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Abstract

Background: As the output of biological assays increase in resolution and volume, the body of specialized
biological data, such as functional annotations of gene and protein sequences, enables extraction of higher-level
knowledge needed for practical application in bioinformatics. Whereas common types of biological data, such as
sequence data, are extensively stored in biological databases, functional annotations, such as immunological
epitopes, are found primarily in semi-structured formats or free text embedded in primary scientific literature.

Results: We defined and applied a machine learning approach for literature classification to support updating of
TANTIGEN, a knowledgebase of tumor T-cell antigens. Abstracts from PubMed were downloaded and classified as
either “relevant” or “irrelevant” for database update. Training and five-fold cross-validation of a k-NN classifier on
310 abstracts yielded classification accuracy of 0.95, thus showing significant value in support of data extraction
from the literature.

Conclusion: We here propose a conceptual framework for semi-automated extraction of epitope data embedded
in scientific literature using principles from text mining and machine learning. The addition of such data will aid in
the transition of biological databases to knowledgebases.

Background
Databases are the cornerstone of bioinformatics ana-
lyses. Experimental methods keep advancing and high-
throughput methods keep increasing in volume, the
number of biological data repositories are growing
rapidly [1]. Similarly, the quantity and complexity of the
data are growing requiring both the refinement of ana-
lyses and higher resolution and accuracy of results. In
addition to the most commonly used biological data
types such as sequence data (gene and protein), struc-
tural data, and quantitative data (gene and protein
expression), the increasing amount of high-level func-
tional annotations of biological sequences are needed to
enable detailed studies of biological systems. These
high-level annotations are also captured in the data-
bases, but to a much smaller degree than the essential

data types. The literature, however, is a rich source of
functional annotation information, and combining these
two types of sources provides a body of data, informa-
tion, and knowledge needed for practical application in
bioinformatics and clinical bioinformatics. Extraction of
knowledge from these sources is facilitated through
emerging knowledgebases (KB) that enable not only
data extraction, but also data mining, extraction of pat-
terns hidden in the data, and predictive modeling. Thus,
KB bring bioinformatics one step closer to the experi-
mental setting compared to traditional databases since
they are intended to enable summarization of hundreds
of thousands of data points and in silico simulation of
experiments all in one place.
A knowledge-based system (KBS) is a computational sys-

tem that uses logic, statistics and artificial intelligence tools
for support in decision making and solving complex pro-
blems. The KBS include specialist databases designed for
data mining tasks and knowledge management databases
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(knowledgebases). A KBS is a system comprising a KB, a
set of analytical tools, a logic unit, and user interface. The
logic unit connects user queries and determines, using
workflows, how analytical tools are applied to the knowl-
edge base to perform the analysis and produce the results.
Primary sources such as UniProt [2] or GenBank [3], as
well as specialized databases such as The Influenza
Research Database (IRD) [4] and the Los Alamos National
Laboratory HIV Databases (http://www.hiv.lanl.gov/), offer
a number of integrated tools and annotated data, but their
analytical workflows are limited to basic operations. Exam-
ples of more advanced KBS include FlaviDb a KBS of flavi-
virus antigens, [5], FluKB a KBS of influenza antigens
(http://research4.dfci.harvard.edu/cvc/flukb/), and TANTI-
GEN a KBS of tumor antigens (http://cvc.dfci.harvard.edu/
tadb/index.html). KBS focus on a narrow domain, and a set
of analytical tools to perform complex analyses and deci-
sion support. KBS must contain sufficient data, and anno-
tations to enable data mining for summarization, pattern
discovery and building of models that simulate behavior of
real systems. For example FlaviDb, enables summarization
of diversity of sequences for more than 50 species of flavi-
viruses. It also enables the analysis of the complete set of
predicted T cell epitopes for 15 common HLA alleles and
has the capacity to display the complete landscape of both
predicted and experimentally verified HLA associated pep-
tides. The extension of antigen analysis functionalities with
FluKB enables analysis of cross-reactivity of all entries for
neutralizing antibodies. Both these examples focus on iden-
tification, prediction, variability analysis and cross-reactivity
of immune epitopes. The implementation of workflows in
these KBS enables complex analyses to be performed by
filling a single query form and results are presented in a
single report.
To get high quality results, we must ensure that KBS are

up to date and error-free (to the extent possible). Since
the information in KBS is derived from multiple sources,
providing high quality updates is complex. Manual updat-
ing of KBS is impractical, so automation of the updating
process is needed. Automated updating of data and anno-
tation by extracting data from primary databases such as
UniProt, GenBank, or IEDB is relatively simple since these
sources enable export of data using standardized formats,
mainly XML. Ideally, functional annotations will be depos-
ited by direct submission to appropriate databases by the
discoverers, but a historical lack of submission standards
for higher-level biological data, has lead to the vast major-
ity of this information being recording only in primary
scientific literature. The use of data embedded in primary
scientific literature accessible through PubMed or Google
Scholar, is markedly more complex. The information
stored in abstracts or full texts is, at best, semi-structured,
but typically it is provided as free text. Given that as many
as tens of thousands of articles may be published each

year on a given topic, access to this information and
assessment of its relevance require efficient methods for
identification of publications of interest and rapid assess-
ment of their suitability for inclusion in the KBS. Such
analysis is facilitated through use of text mining techni-
ques, ranging from simple statistical pattern learning
based on term frequencies, to complex natural language
processing techniques in order to produce text categoriza-
tion, document summarization, information retrieval, and
ultimately the data mining [6]. A long-term solution for
this issue invariably involves standardizing submission and
storage of complex biological data, but the knowledge cur-
rently embedded in the literature remains available for
extraction. Text mining operations have previously been
applied for specific knowledge extraction for vaccine
development [7], as well as document classification for
separation of abstracts by topic [8] and for semi-auto-
mated extraction of allergen cross-reactivity information
[9]. In this article, we will define the conceptual framework
for semi-automated updating of our tumor antigen knowl-
edgebase, TANTIGEN, using data parsing, basic text
mining operations, and a standardized submission system.

Results and discussion
Conceptual framework
Depending on the content of the KBS one wishes to
update, there are issues pertaining to the complexity of
biological data that require considerations. Particularly we
must address the diversity of data types, diversity of data
formats, dispersion of data across different sources, and
size of data sets. There are many biological data types -
the most common include sequence data (nucleotide or
protein), molecular structures, expression data, and func-
tional annotations. Data can be stored and retrieved either
as structured text, table formats, semantic web formats
(such as RDP, OWL, or XML), or non-structured text.
Depending on the target data format, retrieval can be per-
formed by direct extraction, parsing, text mining, or man-
ual extraction. Text mining, manual extraction, or a
combination of these two is common in extracting the
high-level data, such as functional annotations. Data avail-
ability and individual entry size vary between different
data types, presenting a computational challenge in terms
of retrieval, handling, analysis, and storage. Additional fac-
tors that affect the complexity of the updating task are
data heterogeneity, integration of multiple data types after
retrieval, as well as provenance tracking for quality assess-
ment [10].
To address these issues we have formalized a number of

common tasks pertaining to knowledgebase updating into
a conceptual framework for updating biological KBS,
shown in Figure 1.
Step 1: Produce status report of current knowledgebase

build. This report will serve as the filter for the two
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main updating tasks: update of existing entries and
update of data body by introduction of new entries.
Step 2: Automatic download of data from selected

sources. Most biological data repositories enable full down-
load of latest database build and most allow automated
retrieval via GNU Wget or FTP clients. If automatic
download is not possible, this step can be performed
manually.

Step 3: Automatic data pre-processing. Depending on
the data format, pre-processing steps can be automated in
various ways. For simple syntax-based formats such as
XML, parsing of desired data is possible, where for non-
standardized formats, such as raw text, pre-processing
involves tasks derived from text mining, such as word
stemming, stop word removal, and generation of docu-
ment-term matrix (DTM) [11].

Figure 1 Flow chart of tasks in conceptual framework for semi-automated updating of knowledgebases.
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Step 4: Text categorization. If the desired information
is not available in a standardized format - for example
that it is only available in primary scientific literature,
the text mining or machine learning methods can be
applied to direct and streamline the manual extraction.
A text corpus may contain documents that fall into two
or more categories, of which only one or a few are of
interest for a given task. To maximize the efficiency of
manual data extraction, it is helpful to classify docu-
ments before embarking on data extraction. Options for
classification using machine learning methods include:
unsupervised methods such as clustering and blind sig-
nal separation, or supervised methods such as artificial
neural networks, support vector machines, nearest
neighbor methods, Naive Bayes, decision trees, among
others [6]. For some of these algorithms, feature extrac-
tion using matrix factorization methods, such as princi-
pal component analysis (singular value decompression)
can be useful to reduce dimensionality of DTM, which
can become quite large.
Step 5: Manually extract data and information from

categorized texts. Some higher-level data types, such as
functional annotations, are often found in tables, figures,
legends, or supplementary materials of primary scientific
articles, making automated extraction of this informa-
tion highly complex or practically impossible [7]. A
manual extraction step may therefore be needed and
simultaneously allow for quality control.
Step 6: Submission of new or updated entries to the KBS.

Submission of extracted data to the KBS should be stan-
dardized to the highest degree possible in order to ensure
the adherence to standardized format and quality of an
entry. The use of a standardized submission form allows
non-experts to perform the task of updating. Automated
extraction of related data from primary databases can
minimize the manual entry of data and mismatches
between existing entries addition to entries, provide auto-
mated error detection to be manually addressed.
Step 7: Refining categorization by increasing the training

corpus. Each manually inspected document (classified
either as relevant or irrelevant) represents a new addition
to the training data used for documentation categoriza-
tion. In addition to refining the model and improving per-
formance, a feedback loop to the classification module
reduces the need for a large initial training corpus.

Case study: TANTIGEN tumor T cell antigen database
Selection of useful tumor T cell antigens represents a
major bottleneck to the study and design of cancer immu-
notherapies. The methods of selecting immunotherapy
targets involve the selection of antigens and the analysis of
their immune epitopes. This process has been greatly
enhanced by the use of computational immunology meth-
ods [12]. However, as computational efforts produce vast

amounts of potential targets, the bottleneck is shifted to
the wet lab, where the vaccine target candidates must be
validated for both relevance and immunogenicity before
they are included in potential vaccine constructs.
Great advances have been made in techniques for high-
throughput epitope validation [13,14], but as computa-
tional methods grow ever more powerful, so does the
need for post-analysis verification of results. Efficient cata-
loguing of experimentally validated epitopes for cross-
referencing of new predictions with past experimental
data is a valuable resource that could reduce the need for
and streamline further experimentation. Several specia-
lized resources for this and similar purposes have been
established, for example: IRD [4], The HIV databases
(http://www.hiv.lanl.gov), Human Papillomavirus T cell
Antigen Database for HPV (http://cvc.dfci.harvard.edu/
hpv/index.html), as well as general HLA binder reposi-
tories such as SYFPEITHI [15] and the Immune Epitope
Database (IEDB) [16].
The TANTIGEN database was established in 2007 as a

tumor-specific T cell antigen database. It provides the
scientific community with a curated repository of experi-
mentally validated tumor T-cell antigens, and matched
T-cell epitopes and HLA binders. Each antigen entry
contains detailed information about somatic mutations
from the Catalogue of Somatic Mutations in Cancer
(COSMIC) [17], splice isoforms from UniProt/Swiss-
Prot, gene expression profiles from UniGene, and known
T-cell epitopes from secondary databases or literature.
Additionally, TANTIGEN is equipped with a number of
analysis tools such as BLAST search [18], multiple
sequence alignment using MAFFT [19], T-cell epitope/
HLA ligand prediction [20,21] and visualization, and
tumor antigen classification [22].

Updating TANTIGEN
Keeping up-to-date data in a KBS represents a major bot-
tleneck in the maintenance of TANTIGEN. In 2012, 7,322
articles responding to the keywords “tumor antigen” were
indexed in PubMed. Although many of these articles may
not contain tumor T cell antigens, the growing quantities
of literature represents a major bottleneck in the mainte-
nance of curated databases [7].
The data types to be updated in TANTIGEN are experi-

mentally characterized T cell epitopes and HLA ligands,
and expression and variability information for the proteins
that harbor them. In build 1 of TANTIGEN, these data
were collected from six different sources: manual collec-
tion from the literature, the Peptide database: T cell-
defined tumor antigens (http://www.cancerimmunity.org/
peptide/), the listing of human tumor antigens recognized
by T cells by Parmiani and colleagues [23,24], and parsing
from IEDB, as well as four other public databases that are
outdated or unavailable at present. The primary resource
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for these data remains manual collection from the litera-
ture, as no primary database is actively collecting or curat-
ing tumor antigen data. IEDB offers some curated cancer
data (2.7% of available data curated as of November 2009
[16]), but in their February 2011 newsletter they
announced that they will no longer curate cancer tumor
epitope data.
Preliminary filtering of literature
A simple keyword search for the terms “cancer OR tumor
OR antigen OR epitope” in PubMed, yielded >552,000
results (from December 1, 2009 - March 29 2013). When
keyword stringency increased the number of useful publi-
cations decreased to a workable level (Table 1). For this
task, we decided to use the search term “(tumor OR can-
cer) AND (antigen OR epitope)”, which yields 48,130 hits
in PubMed. Keyword search terms could be further
expanded or refined, by reiterating either manually or
using feature extraction of discriminative terms using
machine-learning methods. Manually sorting of these arti-
cles is extremely laborious task. PubMed is currently
growing at approximately 4% per year [25], so the issue
will only increase. It is therefore advantageous to automate
the classification of publication content before manually
extracting relevant information. For this task, we employed
an adapted version of the conceptual framework to update
TANTIGEN.
Formal approach to updating
Step 1: Status report of TANTIGEN build 1. The status
report for TANTIGEN lists 251 unique proteins and
corresponding UniProt accession numbers. Many of
these proteins have multiple splice isoforms for which
UniProt accession numbers are also listed. All UniProt
accession numbers are listed as these entries are subject
to updating by direct parsing from UniProt data down-
loads. Similarly, PubMed IDs are listed for all referenced
articles. These articles represent relevant literature and
corresponding abstracts can be directly parsed from the
PubMed abstract download to the training document
set. The build 1 of TANTIGEN has 4,006 curated anti-
gen entries.

Step 2: Automatic data download. The latest versions
of UniProt and COSMIC are downloadable as XML files
from the database web sites. PubMed results can be nar-
rowed down by search term, in this case we used “(can-
cer OR tumor) AND (antigen OR epitope)”, but this can
be refined in later iterations if suitable. Due to the very
high volume of abstracts in PubMed, query results can
also be filtered by date, and we here filtered out articles
published before the last TANTIGEN update. Search
results are downloadable in XML format.
Step 3: Automatic data pre-processing. The COSMIC

and UniProt XML downloads needed no further pre-
processing for parsing. The PubMed abstracts were
extracted from the XML and parsed into a text corpus
format for pre-processing. The following tasks were per-
formed on the corpus: lower case transformation,
removal of stop words, removal of general punctuation,
word stemming, and white space stripping. The num-
bers are usually removed in text mining preprocessing,
but it was not done here because we needed to preserve
the terms defining HLA alleles, CD receptors, and other
immunologically relevant descriptors.
Step 4: Abstract categorization. The resulting DTM

was Tf-Idf transformed, and each abstract was classified
using a k-Nearest Neighbor (k-NN) classifier trained on
226 manually pre-classified abstracts. Iterative refine-
ment of the algorithm showed that a six nearest neigh-
bors model yielded the best results. Each abstract in the
corpus was given a probability score based on the ratio
of relevant neighbors in the model. The output list was
ordered from most probable to least, thus eliminating
the need to define a static threshold.
Step 5: Manually extract antigen data from literature.

The articles corresponding to each abstract classified as
relevant were accessed through PubMed or publishing
journal. Epitopes, HLA ligands and related data, such as
HLA restriction and protein of origin, were extracted.
For TANTIGEN build 2, we manually searched the top
273 articles out of classified 48,130 articles. The cutoff
of 273 articles was chosen when article relevance started
decreasing drastically in the ordered list during manual
data extraction.
Step 6: Submission of data. Submission was done by fill-

ing out a standardized TANTIGEN submission form for
each antigen. Additional information was parsed directly
from the downloaded UniProt XML, based on the protein
of origin. Similarly, mutation entries and splice variants
were automatically linked by cross-referencing with COS-
MIC XML. Entries in TANTIGEN were automatically
linked to each other where applicable (splice isoforms,
mutation entries, etc.). Updating of existing entries was
performed by automated parsing form UniProt XML, as
some entries were removed, assigned new accession,
updated with more splice isoforms. This step also serves

Table 1 Examples of PubMed results from a selection of
keyword searches (publication data from December 1,
2009 - March 29, 2013).

Keyword PubMed hits

cancer OR tumor OR antigen OR epitope 552309

(tumor OR cancer) AND (antigen OR epitope) 45517

tumor AND antigen 40525

tumor antigen 22264

tumor AND antigen AND epitope 3057

tumor AND antigen AND epitope AND T cell 852

“tumor antigen” 642
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as a error detection: if an existing entry in TANTIGEN
does not match the information entered in the standar-
dized submission form, the user is notified and prompted
to determine whether the existing entry, the submission,
or both are erroneous. Similarly, if protein information
extracted from UniProt does not match that in COSMIC,
the user will be prompted to resolve the issue, thus
increasing data quality.
Step 7: Refine training set with new entries. The TAN-

TIGEN submission form has an addition field, where the
curator performing the manual submission is prompted
to classify the article as “relevant” or “irrelevant”. This
feature was used to feed manually inspected abstracts
back into the training corpus, to increase its size and
thus performance. The false positives and false negatives
were fed back, but only a randomly selected fraction of
true positives and true negatives were fed back into the
training corpus, as these may further bias a potentially
already biased model.

Results of TANTIGEN update
Accuracy of classification
The average accuracy in the five-fold cross-validation
training of the k-NN model with 6 nearest neighbors was
0.95 with sensitivity of 0.96 and specificity of 0.93. Model
performance is likely to increase with the increase of
training set size, and particularly the addition of false
positives from the manual extraction step. True positive
should also be added to the training corpus, but includ-
ing all true positives may further bias a potentially biased
model. Special care should be taken in initial classifica-
tion rounds to extract and include false negatives, as low
sensitivity is highly detrimental to the quality and com-
pleteness of the update. Wrongfully discarding relevant
literature will not only lead to, potentially permanent,
loss of valuable data, but also negatively affect classifier
performance, when misclassified training data is fed back
into the model.
Results of manual extraction of tumor T-cell antigens
Manual extraction of new antigenic proteins and tumor
T-cell antigens was performed from the classified litera-
ture. Since classification was based on the six nearest
neighbors, the body of classified abstracts was divided in
seven groups, corresponding to whether an abstract had
from zero to six relevant neighbors in the training set.
Out of the 48,130 classified abstracts, 117 had six rele-
vant neighbors, 156 had five, 212 had four, 859 had three,
3,489 had two, 12,738 had one, and 30,856 abstracts had
zero relevant neighbors. We manually examined the top
273 scoring papers in which we found 13 new antigenic
proteins harboring 32 new tumor T-cell epitopes. Addi-
tionally, we found more than 100 new T-cell epitopes
discovered in proteins already recorded as tumor anti-
gens in TANTIGEN.

Training set refinement iteratively increase classification
accuracy
The performance of the document classification model is
expected to gradually increase as the size of the training
corpus is increased with each database update. Learning
curves for accuracy, sensitivity, and specificity con-
structed by gradually increasing the training corpus for a
test corpus fixed to 50 abstracts (25 relevant and irrele-
vant, respectively) supports this notion (Figure 2).
Although the sensitivity and specificity show some fluc-
tuations, accuracy is observed to steadily increase as the
training set size is increased in increments of 26 abstracts
(13 relevant and irrelevant, respectively). The learning
curves will likely plateau with the addition of further
training abstracts, although any increase in sensitivity will
add to data completeness, and increased specificity will
minimize labor intensity.
Abstract category signatures
The DTM of the training corpus contains more than
5,600 terms. Most are very rare terms present in only one
or a few abstracts, and have very little influence on
abstract classification as corresponding to either relevant
or irrelevant articles. Rare terms can be removed by set-
ting a sparsity threshold if DTM dimensions become too
large. Examining the top ten terms, most discriminative
between abstracts of relevant and irrelevant articles
(determined by t test), show a distinct signature and
reveal particular emphasis on such terms as “immu-
notherapy”, “epitope”, “T cell”, and “CTL” (Figure 3).
These terms are likely the main drivers of classification
and may very well be sufficient to support the main task
of classification. Notable is the fact that all discriminating
terms are predominant in relevant abstracts, which may
explain that sensitivity of classification is higher than spe-
cificity. This is most likely due to the highly specific nat-
ure of the relevant abstracts, whereas irrelevant abstracts
are a much broader class. However, these terms are still
represented in the corpus of irrelevant literature, so a
machine learning approach to classification is highly
likely to outperform a simple keyword search.

Conclusion
Specialized biological databases are gradually moving
from data repositories towards knowledge-based systems.
Enriching basic biological data with higher-level func-
tional annotations and facilitating specialized analyses in
organized workflows enables extraction of higher-level
knowledge. Currently, however, functional annotations
are primarily stored in the literature, rather than in stan-
dardized formats of primary biological databases. As the
quantity of this information increases, easy access to mul-
tiple layers of biological data and information enables
improved extraction of knowledge, thus increasing the
value to the user.
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We here present a conceptual framework for automating
the process of updating biological databases and knowl-
edgebases with standardized non-standardized data from
both primary and secondary data repositories, as well as
literature. We deployed a text mining-based approach to
categorize literature, based on defining term signatures of
freely available article abstracts, which enable significantly
faster manual extraction of relevant data. We have applied
this conceptual framework to literature for updating the
TANTIGEN KBS of tumor T cell antigens. Training of a
k-NN classifier on 260 abstracts yielded classification accu-
racy of 0.95, thus showing significant value in support of
data extraction from the literature.

Methods
Data sources
Data for updating TANTIGEN were extracted from
three primary databases: UniProt/Swiss-Prot for protein
data and information, COSMIC for data about somatic

mutations, and PubMed for published literature about
tumor antigens. All three databases are extensive reposi-
tories for their respective data types, and the quantity of
data is increasing steadily (Figure 4).
All three databases offer download in XML format,

where the desired information was directly parsable from
UniProt/Swiss-Prot and COSMIC, but only abstracts
were available for PubMed entries and protein informa-
tion and epitopes from these entries required manual
extraction. To aid the process of KB update, text mining
tools and machine learning tools were employed to filter
text entries as either relevant (containing T cell epitopes)
or irrelevant (not containing T cell epitopes).

Classification of literature abstracts
Corpus
A corpus for classification was extracted from PubMed
using the search terms “(tumor OR cancer) AND (antigen
OR epitope)”. Each entry in the corpus contains the article

Figure 2 Learning curve for training sets of increasing size. Initial training set consisted of 13 relevant and 13 irrelevant abstracts. Training
set was increased to 260 abstracts in increments of 26 additional abstracts. Test set was fixed at 50 abstracts, 25 relevant and 25 irrelevant.
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abstract, the titles, and the MeSH terms. Before classifica-
tion, a number of term transformation steps were taken:
lower case transformation, removal of numbers, removal
of stop words, removal of punctuation, word stemming,
synonym consolidation using the WordNet database [26],
and white space removal. Term pre-processing of text cor-
pus was done using the R package tm [27,28]. After term
counting, term frequency-inverse document frequency

(Tf-Idf) transformation was applied for background
correction [29].
Classification
Abstracts were classified using the k-NN algorithm [30]
from the R package class. The classifier was trained and
performance evaluated for 1-155 nearest neighbors using
five-fold cross-validation on a set of 310 abstracts (155
abstracts of irrelevant articles and 155 abstracts of relevant

Figure 3 Average frequency of the top ten most discriminative terms between relevant (above x axis) and irrelevant abstracts (below
x axis). Significance of difference is based on t test of term frequency between corpora and p-values are listed between bars. Terms are
stemmed to ensure completeness in term count.

Figure 4 Number of entries in PubMed, UniProt/Swiss-Prot, and COSMIC. Entries in PubMed were filtered by the search term “(tumor OR
cancer) AND (antigen OR epitope)”.
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articles). This training set was manually assembled for
initial training. Classification was done based on 6 neigh-
bors in the k-NN algorithm, since this number of neigh-
bors proved most accurate.
Abstract category signatures
A signature of the top ten terms most discriminating
between relevant and irrelevant literature was extracted by
t-test of differential term occurrence in relevant and irrele-
vant abstracts. The average term count was calculated for
the ten most discriminating terms, i.e. the terms with the
lowest p-values.
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