Eigenvector Cen-
trality (EC) [10], Information Centrality (IC) [11], Edge
Clustering Coefficient Centrality (NC) [12] and so on.
However, these centrality methods have their own lim-
its. For example, they highly depend on the accuracy of
PPI networks and ignore the useful biological features.
Recently, new methods that combine their topological
features with their biological ones have been developed.
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Hart and his fellows have pointed out that the essential-
ity is a special property of protein complex and essential
proteins are often highly clustered in certain protein
complexes [13]. Based on this observation, Ren et al.
[14] integrate PPI network topology and protein com-
plexes information to predict essential proteins. Accord-
ing to the fact that proteins in protein complexes tend
to be co-expressed, Li et al. [15] propose a new predic-
tion method called PeC and Tang et al [16] propose
another one, WDC, which integrates network topology
with gene expression profiles. Considering the fact that
essential proteins are more conserved than non-essential
ones [17] and they frequently connects to each other
[13], Peng et al. [15] have proposed an iterative method
for the prediction of essential proteins based on the
orthology and PPI networks. Their results show that the
accuracy of predicting essential proteins can be
improved by combing their biological features with their
topological features. Although the methods mentioned
above combine some features of essential proteins effi-
ciently and explain how these features work together to
decide the essentiality of proteins, better methods needs
to be developed to integrate more appropriate features.
Because there are different types of features that relates
to protein essentiality, which suggests that multiple
aspects of organisms contribute to determining the
essentiality of proteins [18].
Another group of researchers use machine learning

algorithms, such as support vector machine (SVM) [19],
decision tree [20], Naive Bayes[21] and so on, to detect
essential proteins. These methods train a classifier
according to the features of known essential proteins
and non-essential ones. Then test the classifier in the
same organism or the other organisms. For example,
Gustafson et al. [21] select a lot of essentiality related
features including both topological features, such as the
degree centrality (DC) in PPI networks, and biological
features, such as open reading frame (ORF) length, Phy-
letic retention (PHY), paralogs, codon adaptation index
(CAI) and so on. And then they use a Naive Bayes clas-
sifier to make prediction. Hwang et al. [19] build SVM
classifier which combines the biological features, such as
ORF length, strand and PHY, and topological features in
PPI network, such as DC, BC, CC and so on. Addition-
ally, some researchers combine several classifiers to pre-
dict essential proteins. Acencio et al. [20] learn 12
different network topological features (DC, BC, CC and
so on) in the integrated network and some biological
features, such as cellular localization and biological pro-
cesses information. Then several decision tree-based
classifiers are trained and tested based on these features.
A best essentiality classifier is obtained by combining
the outputs of these diverse classifiers. Deng et al. [22]
also train their classifier by combining the results of

four separate classifiers (Naive Bayes classifier, logistical
regression model, C4.5 decision tree and CN2 rule). In
[18], more approaches of detecting essential protein are
introduced and discussed.
Now that those machine learning methods are avail-

able as software packages [23], they can be easily
adapted to predict essential proteins using input fea-
tures. However, it is difficult for them to explain how
these features are used for classification. Moreover, few
methods are able to automatically select appropriate fea-
tures. Researchers tend to analyse the relationship
between features and the essentiality of proteins with
statistical methods. And then they decide which features
are selected to train classifiers [19,22]. Gene expression
programming (GEP) is a learning algorithm and what it
learns specifically is about relationships between vari-
ables in sets of data, and it builds models to describe
these relationships [24]. The features that show weak
positive correlation with essentiality of proteins will not
be selected by the GEP classifier.
In this work, we propose a GEP-based method to pre-

dict essential protein by combining biological features,
such as subcellular location, and topological features,
such as DC, BC, CC, SC, EC, IC, NC, and other com-
posed features computed by the methods PeC, WDC
and ION using biological and topological features. We
carry out experiments on S. cerevisiae (Baker’s yeast)
data. The experimental results show that our method
outperforms others using one of features calculated by
existing methods (DC, BC, CC, SC, EC, IC, NC, PeC,
WDC and ION). Moreover, in terms of area under an
ROC curve (AUC), our method achieves better results
than other machine learning methods (SVM, SMO, Nai-
veBayes, Bayes Network, RBF Network, J48, Random
Tree, Random Forest, NaiveBayes Tree), and it performs
as well as a method that uses multiple machine learning
methods.

Results and Discussion
In this section, we firstly analyze the results of 10-fold
cross-validation. Then we compare the prediction of our
method with other existing methods which calculate
individual features. Moreover our methods are com-
pared with other machine learning-based methods.
Finally we show our best classifier and explain how to
combine individual features to decide the essentiality of
protein.

Comparison of 10-fold cross-validation results
There are ten classifiers from 10-fold cross-validation
(see section Methods). The performance of each classi-
fier is compared in terms of their ROC curves and the
areas under the curves (AUC). As Figure 1 shown, the
AUC values of these classifiers range from 0.6975 to
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0.8213. The average AUC value is 0.7730. The perfor-
mance fluctuation depends on the datasets. In this work,
we select one with average AUC value among these
classifiers to perform the following analyses.

Comparison with other existing methods
Since our classifier combines the features calculated by
other existing methods such as DC, BC, CC, EC, IC, SC,
NC, PeC, WDC and ION, we compare its predictability
with that of others. The proteins in PPI network are
ranked in descend order according to the scores
assigned by our classifier as well as these existing meth-
ods. After that the values of true positive rate (TPR) and
false positive rate (FPR) are computed for each method
with different top percentages of proteins selected as
predicted essential proteins. The values of TPR and FPR
are plotted in ROC curves with different cut-off values.
As Figure 2 shown, the ROC curve of our classifier is
obviously above that of the other existing methods. The
AUC value of our GEP classifier is 0.7761 which is
0.0237 higher than ION which has the best performance
among other existing methods, and is 0.113 higher than
the average AUC value (= 0.6631) of these existing
methods.
Specially, we select top 1167 proteins ranked by each

method as predicted essential proteins. The rest of 3926
(= 5093-1167) proteins are regarded as non-essential

ones. According to known essential protein, the values
of sensitivity (SN), specificity (SP), positive predictive
value (PPV), FPR, negative predictive value (NPV),
F-Measure, accuracy (ACC) and Matthews Correlation
Coefficent (MCC) are calculated for each method. Table
1 shows that the values of SN, SP, PPV, NPV, F-Mea-
sure, ACC and MCC of our GEP classifier are 0.5467,
0.8653, 0.5467, 0.8653, 0.5467, 0.7927 and 0.4120
respectively, which are higher than other existing meth-
ods. On the other hand, the FPR value of GEP is 0.1347,
which is the lowest among all methods.

Comparison with other machine learning-based methods
To further evaluate the prediction performance of our
classifier, we compare it with some machine learning
methods, such as SVM, SMO, NaiveBayes, Bayes Net-
work, RBF Network, J48, RandomTree, RandomForest,
NaiveBayes Tree, Which are wildly used in previous pre-
diction methods [19,21]. Acencio et al [19] build their
classifier by combining eight decision tree classifiers (REP
tree, naive bayes tree, random tree, random forest, J48,
best-first decision tree, logistic model tree and alternating
decision tree). We also compare our classifier with their
composited classifier (named by Acencio). All of these
machine learning based methods are implemented by
using WEKA software package with default parameters
setting and carried out 10-fold cross-validation based on

Figure 1 ROC curves and AUC values of ten classifiers trained from 10-fold cross-validation. Original data are divided into 10 equal
datasets, and nine-folds are used to train the classifier and the remaining one fold is used for testing. The process is repeated ten times to
generated ten classifiers, with each of the ten datasets used exactly once as testing data. The figure illustrates the ROC curves and
corresponding AUC values of these classifiers.
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topological features and biological features mentioned in
section Method. Their average AUC values are listed in
Table 2. As Table 2 shown, the average AUC value of
GEP achieves 0.773, which outperforms all other machine
learning methods. Compared to Acencio classifier, GEP
classifier possesses almost equal prediction performance
in term of their average AUC values.

Analysis of GEP classifier
The GEP classifier produces an expression of different
types of input features, which describes how the features

are combined to decide the essentiality of protein. The
expression of our GEP classifier with the best prediction
performance is obtained as

As the expression shown, ION is a very predictive fea-
tures. Because it relates to the evolutionary conservation
of proteins, and essential proteins are often highly con-
served across organisms [15]. The proteins located in
endoplasmic reticulum or nucleus tend to possess

Figure 2 ROC curves and AUC values of our GEP classifier and other methods using individual feature. We select one classifier which has
average prediction performance among ten classifiers generated from 10-fold cross-validation, and test it on original data containing 5093
proteins with all available learning features. The figure illustrates the ROC curves of our classifier and other methods that use individual feature.

Table 1 Comparison between GEP and the methods using individual feature

Methods SN SP FPR PPV NPV F-measure ACC MCC

GEP 0.5467 0.8653 0.1347 0.5467 0.8653 0.5467 0.7927 0.4120

DC 0.4002 0.8217 0.1783 0.4002 0.8217 0.4002 0.7251 0.2219

BC 0.3505 0.8069 0.1931 0.3505 0.8069 0.3505 0.7023 0.1574

CC 0.3548 0.8082 0.1918 0.3548 0.8082 0.3548 0.7043 0.1630

SC 0.3676 0.8120 0.1880 0.3676 0.8120 0.3676 0.7102 0.1796

EC 0.3676 0.8120 0.1880 0.3676 0.8120 0.3676 0.7102 0.1796

IC 0.4010 0.8220 0.1780 0.4010 0.8220 0.4010 0.7255 0.2230

NC 0.4353 0.8321 0.1679 0.4353 0.8321 0.4353 0.7412 0.2674

PeC 0.4036 0.8227 0.1773 0.4036 0.8227 0.4036 0.7267 0.2263

ION 0.5124 0.8551 0.1449 0.5124 0.8551 0.5124 0.7766 0.3675

WDC 0.4576 0.8390 0.1610 0.4580 0.8388 0.4578 0.7516 0.2967

The proteins in PPI network are ranked in descend order according to the scores assigned by our classifier as well as these existing methods. we select top 1167
proteins ranked by each method as candidate essential proteins. The rest of 3926 (= 5093-1167) proteins are regarded as non-essential proteins. According to
known essential protein, the values of sensitivity (SN), specificity (SP), positive predictive value (PPV), FPR, negative predictive value (NPV), F-Measure, accuracy
(ACC) and Matthews Correlation Coefficent (MCC) are calculated for each method. The table lists the results.
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indispensable functions, which is consistent with the
observation of Acencio et al. [25]. However, those pro-
teins located in cytoplasm or vacuole are less likely to
be essential proteins. Note that some input features
are not present in the expression. Our GEP classifier
discards those features that are either less effective in
predicting essentiality or replaced by other features. For
example the classifier selects localized topological fea-
tures such as WDC and SC instead of global ones such
as BC, CC and IC. Because localized centrality measures
can obtain better prediction performance than the glo-
bal ones [26]. Both WDC and PeC depend on the fea-
tures of co-expression and co-clustering of essential
proteins, the classifier uses one of them in terms of
their capability of prediction.

Conclusions
As different types of features relates to the essentiality of
proteins, it is still a big challenge for designing an effec-
tive method to predict them by integrating different fea-
tures and explaining how these selected features decide
the essentiality of protein. In this work, we propose a
GEP-based prediction method which combines topologi-
cal and biological features. Compared to other machine
learning-based methods, it is able to select predictive
features automatically and generates an expression that
describes the relationships between them. We carry out
experiments on S. cerevisiae (Baker’s yeast) data.(1) Ten
classifiers are obtained from 10-fold cross-validation
based on all input features. The average AUC value is
0.7730. (2) In terms of average AUC values, our method
outperforms a number of machine learning methods
and has comparable performance to the method which
combines the output results of eight decision trees. (3)
We evaluate our classifier by testing it on all proteins in
PPI network with all available learning features. The
results indicate our classifier performs better than those

that use individual features. Thus, our method can effec-
tively combine a range of different features to predict
essential proteins.

Methods
Experimental datasets
We implement experiments based on data of S. cerevi-
siae (Bakers’ Yeast) because both its PPI and gene essen-
tiality data are the most complete and reliable among
various species. The PPI data of S. cerevisiae is down-
loaded from DIP database [27] using the version pub-
lished on Oct.10, 2010, without self-interactions and
repeated interactions. There are total of 5093 proteins
and 24743 edges.
The list of essential proteins is integrated from the fol-

lowing databases: MIPS [28], SGD [29], DEG [1] and
SGDP [30], which contains 1285 essential proteins.
Among the 1285 essential protein, 1167 proteins present
in PPI network. In our study, these 1167 proteins are
regarded as essential proteins while other 3926(= 5093-
1167) proteins are nonessential proteins.
The information of orthologous proteins used in

method ION, is download from Version 7 of the In
Paranoid database [31]. The gene expression data of
yeast is retrieved from Tu et al., 2005 [32], containing
6,777 gene products (proteins) and 36 samples in total.
Among the 6777 proteins, 4858 proteins are involved in
the yeast PPI network. The subcellular information is
downloaded from eSLDB database [33], which cate-
gorizes the 5093 proteins in PPI network into 16 differ-
ent subcellular localizations.

Features selection
Our GEP classifier is constructed to predict essential
proteins based on topological and biological features.
The topological features include degree centrality,
betweenness centrality, closeness centrality, subgraph
centrality, eigenvector centrality, information centrality
and edge clustering coefficient centrality in PPI network,
which are calculated by the centrality methods DC, BC,
CC, SC, EC, IC and NC, respectively. Some composited
features calculated by methods (PeC, WDC, and ION)
which integrate the topological features with biological
features are also used in this work.
Additionally, some biological features such as subcellu-

lar localization are considered. Because subcellular loca-
tion plays a crucial role in protein function and proteins
perform their functions in certain subcellular compart-
ments. Acencio et al. [25] find that proteins located in
nuclear subcellular compartments tend to be essential,
because most essential biological processes for cell viabi-
lity take place in nuclear. In contrast, most membrane
proteins with functions as transporters or participate in
metabolism related processes are more likely to be

Table 2 Comparison of average AUC between GEP and
other machine learning based methods.

Methods AUC

GEP 0.773

SVM 0.577

SMO 0.608

NaiveBayes 0.744

Bayes Network 0.731

RBF Network 0.669

J48 0.687

Random Tree 0.612

Random Forest 0.721

NaiveBayes Tree 0.746

Acencio 0.778

This table shows the average AUC values of our GEP classifiers and some
machine learning methods.
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nonessential. In this work, all proteins in PPI network
are involved in 16 different localizations including
Vacuole, Vesicles, Lysosome, Membrane, Mitochondrion,
Peroxisome, Secretory pathway, Cell wall, Cytoskeleton,
Endoplasmic reticulum, Golgi, Transmembrane, Cyto-
plasm, Nucleus and Endosome, Extracellular.
For each of feature has its own value ranges, we nor-

malize all features by dividing them by corresponding
maximum values, so that ranges of features value are -1
to 1. The coefficient (0.1, 0.2, 0.5, and 1.0) is added to
adjust the contribution of each feature.

Classifier design
As one kind of the Evolutionary Algorithms (EA’s),
Gene expression programming (GEP) is a genotype/phe-
notype genetic algorithm that combines the merits of
both genetic algorithms and genetic programming [24].
Each chromosome in GEP is expressed using nonlinear
entities that can be represented as a fixed-length linear
encoded string, such as mathematical expressions, poly-
nomial constructs, logical expression, and so forth.
Chromosomes can be evolved and new ones are gener-
ated by some genetic operations of mutation, transposi-
tion and recombination guided by a fitness function.
GEP is able to do global searches for classification and
performs well, but it is seldom adopted to solve the clas-
sification problem of essential proteins.
To build a classifier of predicting essential proteins

using GEP the following major steps are needed: defin-
ing a chromosome using a function and terminal set,
initializing a population and generating a group of chro-
mosomes, defining a fitness function for evaluating
chromosomes, selecting eugenic ones from populations,
reproducing a group of chromosomes of the next gen-
eration, and deciding the termination of the model. Fig-
ure 3 illustrates the flowchart of building GEP classifier.
In this work, GEP is developed to predict essential

proteins. First of all, a set of functions and terminals is
chosen to define chromosomes that will be expressed as
nonlinear entities. The set of functions contains arith-
metic operators and logic operators, such as add, sub-
tract, multiply, divide, min, max, equal, sqrt, log, exp,
abs, while the set of terminals contains variables repre-
senting features of proteins (for example, topological
and subcellular localization properties) and relevant
coefficients. Then we build the chromosomal structure.
For each chromosome the length of its head and the
number of genes will be given.
The second step is to randomly generate first popula-

tion. The input parameter indicates the size of popula-
tion. We varied the number of populations from 800 to
12000, and kept track of results each model produces.
According to the results, the performance of models
increases gradually as the number of populations rises.

Thus, we chose the maximum, 12000, as the number of
populations.
The third step is to define a fitness function to evalu-

ate individual chromosome. To obtain an optimal out-
put, we select SSPN as our fitness function that is

Figure 3 Flowchart of building GEP classifier. This figure shows
the flowchart of building GEP classifier.
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described as the product of sensitivity (SN), specificity
(SP), positive predictive value (PPV), and negative pre-
dictive value (NPV). The formula is as follow:

(1)

Where SN, SP, PPV, NPV are calculated respectively
using following formulae for each chromosome i

(2)

(3)

(4)

(5)

Where TPi, TNi, FPi, and FNi indicate, respectively,
the number of true positives, true negatives, false posi-
tives, and false negatives. Given protein features, we use
the fitness function to compute scores for all chromo-
somes in population.
The forth step is to select the top 30% of populations as

eugenic ones. Then the fifth step is that performing a set of
genetic operations (including mutation, transposition and
crossover) on eugenic ones reproduces chromosomes of
the next generation that has the same size as former one.
Finally, we chose the maximum, 500, as the number of

generations to decide the termination of the model. In
this study, the parameters used in our GEP classifier are
listed in Table 3. We develop the program that predicts
essential protein based on GEP in C++ Language.

Training and testing set preparation
We build and evaluate our classifiers in terms of 10-fold
cross-validation analysis, in which original data are

divided into 10 equal datasets, and nine-folds are used
to train the classifier and the remaining one fold is used
for testing. Since the ratio of essential and non-essential
proteins in original data is about 1:3.36 (essential pro-
teins: non-essential proteins = 1167:3926), each fold
data maintains the same ratio of essential proteins and
nonessential proteins in original data. The cross-valida-
tion process is repeated ten times to generated ten clas-
sifiers, with each of the ten datasets used exactly once
as testing data.
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