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Abstract

Background: Advances in next-generation sequencing (NGS) technology has provided us with an opportunity to
analyze and evaluate the rich microbial communities present in all natural environments. The shorter reads
obtained from the shortgun technology has paved the way for determining the taxonomic profile of a community
by simply aligning the reads against the available reference genomes. While several computational methods are
available for taxonomic profiling at the genus- and species-level, none of these methods are effective at the strain-
level identification due to the increasing difficulty in detecting variation at that level. Here, we present MetalD, an
alignment-free n-gram based approach that can accurately identify microorganisms at the strain level and estimate
the abundance of each organism in a sample, given a metagenomic sequencing dataset.

Results: MetalD is an n-gram based method that calculates the profile of unique and common n-grams from the
dataset of 2,031 prokaryotic genomes and assigns weights to each n-gram using a scoring function. This scoring
function assigns higher weightage to the n-grams that appear in fewer genomes and vice versa; thus, allows for
effective use of both unique and common n-grams for species identification. Our 10-fold cross-validation results on
a simulated dataset show a remarkable accuracy of 99.7% at the strain-level identification of the organisms in gut
microbiome. We also demonstrated that our model shows impressive performance even by using only 25% or 50%
of the genome sequences for modeling. In addition to identification of the species, our method can also estimate
the relative abundance of each species in the simulated metagenomic samples. The generic approach employed in
this method can be applied for accurate identification of a wide variety of microbial species (viruses, prokaryotes
and eukaryotes) present in any environmental sample.

Conclusions: The proposed scoring function and approach is able to accurately identify and estimate the entire
taxa in any metagenomic community. The weights assigned to the common n-grams by our scoring function are
precisely calibrated to match the reads up to the strain level. Our multipronged validation tests demonstrate that
MetalD is sufficiently robust to accurately identify and estimate the abundance of each taxon in any natural
environment even when using incomplete or partially sequenced genomes.

Background

The primary goal of metagenomic studies is to accu-
rately identify and quantify the microbial taxa in a com-
munity. Advances in high throughput sequencing
techniques or NGS have enabled us to obtain DNA
samples from mixed genomes of species that inhabit
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natural environments. These habitats can range from
the microflora living in human gut to those that inhabit
soils, ponds and lakes, hot springs, ocean floor, etc. The
NGS sequencing technology can yield hundreds of
millions of short reads sampled from the DNA in a
community, which can be used for profiling the taxo-
nomic and phylogenetic composition of microbial com-
munity. Recent metagenomic studies have revealed that
the knowledge of the microbial composition in the
human gut can help understand the critical role played
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by these organisms in complex human disorders includ-
ing Obesity [1-3], Diabetes [4], Inflammatory Bowel Dis-
ease (IBD) [2,3], and Symptomatic Atherosclerosis (SA)
[5]. Especially, low diversity of microbial community has
been associated with Diabetes and IBD and an altered
microbial community has been associated with SA [5].
It is evident from literature that no particular taxon is
universally present in all the habitats [6]. The diversity
of the microbial community in an individual dictates
how their biological systems are tuned, which in turn
determines their health. Therefore, identification and
quantification of the microbial community that inhabits
human body can help customize healthcare options to
fit to an individual, which is referred to as personalized
medicine [7].

Phylogenetic characterization of metagenomic samples
has been traditionally done using the well-conserved
regions of the 16s rRNA genes [8]. Since each organism
can be uniquely characterized based on the 16s rRNA
gene, aligning reads against the curated reference data-
base of 16s rRNA will help in profiling the microbial
diversity [8]. But this approach is very susceptible to the
variability in the copy number of 16s gene and amplifi-
cation biases that are inherent to the PCR (Polymerase
Chain Reaction) [9]. Instead, Liu et al. proposed Meta-
Phyler that can classify metagenomic reads based on 31
universal phylogenetic marker genes which are present
only once in most of the genomes and are rarely sub-
jected to horizontal gene transfer [9]. On similar
grounds, another method, MetaPhlAn was introduced to
identify and estimate the relative abundance of organ-
isms in a community. MetaPhlAn’s execution is based
on high confidence mapping of the reads against a set
of clade-specific marker sequences that are predeter-
mined from the coding sequences of microbial clades
[3]. On the other hand, methods such as BLAST and
MEGAN [10] have tried to exploit the sequence homol-
ogy but were inefficient as large portions of the reads
fail to have a hit in the database. MEGAN, in particular,
suffered to make predictions with shorter read length
and could not identify species above genus level [10]. A
BLAST based method, CARMA, known for searching
Pfam domains and families in the metagenomic reads,
promised to yield high accuracies but could make use of
only a small fraction (about 6%) of reads for classifica-
tion [11,12]. Recently, many machine learning based
methods have gained popularity. Phymm, in combina-
tion with Markov models, identifies individual organisms
using the oligonucleotide/oligopeptide (similar to k-
mers) composition. Again Phymm, in combination with
BLAST, PhymmBL, results in better prediction accura-
cies than each of them performing individually [11]. The
Support Vector Machine (SVM) based PhyloPythia also
makes use of oligonucleotide frequencies to classify the
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longer sized reads [11]. MetaCV on the other hand clas-
sifies short read sequences by first translating them into
six-frame peptides and further decomposing them in to
k-strings (oligopeptides). These k-strings are then
weighted and selected for taxonomical classification
based on their frequency in the pre-built reference pro-
tein database [13].

While several computational methods exist for phylo-
genetic analysis of metagenomic samples, each method
can identify microorganisms at different levels in the
taxonomical hierarchy. Machine-learning based methods
including Phymm, PhymmBL, and PhyloPythia can work
better at Phyla/Class/Family or Genus level [11], but fail
at the species/strain level identification. Similarly
BLAST-based methods, MEGAN and CARMA, and
Phylogeny-based methods, namely 16S rRNA and Meta-
Phyler fail to discriminate well beyond Genus level
[9,10,12]. A recent method, MetaPhlAn can discriminate
short reads to the species level [3], but to our knowl-
edge, none of the existing methods can identify metage-
nomic taxa at the strain level. Here, we propose an
alignment-free, n-gram based tool, MetalD that can
identify the metagenomic taxa at the strain level and
also quantify the relative composition of each organism
in the sample. This method works solely based on the
NGS read information with a remarkable accuracy of
over 99% even at the strain-level identification, where
the difference between the genomes gets to the minimal;
thus, making it difficult to discriminate. The novel scor-
ing function employed by us in this study can effectively
utilize the n-grams in the dataset to discriminate among
the genomes of different strains. While, we have used
the simulated metagenomic reads from the human gut
microbiome to test the model, our methodology is very
generic and hence can be applied for phylogenetic ana-
lysis of any metagenomic sample.

Results and discussion
The MetalD method proposed in this study for identify-
ing and quantifying the organisms in the metagenomic
reads is based on the n-gram model. An n-gram is any
subsequence of a nucleotide sequence of fixed length n.
An elaborate description of our scoring function and
the n-gram model is presented in the Materials and
methods section. Figure 1 schematically represents the
methodology used in this study. Briefly, the three main
steps in the algorithm include model building, identifica-
tion of the species and quantification of the species.
First, a model is built using all the n-grams retrieved
from all the sequenced microbial genomes. To build the
model we used a dataset of 2,031 fully sequenced pro-
karyotic genomes from the NCBI database.

The n-grams from a genome are compared against
those from all the other genomes in the dataset to arrive
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Figure 1 A schematic diagram showing the methodology and scoring function. SC_COL_UM146 - Escherichia coli UM146, STA_NAS_DSM_44728
- Stackebrandtia nassauensis DSM 44728, RHO_PAL_BisB18 - Rhodopseudomonas palustris BisB18, LAC_FER_CECT_5716 - Lactobacillus fermentum CECT

at a comprehensive list of unique (present in only one
organism) and common (present in more than one
organism) n-grams. A scoring function was developed to
assign appropriate weights to the unique and common
n-grams, which can be subsequently used in the testing
step. A mixed bag of n-grams containing small fractions
of the genomes in the dataset was used for testing and
optimization of the model. In the second step, n-grams
obtained from simulated metagenomic sample reads
were tested against the model to evaluate the accuracy
of the model in identifying the organisms from genus to
species to the strain level. Finally, we used a modified
abundance estimation method to determine the compo-
sition of the metagenomic profile. We also tested the
method using the standard performance metrics such as
10-fold cross-validation, using different proportions of
genomes to build models and compared the perfor-
mance of our method against the existing methods,
which are described below.

Determining the optimal value of n

In theory, the length of n-gram can vary widely, but
choosing the optimal length is critical for pragmatic rea-
sons associated with handling of hundreds of millions of
NGS reads. Our previous studies [14] demonstrate the
limitations with using too small or too large n-grams,
where smaller #-grams loose the discriminative power
between the classes, while larger n-grams increase the
search space exponentially, making it infeasible to build
models. To determine an optimal length for the #-gram
i.e. value of n, we have tested a randomly chosen subset
of 100 genomes in our dataset (Refer to Table S1 in
Additional File 1). We retrieved all possible n-grams
with n = 9, 12, 15, and 18 and identified the unique and
common #z-grams across the genomes. The choices for
n were considered in multiples of 3 because of their bio-
logical importance as the coding triplets. Figure 2 shows
that at # = 9 (common z-grams: 0.2 million, unique
n-grams: 1269) there are fewer numbers of unique
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Figure 2 Number of common and unique n-grams as a
function of the size of n. The sizes of n-grams are varied from 9
to 18 each at a multiple of 3.
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n-grams that could severely constrain the identification
of genomes in the reads. On the other hand, at n = 15
(common n-grams: 57.3 million, unique n-grams: 169.9
million) and #» =18 (common #n-grams: 18.3 million,
unique z-grams: 286.2 million) there was a sudden
explosion in the number of unique n-grams that could
severely challenge the computational capabilities related
to model building and testing. But at n = 12 (common
n-grams: 16.4 million, unique n-grams: 0.2 million) we
obtained a relatively manageable number of common
and unique xn-grams that can help in discriminating
between the genomes and at the same time pose no ser-
ious threat against model building and testing. Our
method requires that a full list of all the n-grams and its
profile (frequency, weight, etc.) is maintained in the
memory (RAM) for fast and efficient processing during
the testing and identification phase. Therefore memory
storage (RAM size) was a very critical factor for us in
determining an appropriate size for the n-grams. We
used an n-gram size of 12 for the rest of this study.

Model building using 2031 bacterial genomes

Using the n-gram size of 12, we identified 16,778,476
common and 140,993 (~141K) unique n-grams from
2,031 fully sequenced reference genomes available in the
NCBI database as of July 2012. This n-gram set repre-
sents all possible n-grams in the reference genome set
that includes a number of distinct strains of the same
genus and species. (See Materials and methods section
for more information). Since the unique #-grams are spe-
cific to a genome, they can be used as markers in the
identification process, provided such n-grams exist for all
genomes. Statistical analysis on the 141K unique n-grams
revealed that, out of 2,031, only 219 genomes contain at
least one unique n-gram with a range of 26,717 and 1
(Table S2 in Additional File 1). This is not surprising
because the number of unique #n-grams rapidly
diminishes from genus to the strain level and our
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reference genome set contains about 19 organisms that
only differ at the strain level. Therefore it is evident that
at n = 12, we can identify only 219 genomes by using
solely the unique n-grams resulting in a very low cover-
age. Instead, we have tapped the common #-grams (that
exist in more than one reference genome) and employed
a novel scoring function to determine the relative weights
of each common #n-gram. This scoring function acts as a
dampening factor by assigning higher weightage to the
n-grams that appear in fewer genomes and vice versa,
where the weight rapidly decays for n-grams that appear
in more number of genomes (Table S3 in Additional
File 2). This approach allows for inclusion of all n-grams
in the model irrespective of their weight, yet differentially
weighs the most discriminating #-grams from the com-
monly occurring ones. This attribute of this method
makes the model more robust, sensitive and specific in
identifying the best fitting reference genome.

The model-building step involves indexing the entire
set of common and unique n-grams and assigning
appropriate weight to each n-gram based on its fre-
quency profile across the reference genome set. This
model was used for testing the accuracy and optimiza-
tion of the method. Since the model contains the full
set of n-grams from the reference genomes, we wanted
to test the minimum fraction of n-grams needed to
accurately identify the organisms at the strain level.
From each of the 2,031 genomes, we randomly selected
1%, 3%, 5% and 7% n-grams (1 = 12) and used them to
test our model. To demonstrate the power of using
weighed common n-grams for identification purposes,
we tested two different models; (i) using only the unique
n-grams, and (ii) using both the common and unique #-
grams. The first model yielded its best accuracy of only
0.09% (Figure 2) when 7% of the n-grams were used. In
contrast, the second model, with weighted common and
unique n-grams showed a remarkable and consistent
accuracy of 99.23-99.74% (Figure 3), using 1%-7% of the
genomic n-grams, respectively (Table S4 in Additional
File 2). These results suggest two important observations
about using the weighted common #-grams. First, the
accuracy can be improved to the maximum potential
and second, only a small fraction of the genomic n-
grams are required to accurately identify the metage-
nomic species up to the strain level. In total, using 7%
n-grams, we found only 5 mispredictions at the strain
level. These results strongly demonstrate that the com-
mon n-grams are vital for accurate identification up to
the strain level that is otherwise not possible by using
only the unique n-grams or a small set of phylogenetic
marker genes, which are typically not available beyond
the species level. Figure 3 shows the log-transformed
accuracies on the y-axis and the corresponding original
accuracies on the right hand axis.
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Figure 3 Comparison of the accuracies across 2,031 bacterial
genomes using both the common and unique n-grams (n = 12)
(Model 2) and only unique n-grams (n = 12) (Model1). Scale on
the second Y-axis denotes the untransformed accuracies.

Since the bacterial cells harbor a number of plasmid
genomes, the presence of similar plasmids across multi-
ple bacterial species/strains may affect the accuracy of
our method when applied to predict species from a real
metagenomic sample. To test this, we built two separate
models, one using only the 2,031 reference genomes
without plasmid sequences, and the other, with plasmid
sequences (Table S5 in Additional File 2). For testing
both models, we used 1% of the total n-grams from each
bacterial genome, which also contain plasmid sequences
as expected in the true metagenomic samples. The pre-
diction accuracy of 99.1% and 98.5% using the model
that is built with and without the plasmid sequences
respectively shows that our method can aid in better
identification of taxa in the NGS metagenomic reads.

Extending the model to incomplete or partially
sequenced genomes

Since a number of genomes are partially sequenced, we
are interested to see how this method fares to build
models for the identification of partially sequenced gen-
omes. To test this, we performed a (a.::f) analysis where,
o refers to the % of genome used for model building
and P refers to the % of genome used for validation. For
example (75:100) indicates that the model was built
using only 75% of each genome from the reference set
and validation was performed on 100% of the genome.
The idea is to train our method with only 75% of the n-
grams and test it with 100% #-grams to see how our
method copes around with unseen n-grams i.e. can our
method still identify the genomes with limited knowl-
edge about them. We created partial genomes from our
reference genomes set, by randomly selecting 0% of the
n-grams. We built separate models using 100%, 75%,
50% and 25% of the n-grams and validated each model
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Figure 4 Accuracies of different models (o::p) using 1, 3, 5 and
7% of the total n-grams from each genome. 75:100 or so forth
indicates that the model was built using only 75% of each genome
from the reference set and validation was performed using 100% of

the genome. Scale on the second Y-axis denotes the untransformed

accuracies.

using 1%, 3%, 5% and 7% randomly chosen n-grams
from 100% of the genome. Figure 4 shows the log-trans-
formed accuracies on the y-axis and the corresponding
original accuracies on the right hand axis. From Figure
4 it is evident that prediction accuracies are almost
identical (above 99%) for models built with 100% and
75% of the genomes at all #-gram fractions tested (blue
line and the red line overlap with each other). While the
models generated using only 50% or 25% of the gen-
omes showed reduced accuracies, the accuracy rates are
still very strong i.e. 96.8% and 80.5% at 50% and 25%
models, respectively, even by testing with only 1% of the
total genomic n-grams (Table S6 in Additional File 2).
Most of the mispredicted taxa using the 25% model
were at the level of genus. These results strongly
demonstrate that this method can generate accurate
models even with partial genomes (up to 50%), and
more importantly, only 1% of the genomic n-grams are
sufficient to identify the species at the strain level with
96.8% accuracy. We attribute the robustness of this
method to our scoring function, which uses weighted
common #n-grams to build accurate models for precise
identification at the strain level. In contrast, other popu-
lar methods such as MetaCV, MEGAN, PhymmBL,
NBC, etc., all have reported accuracies below or equal
to 89% [13,15] only at the genus level.

Comparison of performance against other popular
methods

We compared the accuracies of our method against
other well-known phylogenetic tools. Table 1 presents
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Table 1 Comparison of classification accuracies of NBC, PhymmBL, MEGAN and MetalD
Serial No. Method Genus-level Species-level Strain-level References
accuracy accuracy accuracy
1 MetalD 100% 99.95% 99.31%
2 NBC 99.7% 97% 88.8% [15]
3 PhymmBL 85% 76% NA [16]
4 MEGAN 72.8% 68.1% NA [16]

*NA indicates Not Available

the genus, species and strain level accuracies of our
MetalD against those from NBC, PhymmBL and
MEGAN methods. MetalD resulted in a remarkable
accuracy of 99.3% compared to NBC, which resulted in
only 89% at the strain-level identification. The classifica-
tion accuracies reported for MetalD and NBC are
against a dataset consisting of 2,031 and 635 genomes,
respectively. Moving up in the hierarchy, MetalD per-
formed slightly better than NBC across all the levels
recording 100% accuracy at the genus level. In compari-
son to PhymmBL and MEGAN, MetalD’s performance
was way superior at both the genus and species level.
We attribute the superior performance of our method
to the underlying n-gram model and our scoring func-
tion. Since NBC is also based on an n-gram model their
accuracies at the genus and species level are comparable
to ours. The classification accuracies reported for
MEGAN and PhymmBL are against a dataset of 737
genomes. It is important here to note that our dataset
includes all the genomes that were used to report the
accuracies of NBC, MEGAN and PhymmBL.

We also evaluated the performance of MetalD against
other comparable tools such as Blastx 2.2.24, MetaCV,
Phymm and RAPSearch2 on a dataset consisting of 154
genera (Table S7 in Additional File 1). Compared to
MetalD’s 100% accuracy at the genus level, all other
tools except Phymm could attain a prediction accuracy
of at most 64% (Refer Table 2). For Blastx 2.2.24,
MetaCV, Phymm and RAPSearch2, we determined
balanced accuracy based on the reported sensitivity and
specificity values in the literature [13]. In addition,
MetalD also identified 804 species and 1534 strains that
are classified within the 154 genera with 99.35% and
98.91% accuracies, respectively (Table S7 in Additional

File 1). These results strongly demonstrate the superior
accuracy and coverage of MetalD in identifying the taxa
in the metagenome at the finest resolution.

Abundance estimation

In addition to identification, MetalD also estimates the
relative abundance of different organisms in a given
metagenomic sample. To evaluate the performance of
our tool, we recruited two mock communities namely
mock-even (with equal relative abundance) and mock-
staggered (with distributed relative abundance) (Refer to
Materials and methods section). We choose mock com-
munities because it is difficult to evaluate results
obtained from the real metagenomic samples due to the
lack of “golden truth” reference [17]. In the mock-even
community, MetalD demonstrated accurate identification
of 166 genomes (out of 167) with an accuracy of 99.4%.
In addition, MetalD estimated the relative abundance of
166 genomes with 91.5% of the genomes having a relative
abundance within 10% deviation from the expected value
of 1% (Table S8 in Additional File 1). In contrast,
MetaPhlAn could estimate only 75% of the genomes to
have a relative abundance within 10% deviation [3]. This
result strongly demonstrates that MetalD has a superior
performance in comparison to MetaPhlAn for taxonomic
profiling.

In contrast to the mock-even communities, the real
metagenomic samples contain species with widely varying
relative abundances. Therefore, using MetaSim, we simu-
lated a mock-staggered community containing 100 gen-
omes with their original abundance varied between 0.1%
and 10%. Using this dataset, MetalD was able to identify
all the genomes with 100% accuracy and also estimated
the relative abundance of 99 genomes within + 12% for

Table 2 Comparisons of classification accuracies of Blastx, MetaCV, Phymm, RAPSearch2 and MetalD

Serial No. Methods Sensitivity Specificity Genus-level Species-level Strain-level References
accuracy accuracy accuracy

1 Blastx 2.2. 41% 87% 64% NA NA [13]

2 MetaCV 41% 80% 60.5% NA NA [13]

3 Phymm 24% 26% NA NA [13]

4 RAPSearch2 41% 86% 63.5% NA NA [13]

5 MetalD NA NA 100% 99.35% 98.91%

* NA indicates Not Available
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Figure 5 Comparison of the original and estimated abundances
(relative percentage) for 100 microbial genomes in the mock-
staggered dataset.

less abundant genomes i.e. between 0.1 to 1.0%, and within
+ 3% for highly abundant genomes i.e. above 1.0% to 10%
(Table S9 in Additional File 1). Figure 5 presents a bar
chart comparison of the original and the estimated abun-
dance of the genomes in the mock staggered community.
Note that some of the variation in the estimated abun-
dances can be attributed to various factors including the
quality of the sequenced genomes, the sensitivity of the
error model (substitution, insertion or deletion errors), the
quality of the generated reads and the disproportion in the
quantity of the reads generated by MetaSim. One peculiar
observation is that for Mycobacterium tuberculosis H37Ra,
with a genome size of 4,419,977, and original abundance
of 6.0%, MetaSim generated only 19,925 reads compared
to generating 19,556 reads for a similar sized genome Lep-
tospira interrogans serovar Lai str. 56601_I with an abun-
dance of 0.5%. Here it is highly possible that either the
Mycobacterium tuberculosis H37Ra genome is poorly
sequenced or there is some inherent computational com-
plexity in the MetaSim.

Computational complexity of the method

The execution of MetalD involves the following steps:
model building using the scoring function, identification
of genomes in the metagenomic reads and obtaining
their abundance estimates.

Our scoring function performs two major steps. It
initially generates the entire set of n-grams (n = 12)
from the nucleotide sequences across different genomes.
Secondly, it compares the n-grams in a genome against
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those from all the other genomes in the dataset to arrive
at a comprehensive list of unique and common r-grams.
For generating the n-grams from k& number of genomes
with / as the length of the longest genome, the worst
run-time complexity can be given as O(knl/). Upon
obtaining the n-grams, our scoring function compares
n-grams across genomes using a hashing function. If the
largest genome has a number of non-repeatable n-
grams then the worst time complexity for model build-
ing can be given as O(nk(/ + a)). Since model building
is a onetime affair and is performed offline, the time
complexity of this step does not affect the run-time
complexity of our method.

For identifying the genomes in the metagenomic reads
our method compares the n-grams (n = 12) obtained
from the reads against the common and unique n-grams
in the model. For generating the n-grams from t num-
ber of reads with / as the length of the longest read, the
worst run-time complexity can be given as O(txl). Since
comparison of n-grams is hash-based, the time complex-
ity for comparing B number of n-grams is O(B#). Once
a matching n-gram is found in our model the row
entries are updated across all the J number of genomes
(columns) either with the weight of the n-gram or with
a 0 (zero). The worst time-complexity for updating the
row and column entries and for obtaining the entire col-
umn sum is O(2B3). At the same time, the worst time-
complexity for determining the largest column sum out
of all the ¢ columns is O(d). Therefore, the worst time-
complexity for this step is O(tnl) +O(P((n+2)+ 1/B)).

For estimating the abundances our method performs
an intersection operation on the n-grams obtained from
the reads against the n-grams in the genome. The aver-
age time-complexity for the intersection operation on 1
and A number of n-grams in reads and genome respec-
tively across k number of genomes is O(k*min(A, n)). In
the worst case scenario the time-complexity is O(kn).

Conclusions

Here, we have developed an alignment-free n-gram
based tool, MetalD for determining the taxonomic com-
position of the microbial community. From the dataset
of 2,031 prokaryotic genomes, our method successfully
obtained a rich set of common and unique n-grams
(n = 12) and weighted them based upon their natural
frequency of occurrence across the genomes. Using
these weighted n-grams; MetalD was able to demon-
strate a classification accuracy of over 99% at the strain
level. In comparison to other phylogenetic tools, MetalD
was able to classify genomes up to 100% accuracy at the
genus level. In addition, MetalD also demonstrated its
capability for classifying incomplete or partially
sequenced genomes. For estimating the abundances of
the genomes in the mock-even community, MetalD
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demonstrated far superior performance than its variant
MetaPhlAn. On the other hand, in the mock-staggered
community MetalD demonstrated its ability to estimate
less abundant genomes with a deviation of 12% and
highly abundant genomes with a 3% deviation from the
expected. These results clearly demonstrate that MetalD
is capable for taxonomic profiling of metagenomic com-
munities and is generic enough to be applied to a wide
variety of microbial species (viruses, prokaryotes and
eukaryotes) present in any environmental sample.

Methods

Datasets

The input genome dataset consists of a catalogue of
2,031 completely sequenced genomes retrieved from
NCBI (ftp://ftp.ncbi.nih.gov/genomes/Bacteria/) in July
2012. The nucleotide sequences from the 2,031 bacterial
genomes spans across 292 genera, 537 species and 1,246
strains. After downloading the entire dataset for the bac-
terial genomes all the plasmid sequences for the respec-
tive bacterial genomes were removed. Each of the 2,031
genomes was tagged using the first three letters of their
genus and species names. In addition, the entire strain
name was retained for clarity purpose. For example, the
genome Chlamydia trachomatis D/UW-3/CX was tagged
as CHL_TRA_ D/UW-3/CX.

Table S10 in Additional File 1 lists the entire set of
2,031 genomes and their associated statistics such as the
length of the genome, the number of n-grams (1 = 12)
in the genome, the number of unique and common #-
grams in the genome and the repeat ratio.

The n-gram model for nucleotide representation
An n-gram is any subsequence of a nucleotide sequence of
fixed length n. In literature, these nucleotide subsequences
have been called alternatively as n-mers, oligonucleotide,
oligopeptide, etc. For the purpose of obtaining common
and unique n-grams across all the 2,031 bacterial gen-
omes, all possible n-grams were extracted from each of
the genomes in the dataset. Given a dataset of genome
sequences D, let d; be the complete nucleotide sequence
for an organism O; in D where d; = (515, ...5;), where
si € X where X represent the set of four nucleotide 4, G,
C and T, then a set of (k — n + 1)n-grams can be obtained
from d; as

81 =(51...8n), &= (2 -Sns1) s oo Gons1 = (Sk—pat - - S). Using
this n-gram model, the following property of n-grams
can be observed.

+ There are countable numbers of n-grams across all
the genomes that are highly abundant. This phe-
nomenon is related to Zipf’s law [15].

Here it is important to note that few of the bacterial
genomes contain additional letters namely N, R, ¥, W,
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M, S, or K to account for two ambiguous bases in any
given position. For example the letter N at any given
position indicates unknown base, the letter R at any
given position indicates either A or G, the letter Y at
any given position indicates either C or 7 and so on. In
addition to that letters B, D, H and V represents 3-base
ambiguities. Therefore, ¥ = {4, C, T, G, N, R, Y, W, M,
S, K, B, D, H, V}.

Unique and common n-gram profile

From the entire 2,031 genomes, all possible non-repeat-
ing n-grams (n = 12) were obtained. The #n-grams from
each genome were compared against the n-grams in the
other genomes to finally arrive at a set of unique (pre-
sent in a single genome) and common (present in multi-
ple genomes) n-grams. The unique xn-gram set includes
two columns - the #n-gram and the genome in which it
is present. On the other hand the common #n-gram set
includes four columns - the n-gram, frequency of its
occurrence in the entire dataset, its weight assigned by
the scoring function and the genomes in which it is
present.

Scoring function
The scoring function obtains a set of common and
unique n-grams based on the n-gram model discussed
above. The scoring function is parameterized with the
length of the n-gram and the target dataset to begin
with. The scoring function reads in the nucleotide
sequences of each genome, and generates all possible n-
grams without any repeats. If a nucleotide sequence is
of length k, then the total number of n-grams is given
by (k —n + 1). Once all the n-grams are generated, the
scoring function compares all the n-grams from a gen-
ome against those from all the other genomes in the
dataset. After successful comparison the scoring func-
tion determines a profile of all the common and unique
n-grams in the dataset. All the unique #-grams are
assigned a weight of unity, i.e. 1, and the common #n-
grams are assigned weights using a dampening factor
that accounts for how popular the n-gram is with
respect to the genomes present in the dataset.

For any n-gram x, the dampening factor is given by

lcl

the expression log, where |C| denotes

Ic:x e cl|/log,lct

the total number of genomes in the dataset and
l{c : x € c}| denotes the total number of genomes in
which the n-gram x is present. This factor is similar to
the term ‘weighting’ as discussed in our previous study
[14]. The damping factor adjusts the weights of the n-
grams in such a way that popular n-grams receive a low
weightage and vice-versa. Table S3 in Additional File 2
shows the weights assigned to few hypothetical n-grams
based upon their frequency of occurrence in the dataset.
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If the n-gram is present only in a single genome then its
weight is unity, i.e. 1, and if it is present in all the gen-
omes then its weight is zero, i.e. 0.

Model building

The model-building step involves indexing the entire set
of common and unique #n-grams and assigning appropri-
ate weight to each n-gram based on its frequency profile
across the reference genome set. For model building our
tool considers either the entire set (100%) or a partial
(75%, 50% and 25%) set of non-repeatable n-grams from
each genome. For model building using a partial gen-
ome set, non-repeating n-grams are randomly selected
from the genome. The number of n-grams selected
from each genome is proportionate to their size.

Model building is a very crucial step in MetalD and it
is also a time consuming process. In case of adding new
genomes to the dataset or adding a completely different
community including viral, fungus, archaeal, etc., the
model-building step has to be carried out again. There-
fore, this update process can be scheduled at periodic
intervals. Moreover, model-building step in our tool is
an offline process.

Repeat ratio

While harvesting the n-grams (n = 12) from the refer-
ence genomes we observed that there are a large num-
ber of n-grams that have the tendency to re-appear.
Therefore, we came up with a parameter “repeat ratio”
to account for the abundances of repeated n-grams in
each genome. Repeat ratio is determined by computing
the fraction of the repeated n-grams to the total number
of n-grams in the genome. Here repeat ratios are repre-
sented as percentages. The Table S11 and Figure S1 (in
Additional File 2) presents a histogram of the repeat
ratio distribution across the 2,031 bacterial genomes.
Across 2,031 bacterial genomes the repeat ratio distribu-
tion ranged widely between 0.85% to 71.53%. Only small
fractions of the genome, i.e., 3.3% have repeat ratios
within 10%. Almost about 69.2% of the genomes have a
repeat ratio between 25% and 60%. In total nearly 99.6%
of the genomes have their repeat ratios ranging from
10% to 70%. The mean and the standard deviation of
the repeat ratios across 2,031 bacterial genomes were
observed to be 27.57 and 12.52 respectively.

Testing and identification (classification)

Though the objectives behind our testing and identifica-
tion (classification) steps are the same, there is a subtle
difference between them. For testing we consider 1%,
3%, 5%, and 7% of the non-repeated n-grams randomly
chosen from each genome and try to identify their ori-
gin. In contrast, for identification we consider the entire
set of metagenomic reads to harvest all possible n-grams
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(n = 12) and try to determine the constituent organisms
in a given community.

Let us consider R = {gl,gz,g3...,gn} as a set of n-
grams obtained from the reads or randomly selected from
the genome and G = {G1, G, G3 ..., G} as the set of gen-
omes present in the database. We define a mapping from
R to G as R — G where all the elements in domain R
maps to a single element in co-domain G i.e.
81,8283 --.,8 — Gy where G is the only single range in
co-domain G and G, € G. To obtain a mapping from R to
Yo.0 - Yom
G we construct a 1 % m matrix of the form :

Yno " Vnm
T={c1,¢2,¢5...,¢n}  where
a1 = {)/0,1,)/1,1,)/2,1 -~-:)’n,1}, = {}’0,1,)’1,1,}’2,1 ---r}’n,l}v
¢m = {Yom: Yim Yom-- - Yam} are the columns in the
n +* m matrix and Yef represent the weight assigned to an
n-gram e that is present in genome f or 0 if the n-gram e
is not present in the genome f. In the above-mentioned
n % m matrix we define Y Jc. =Y (oe+y12+y2z+ ... +¥nz) S
the sum of all the elements in the column z. After com-
puting the sum of each column in the n * m matrix we
arrange all the column sums in a descending order. We
then associate §1,82,83...,8 — Gx provided that
Ya>Yaa>Yaa>..>Yaand Ya>Yan > Yae > o> Yo

In summary, after obtaining the n-grams from the
reads or from the genomes we construct a matrix with
the rows representing the n-grams and the columns
representing the entire set of genomes in the dataset.
We then replace each matrix entry with the weight of
the n-gram corresponding to that particular genome. If
an n-gram is not part of the genome then we replace
that entry with a zero i.e., 0. After filling the matrix
entries, we determine the column sum against each gen-
ome; identify the highest column sum and associate
(map) the entire set of n-grams to that particular
genome.

It is important to note that in the identification step
we try to map a set of reads to a genome instead of
mapping each single read to a genome. This is because
it is hard to classify each single read to a genome due to
the intense computation involvement and lack of discri-
minatory signals in them. Again, in order to ensure a
successful classification we compared our classification
results against the classifications performed by MetaSim.

where we define

MetaSim reads

Metagenomic reads for our mock-staggered commu-
nities were obtained using the MetaSim simulation tool.
On parameterizing MetaSim with the genomes, their
abundance profile, the empirical error model (Table S12
in Additional File 2) and the total number of reads to
be generated; MetaSim generates a set of reads against
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each genome. For our mock-staggered community,
MetaSim generated about 3 million 100 bp pair-end
reads. Table S13 in Additional File 2 shows the para-
meter settings used in MetaSim for constructing the
mock staggered community and the details of the simu-
lation output.

Mock communities

Two different mock communities were used in this
study. The first one is the mock-even community that is
constructed from two datasets namely HC1 and HC2
obtained from MetaPhlAn website (http://www.hutten-
hower.org/metaphlan). The original datasets consisted of
100 genomes each with an equal abundance of 1%.
From these datasets, we constructed a mock-even com-
munity of 167 microbial genomes (72 from HC1 + 95
from HC2) that are also present in our 2,031 set of
reference genomes. The entire set of reads pertaining to
these 167 genomes was included in our community to
ensure that their abundances are equal i.e. 1%. We
eliminated the rest 33 genomes either due to their
absence in our dataset or because there was no appro-
priate mapping found between the KEGG ID’s in HC1
and HC2 to our NCBI names in the database.

Secondly, we constructed a mock-staggered commu-
nity by randomly choosing 100 microbial genomes out
of the 2,031 genomes in our dataset. The final mock-
staggered community included genomes with genome
sizes varying between 641,770 to 9,033,684 and with
their repeat ratios ranging from 7 to 63. For this com-
munity, we randomly assigned an abundance value for
each genome between 0.1% and 10% totaling up to
100% (Table S9 in Additional File 1).

Abundance estimation

Considering a set of reads from a genome, we harvested
all possible non-repeated n-grams (n = 12) and mapped
them against their reference genome. Upon mapping,
we counted the total number of n-grams that is in com-
mon (intersection) between the reads and the reference
genome. We determined the relative “Observed Abun-
dance” for a genome as the ratio of its number of non-
repeated n-gram counts to the total sum of the non-
repeating n-grams of the genomes present in the com-
munity multiplied by the total number of genomes in
the sample. After determining the observed abundances
we noticed that genomes with extreme repeat ratios i.e.
above 50 or below 15 had a tendency to be estimated
higher or lower respectively. Therefore to correct the
observed abundances we either subtract or add the first
standard deviation of the repeat ratios of 2031 genomes
to the mean of the repeat ratios of 2031 genomes. On
the other hand, if the repeat ratio of a genome lies
between 15 and 50 then the mean of the repeat ratios of
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2031 genomes is used as such. The corrected abundance
for a genome is reported based on their repeat ratio
using the following expressions:

Repeat Rati
Corrected Abundance = Observed Abundance — log,, ( epeat Ratio ) .

M Repeat ratio of 2031 genomes

15 < Repeat ratio < 50.

Repeat Ratio

Corrected Abundance = Observed Abundance—log,, (
HeRey

ratio of 2031 g

Repeat ratio > 50 and Repeat ratio < 15.

Where 1 is the mean and o is the standard deviation
of the repeat ratios for the 2,031 genomes present in
our dataset (Table S10 in Additional File 1). Note here
that the mean and standard deviation for the repeat
ratios will change with the addition or elimination of
genomes in the dataset.

From Figure S1 (Additional File 2), we noticed that
most of the genomes have their repeat ratio ranging
between 15% and 50%. Therefore when correcting the
abundances (Corrected Abundance) we subtract one
standard deviation from the mean for those genomes
whose repeat ratio is above 50% and add one standard
deviation to the mean for those genomes whose repeat
ratio is below 15%. For the genomes with repeat ratios
between 15% and 50%, the mean of the repeat ratio is
considered as such. Here we report the abundance esti-
mates for any given community in percentages i.e. 100%
for the entire community or equal to the number of
microbial species in the community. Therefore, if the
corrected abundance does not add up to 100% or equal
to the number of species we report the “Estimated
Abundance” which is normalized to either 100% or
equal to the number of species in the community.

Performance metrics

We report standard performance measure in terms of
accuracy as percentages. Accuracy is defined as the ratio of
number of entries (genomes) that have been correctly iden-
tified to the number of entries under consideration. In
some cases, we have reported balanced accuracies wherever
we have information about specificity and sensitivity i.e.,

Balanced Accuracy = 1/ * (sensitivity + specificity) .

Additional material

Additional File 1: Table S1:This file lists the 100 bacterial genomes
randomly selected for determining an appropriate size for the n-
gram. There are two columns in this file. The two columns are as
follows: (1) Full name of the bacterial genome, (2) Code
(Genus_species_strain) for respective bacterial genome.Table S2:
Number of bacterial species with unique n-grams vs number of bacterial
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species in the dataset. Listed below are 219 bacterial genomes
containing unique n-grams.Table S7: This file lists the 154 bacterial
genera selected for the performance evaluation of accuracies across the
following tools: MetalD, Blast, MetaCV, Phymm and RAPSearch2. There
are three columns in this file. The three columns are as follows: (1)
Bacterial genera’s, (2) Number of strains in each bacterial genera, (3)
Number of species in each bacterial genera.Table S8: This file reports
the original and the estimated abundances of 166 (71 in HC1 and 95 in
HC2) bacterial genomes in the mock even communities. There are seven
columns in this file. The seven columns are as follows: (1) Full name of
the bacterial genome, (2) Code (Genus_species_strain) for respective
bacterial genome, (3) The KEGG Id's for the bacterial genome, (4) The
original abundance of these genomes in the mock even dataset, (5) The
number of reads for each genomes, (6) The corrected abundance of the
genomes in the mock even dataset, (7) The estimated abundance of the
genomes in the mock even dataset.Table S9: This file reports both the
original and the estimated abundances of 100 bacterial genomes in the
mock staggered community. There are seven columns in this file. The
seven columns are as follows: (1) Full name of the bacterial genome, (2)
Code (Genus_species_strain) for respective bacterial genome, (3) The
original abundance of these genomes in the mock staggered dataset, (4)
The number of reads for each genomes generated using the MetaSim,
(5) The Observed abundance of the genomes in the mock staggered
dataset, (6) The corrected abundance of the genomes in the mock
staggered dataset, (7) The estimated abundance of the genomes in the
mock staggered dataset.Table S10: This file lists the entire 2031 bacterial
genomes present in our database obtained from NCBI. There are totally
eight columns in this file. The eight columns are as follows: (1) Full name
of the bacterial genome, (2) Code (Genus_species_strain) for respective
bacterial genome, (3) Length of the circular genome, (4) Number of n-
grams in the genome, (5) Number of unique n-grams in the genome, (6)
Number of common n-grams in the bacterial genome, (7) Number of
repeated n-grams in the genome, (8) Repeat ratio.

Additional File 2: Table S3:Weights assigned to a hypothetical n-
gram based upon its frequency in the dataset.Table S4: Comparison
of the accuracies across 2031 bacterial genomes using both the
common and unique n-grams and only the unique n-grams.Table S5:
Plasmid sequence testing across 2031 bacterial genomes using 100%
genomes.Table S6: Validation accuracies of different Models (ot:f) using
1,3, 5, and 7% n-grams from 2031 bacterial genomes.Table S11:
Histogram statistics for the repeat ratio distribution across 2031 bacterial
genomes.Table S12: Empirical error models and error rate per base.
Table S13:: MetaSim parameter settings and simulation details.Figure
S1: Histogram of the repeat ratio distribution across 2031 bacterial
genome.
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