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Abstract

Background: The identification of genetic markers associated with complex traits that are expensive to record
such as feed intake or feed efficiency would allow these traits to be included in selection programs. To identify
large-effect QTL, we performed a series of genome-wide association studies and functional analyses using 50 K
and 770 K SNP genotypes scored in 5,133 animals from 4 independent beef cattle populations (Cycle VII, Angus,
Hereford and Simmental × Angus) with phenotypes for average daily gain, dry matter intake, metabolic mid-test
body weight and residual feed intake.

Results: A total of 5, 6, 11 and 10 significant QTL (defined as 1-Mb genome windows with Bonferroni-corrected
P-value <0.05) were identified for average daily gain, dry matter intake, metabolic mid-test body weight and residual
feed intake, respectively. The identified QTL were population-specific and had little overlap across the 4 populations.
The pleiotropic or closely linked QTL on BTA 7 at 23 Mb identified in the Angus population harbours a promising
candidate gene ACSL6 (acyl-CoA synthetase long-chain family member 6), and was the largest effect QTL associated
with dry matter intake and mid-test body weight explaining 10.39% and 14.25% of the additive genetic variance,
respectively. Pleiotropic or closely linked QTL associated with average daily gain and mid-test body weight were
detected on BTA 6 at 38 Mb and BTA 7 at 93 Mb confirming previous reports. No QTL for residual feed intake
explained more than 2.5% of the additive genetic variance in any population. Marker-based estimates of heritability
ranged from 0.21 to 0.49 for residual feed intake across the 4 populations.

Conclusions: This GWAS study, which is the largest performed for feed efficiency and its component traits in beef
cattle to date, identified several large-effect QTL that cumulatively explained a significant percentage of additive
genetic variance within each population. Differences in the QTL identified among the different populations may
be due to differences in power to detect QTL, environmental variation, or differences in the genetic architecture of
trait variation among breeds. These results enhance our understanding of the biology of growth, feed intake and
utilisation in beef cattle.
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Background
Feed costs comprise the majority of beef production
costs and the efficiency of feed utilisation has long been
recognised for its economic importance in beef cattle
[1,2]. Improvements in the efficiency of feed utilisation
would lead to increased economic returns that would
influence the entire beef cattle production system [3].
Feed efficiency is also important for social reasons due
to environmental concerns about the methane emissions
of cattle and because of the perceived competition in
land use for producing crops for direct human consump-
tion or for corn- and soybean-based biofuels. It has been
reported that more efficient cattle emit lower amounts of
methane [4].
The most commonly used measure of feed efficiency

has traditionally been feed conversion ratio, which is the
ratio of feed consumed to body weight gain. Selection
to improve feed conversion ratio has the potential to
increase growth rate in young animals because the two
traits are genetically correlated [3]. This could, as a
correlated response, produce larger females which are
more expensive to maintain in the breeding herd [3].
Residual feed intake (RFI) is an alternate measure of
feed efficiency, defined as the difference between an
animal’s actual and expected feed intake based on its
body weight and growth rate during the feeding period
[1,3]. RFI is considered by some to be a preferred method
of measuring feed efficiency because of its phenotypic
independence from the traits used to calculate RFI [5].
The estimated heritability of RFI in cattle populations

is moderate to high, ranging from 0.08 to 0.46 [6-8].
Based on these heritability estimates and substantial
phenotypic variation, RFI has the potential for inclusion
in selection criteria to improve feed efficiency and the
profitability of beef production [3,9,10]. It has also been
experimentally demonstrated that direct selection on RFI
can improve the feed efficiency of cattle [11]. However,
individual feed intake measurements are needed for direct
selection and these are expensive to obtain. The cost and
logistics associated with recording feed intake have histor-
ically been the primary limitations to population-wide
selection to improve feed efficiency in livestock. This
problem could be ameliorated if genetic markers predict-
ive of feed intake or RFI were available. Consequently,
there has been considerable recent research to develop
genetic markers that can be used to select animals for
improved feed efficiency.
Opportunities to identify trait-associated genetic markers

have been advanced by the availability of genome-wide
high-density panels of single nucleotide polymorphism
(SNP) markers including the Illumina BovineSNP50
BeadChip (50 K) [12] and BovineHD BeadChip (770 K)
(Illumina Inc., San Diego, CA; [13]). Genome-wide associ-
ation studies (GWAS) have now identified SNPs associated
with economically important traits in both beef and dairy
cattle [14-17]. Marker associations with RFI have previously
been reported in beef cattle [18-20] and putative quantita-
tive trait loci (QTL) have been mapped to BTA 1, 2, 5, 7, 8,
12, 14, 16, 17, 18, 19, 20, 21, 24, 26, 28 and 29 [19]. Of
8,786 polymorphic SNPs genotyped in 189 Australian beef
cattle sampled for either high or low RFI, 161 were trait-
associated (P <0.01) [18]. However, only two of these SNPs
remained significant when evaluated in a larger multi-breed
sample of animals [18].
The simplest model for performing GWAS is linear

regression, where the association between markers and a
trait of interest is tested one marker at a time. This type
of analysis has been used for GWAS in humans [21] and
in animal populations [22] where the extent of linkage
disequilibrium among markers is considerably greater
[23,24] due to the small effective population sizes of most
livestock breeds. On the other hand, Bayesian variable
selection models facilitate the simultaneous fitting of all
markers in the model and have been used for GWAS in
livestock [25-31] to improve the precision of QTL mapping
[32]. Among several Bayesian variable selection models,
BayesB [33] has been shown by simulation to map QTL
more precisely than other methods [34]. BayesB has also
been shown to implicitly account for the population strati-
fication resulting from pedigree relationships [35].
Although several QTL associated with feed efficiency

traits in beef cattle have been reported, not all of the
genetic variation in these traits has been captured
because of inadequate sample size or studies limited to
a single population. The extent of genetic variation for
feed efficiency traits among different beef cattle popula-
tions remains unexplored. The objectives of this study
were to map QTL associated with feedlot RFI and its
growth and feed intake components; specifically, aver-
age daily gain on feed (ADG; kg/d), average daily dry
matter intake (DMI; kg/d) and mid-test metabolic body
weight (MBW; kg0.75) in a relatively large sample of ani-
mals (N =5,133) from 4 different beef cattle populations
(Cycle VII, Angus, Hereford and Simmental × Angus, see
Methods for more details). A BayesB model was used to
simultaneously analyse SNP markers and identify QTL by
characterising the proportion of additive genetic variation
explained by every non-overlapping 1-Mb region within
the genome.

Results and Discussion
Posterior means of additive genetic and residual
variances and heritability
For each trait, the analysis generates an estimate of the
proportion of phenotypic variation that can be explained
by the use of SNP markers to represent identity by state
among individuals, which is similar to the heritability
estimated when pedigree information is used to represent
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identity by descent among individuals. The posterior
means of heritability, additive genetic and residual
variances for ADG, DMI, MBW and RFI in each of the
4 populations (Cycle VII, Angus, Hereford and Sim-
mental × Angus) are in Table 1. Estimates of heritability
ranged from 0.19 to 0.30 for ADG, from 0.27 to 0.41
for DMI, from 0.38 to 0.50 for MBW, and from 0.21 to
0.49 for RFI and are similar to those reported in the
literature [16,36,37]. Heritability estimates in the Cycle
VII population reported by [37] using a BayesC model
were 0.24, 0.41, 0.58 and 0.57 for ADG, DMI, MBW
and RFI, respectively which are similar to those produced
in this study by applying a BayesB model to the same
population (Table 1). The highest estimates of heritability
were obtained for the Cycle VII and Hereford populations.
The lower heritability estimates obtained for the other
populations is likely due to the nutritional trials that were
superimposed on animals during the feeding period that
resulted in much larger numbers of contemporary groups
(see Methods). The moderate to high heritabilities esti-
mated for RFI indicates a significant potential for the iden-
tification of QTL considering the available sample sizes in
this study.

Genome wide association – general results
Manhattan plots of the posterior means of the additive
genetic variance explained by each 1-Mb window across
the genome for RFI, DMI, ADG and MBW are in Figures 1,
2, 3 and 4, respectively. The numbers of chromosome seg-
ments shown in Figures 1, 2, 3 and 4 (the X-axis) are not
the same across the different populations as different SNP
genotyping platforms were used and slightly different SNP
filtering criteria were utilised in the different populations
(See Methods). Some 1-Mb windows with a Bonferroni-
corrected P-value less than 0.05 were identified as signifi-
cant QTL and are summarised in Tables 2, 3, 4 and 5 for
RFI, DMI, ADG, and MBW, respectively. The identity of
the most strongly associated SNP (denoted throughout
as ‘lead-SNP’ and defined as the SNP with the highest
posterior probability of inclusion (sPPI) within the sig-
nificant 1-Mb window) is also reported for each QTL.
The significant QTL were generally population-specific

and had little overlap in genomic location across the 4
Table 1 Marker-based estimates of heritability (h2), additive g
DMI, MBW and RFI in the Cycle VII, Angus, Hereford and Sim

Trait Cycle VII Angus

h2 VA VE h2 VA V

ADG (kg/d) 0.30 0.01 0.03 0.19 0.01 0

DMI (kg/d) 0.35 0.39 0.71 0.35 0.85 1

MBW (kg0.75) 0.47 25.73 29.49 0.49 38.08 39

RFI (kg/d) 0.49 0.19 0.19 0.21 0.27 0
1ADG: average daily gain, DMI: dry matter intake, MBW: mid-test metabolic body w
beef cattle populations. Although this result could be due
to different genetic architectures underlying trait variation
among these populations, it may also be due to differences
in the power to detect QTL due to the larger numbers
of contemporary groups in some populations (202 in
Simmental × Angus and 102 in Angus versus 10 and 15
in Hereford and Cycle VII, respectively) or due to gene-
by-environment or epistatic interactions. The populations
exposed to the large number of different nutritional trials
(such as forage feeding, concentrate rations or amino acid
and mineral supplementation) were bred in a diverse geo-
graphical area (throughout the Midwest United States) in
several different years. While genotype-by-environment
interactions have been extensively detected using clas-
sical quantitative genetic approaches, little has been
done to study this phenomenon at the level of the
genome. We were not able to test for the existence of
gene-by-environment interactions because of a lack of
suitable connections between individuals in different
contemporary groups across the different populations.
Further studies employing special experimental designs
are needed to investigate the existence of gene-by-
environment interactions for feed efficiency traits in
beef cattle.
The QTL on BTA 14 at 24 Mb (associated with MBW

in Simmental × Angus, Table 5) was the only QTL that
was identified as a suggestive QTL in another population
(Cycle VII animals with a nominal P-value of 9.91E−5).
Two different lead-SNPs (rs42646660 and rs134751608)
were model-selected to tag this QTL. The rs42646660
SNP is located within an intron of XKR4 (XK, Kell blood
group complex subunit-related family, member 4) and
rs134751608 is 0.06 Mb centromeric of XKR4. Signifi-
cant associations have previously been reported between
XKR4 variants and subcutaneous rump fat thickness in
cattle [16,38]. The PLAG1 (pleiomorphic adenoma gene
1) gene which is located near the 24–25 Mb window
boundary on BTA 14 has been shown to have large
effects on stature in a Holstein × Jersey F2 cross [39] and
on carcass weight in Japanese Black cattle [40]. Whether
mutations in XKR4 or in nearby PLAG1 cause variation
in MBW in the Cycle VII and Simmental × Angus animals
warrants further investigation.
enetic variance (VA) and residual variance (VE) for ADG,
mental × Angus populations1

Hereford Simmental × Angus

E h2 VA VE h2 VA VE

.05 0.27 0.02 0.05 0.23 0.01 0.03

.55 0.41 0.66 0.94 0.27 0.28 0.75

.78 0.50 24.02 23.79 0.38 8.58 14.17

.98 0.45 0.32 0.40 0.32 0.20 0.42

eight, and RFI: residual feed intake.
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Figure 1 The residual feed intake QTL. Proportion of additive genetic variance explained by SNPs within each 1-Mb window across the genome for
residual feed intake in 4 different beef populations: a) Cycle VII, b) Angus, c) Hereford and d) Simmental × Angus. P: Pseudo autosomal region on BTAX,
MT: Mitochondrial DNA. Based on UMD3.1 and Y chromosome assembly from Btau4.6.1.
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Genome wide association results for RFI
Ten significant 1-Mb SNP windows located on 8 different
autosomes were detected for RFI (Table 2). The significant
QTL separated by 2 Mb on BTA 14 could easily represent
the same QTL as the effects were detected in two different
populations (Simmental × Angus and Cycle VII). The lar-
gest effect 1-Mb SNP window for RFI was detected at
82 Mb on BTA 15 in the Simmental × Angus population
and explained 2.40% of the total additive genetic variance
with a Bonferroni-corrected P-value threshold of 1.81E−3

(Table 2). No QTL associated with RFI has previously
been reported in this region of the cattle genome but sev-
eral QTL associated with body size and production traits
have been reported [41,42].
Among the model-selected lead-SNPs tagging RFI

QTL, rs109988749 located on BTA 19 is approximately
100 bp from the DNAH17 (dynein, axonemal, heavy
chain 17) transcription start site and rs137078861 located
on BTA 25 is within an intron of C25H16orf72 (chromo-
some 25 open reading frame, human C16orf72), which
encodes an as yet uncharacterised protein. The remaining
lead-SNPs are intergenic variants. DNAH17 encodes
axonemal dynein [43]. Dyneins are motor protein com-
plexes that use ATP to generate force and movement on
microtubules in a wealth of biological processes, including
ciliary beating, cell division and intracellular transport
[44]. Therefore, mutations which reduce the efficiency of
ATP conversion into movement are highly likely to reduce
the efficiency of conversion of feed energy intake into
maintenance and growth. Furthermore, serious human
diseases arise from motor protein dysfunction supporting
the potential for large phenotypic effects due to mutations
in motor protein genes [45].
Several of the identified QTL possessed pleiotropic

effects (Figure 5). In this study, a 1-Mb QTL that was
associated with more than one trait was considered to
represent a pleiotropic QTL. However, intervals of this
size could easily harbour two different closely linked
QTL. Further analyses using multivariate models are
needed to dissect pleiotropic QTL from closely linked
QTL (see [46]). Among these, the QTL on BTA 20 at
4 Mb was the only pleiotropic or closely linked QTL
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Figure 2 The feedlot dry matter intake QTL. Proportion of additive genetic variance explained by SNPs within each 1-Mb window across the
genome for feedlot dry matter intake in 4 different beef populations: a) Cycle VII, b) Angus, c) Hereford and d) Simmental × Angus. P: Pseudo
autosomal region on BTAX, MT: Mitochondrial DNA. Based on UMD3.1 and Y chromosome assembly from Btau4.6.1.
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associated with RFI and MBW identified in the Hereford
population. While the phenotypic correlations between
RFI and its growth and feed intake component traits are
expected to be zero, weak genetic correlations exist and
pleiotropic loci affecting both traits have previously been
reported [17]. We found that the same lead-SNP
(rs133032375), which is located within an intron of
STC2 (stanniocalcin 2) was selected for both RFI and
MBW. The overexpression of human STC2 in transgenic
mice reduces intramembranous and endochondral bone
development and skeletal muscle growth and results in a
dwarf phenotype [47]. STC2 has also been shown to be a
potent negative regulator of postnatal growth in wild-
type mice [48]. While STC2 is expressed in developing
avian striated muscle and joints [49], the physiological
roles of STC2 in cattle are unknown.

Large-effect pleiotropic or closely linked QTL for DMI
and MBW
Three pleiotropic or closely linked QTL on BTA 21 at
13 Mb and BTA 7 at 0 and 23 Mb were associated with
DMI and MBW. Lead-SNP rs134458731 was selected for
both DMI and MBW as tagging the QTL on BTA 7 at
0 Mb in Angus (Tables 3 and 5). This SNP lies within an
intron of LOC100125913, which encodes an uncharac-
terised protein. The B allele (from the Illumina A/B calling
system) at this SNP was at a frequency of 0.09 and was
associated with an increase in both DMI and MBW in
Angus. The direction of allelic effects at this locus is
consistent with the positive genetic correlation between
DMI and MBW in cattle.
The pleiotropic or closely linked QTL on BTA 7 at

23 Mb, identified in Angus, was the largest-effect QTL
identified for either DMI or MBW and explained 10.39%
and 14.25% of the additive genetic variance in each trait,
respectively (Tables 3 and 5). Two different lead-SNPs
(rs133232710 and rs136491020) were selected for this
QTL, with both being within the largest intron of ACSL6
(acyl-CoA synthetase long-chain family member 6). ACSL6
is a member of the long-chain acyl-CoA synthetase gene
family (ACSL). In mammals, ACSL genes are necessary
for fatty acid degradation (β-oxidation), phospholipid
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Figure 3 The feedlot average daily gain QTL. Proportion of additive genetic variance explained by SNPs within each 1-Mb window across the
genome for feedlot average daily gain in 4 different beef populations: a) Cycle VII, b) Angus, c) Hereford and d) Simmental × Angus. P: Pseudo
autosomal region on BTAX, MT: Mitochondrial DNA. Based on UMD3.1 and Y chromosome assembly from Btau4.6.1.

Saatchi et al. BMC Genomics 2014, 15:1004 Page 6 of 14
http://www.biomedcentral.com/1471-2164/15/1004
remodeling, and the production of long-chain acyl-CoA
esters that regulate various physiological, metabolism
and cell signaling processes [50,51]. The ACSL enzymes
are membrane-bound, act on non-polar hydrophobic
substrates (fatty acids) and their water-soluble and
powerful detergent products (acyl-CoAs) are important
intermediates for de novo lipid synthesis [52]. In the
first step of the two-step reaction catalysed by these
enzymes, an acyl-AMP intermediate is formed from ATP.
AMP is then exchanged with CoA to produce activated
acyl-CoA. Once activated, the fatty acid can function as a
signalling molecule, be incorporated into phospholipids or
triacylglycerides, or undergo β-oxidation in mitochondria
for energy generation [52]. While the classical hypothesis
in the regulation of feed intake is that a decrease in
glucose utilisation registered by specific sensors in the
brain leads to hunger, it has also been shown that lipids
have an important role through their provision of energy
for cell metabolism [53]. Treating mice with fatty acid
synthase inhibitors reduces food intake and body weight
[54] and increasing neuronal long-chain acyl-CoA in the
rat provides a hypothalamic signal of nutrient availability
which results in the inhibition of both food intake and
glucose production [55]. It has been observed that feeding
high fat diets often results in decreased feed and energy
intakes in cattle [56], however, the mechanisms that medi-
ate fat-induced depression of feed intake have not been fully
investigated in ruminants [57]. Glucose signaling does not
effectively regulate feed intake in ruminants [58] because
most of the dietary carbohydrates are fermented in the
rumen by microorganisms [59]. Consequently, mechanisms
other than glucose signaling must control feed intake in
cattle and we identify a role for ACSL6 in this process.

ADG and MBW QTL on BTA 6 and 7 localise to genomic
regions harbouring previously reported pleiotropic QTL
Two pleiotropic or closely linked QTL associated with
ADG and MBW were identified on BTA 6 at 38 Mb and
BTA 7 at 93 Mb (Figure 5). Many cattle studies have
reported QTL on BTA 6 at 38 Mb affecting body weights,
growth and carcass traits [60-64], calving ease direct [65],
milk traits [66-68], reproductive traits [69-71] and feed
efficiency traits [37,62,63]. In an analysis of BovineSNP50
genotypes scored in 18,274 animals from 10 US beef cattle
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Figure 4 The mid-test metabolic body weight QTL. Proportion of additive genetic variance explained by SNPs within each 1-Mb window
across the genome for mid-test metabolic body weight in 4 different beef populations: a) Cycle VII, b) Angus, c) Hereford and d) Simmental ×
Angus. P: Pseudo autosomal region on BTAX, MT: Mitochondrial DNA. Based on UMD3.1 and Y chromosome assembly from Btau4.6.1.

Table 2 Large-effect QTL associated with residual feed intake in 4 different beef populations

BTA_Mb1 Population2 Start SNP End SNP Number of SNPs Genetic variance (%) Nominal
P-value

Bonferroni
corrected P-value

Lead-SNP sPPI3

6_50 Angus rs133728493 rs136948693 304 2.21 1.10E−6 2.95E−3 rs137524648 0.04

10_85 Sim × Ang rs110164488 rs43652141 230 1.58 7.37E−6 1.97E−2 rs136969055 0.06

14_41 Sim × Ang rs42509065 rs133984439 201 1.75 4.17E−6 1.12E−2 rs136041102 0.31

14_43 Cycle VII rs109845775 rs110706635 12 1.95 2.26E−6 5.70E−3 rs41617069 0.70

15_82 Sim × Ang rs110524424 rs42781637 380 2.40 6.78E−7 1.81E−3 rs41785720 0.05

18_22 Angus rs41579995 rs132921208 292 1.60 6.88E−6 1.85E−2 rs109634056 0.07

18_37 Sim × Ang rs110857287 rs43211307 241 1.35 1.74E−5 4.65E−2 rs137177006 0.03

19_54 Hereford rs134654442 rs110630064 353 1.45 1.18E−5 3.17E−2 rs109988749 0.21

20_4 Hereford rs134565601 rs43094976 299 1.57 7.64E−6 2.05E−2 rs133032375 0.05

25_7 Sim × Ang rs110477162 rs110037478 289 1.45 1.18E−5 3.16E−2 rs137078861 0.04
1Bovine chromosome and nth 1-Mb window within the same chromosome starting at 0 Mb and based on the UMD3.1 assembly.
2Sim × Ang stands for Simmental × Angus. The Cycle VII population was genotyped with the BovineSNP50 assay while the other populations were genotyped with
the BovineSNP50 and BovineHD assays and imputed to the BovineHD content using Beagle 4.0.
3sPPI: posterior probability of inclusion for the given lead-SNP.
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Table 3 Large-effect QTL associated with feedlot dry matter intake in 4 different beef populations

BTA_Mb1 Population Start SNP End SNP Number of SNPs Genetic variance (%) Nominal
P-value

Bonferroni
corrected P-value

Lead-SNP sPPI2

1_107 Angus rs137640861 rs133218870 210 1.64 1.52E−5 4.08E−2 rs136742116 0.10

3_70 Hereford rs134410518 rs136347800 195 4.33 7.23E−8 1.94E−4 rs109239108 0.14

7_0 Angus rs134214229 rs133987755 219 2.78 9.14E−7 2.45E−3 rs134458731 0.49

7_23 Angus rs133100477 rs42926834 261 10.39 2.97E−10 7.97E−7 rs133232710 0.44

21_13 Angus rs109890770 rs137407067 277 1.75 1.09E−5 2.92E−2 rs134953219 0.31

X_115 Hereford rs109289869 rs133784615 214 1.95 6.20E−6 1.66E−2 rs134244037 0.16
1Bovine chromosome and nth 1-Mb window within the same chromosome starting at 0 Mb and based on the UMD3.1 assembly.
2sPPI: posterior probability of inclusion for the given lead-SNP.
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breeds with observations for twelve body weights, calving ease
and carcass traits, the QTL on BTA 6 at 38 Mb had the
largest-effect and was associated with the greatest number of
traits in the greatest number of breeds [46]. Three genes have
been suggested as positional candidates: LAP3 (leucine amino-
peptidase 3) [68], NCAPG (non-SMC condensing I complex,
subunit G) [72,73] and LCORL (ligand dependent nuclear
receptor corepressor-like) [74]. Lead-SNP rs109294917, which
lies within an intron of LCORL, was selected as tagging the
QTL in the analyses of both ADG and MBW.
The pleiotropic QTL on BTA 7 at 93 Mb associated

with ADG and MBW was the largest effect QTL identified
for ADG and explained 9.18% of the additive genetic
variance in Hereford (Table 4). This QTL has previously
been shown to be the second largest-effect QTL associated
with body weights (birth, weaning, yearling and mature
weights) in beef cattle and is segregating in many breeds
[46]. Two different intergenic lead-SNPs were selected for
this QTL in the analyses of ADG and MBW and both are
telomeric of ARRDC3 (arresting domain containing 3).
ARRDC3 is a member of the arrestin superfamily that
regulates obesity in mice and human males [75,76]. Arrest-
ins are signalling proteins that control metabolism usually
through the desensitisation of beta-adrenergic receptors,
which are present on the surface of almost every type of
mammalian cell. The oral administration of some beta-
adrenergic agonists increases muscle and decreases fat
accretion in cattle, pigs, poultry, and sheep [77,78].
Table 4 Large-effect QTL associated with feedlot average dail

BTA_Mb1 Population2 Start SNP End SNP Number of SNPs Ge

5_106 Hereford rs135296291 rs137324049 312

6_38 Cycle VII rs29010895 rs81131471 21

7_93 Hereford rs134145330 rs109802727 183

8_0 Hereford rs133933459 rs134191169 287

20_8 Cycle VII rs110676036 rs41638185 25
1Bovine chromosome and nth 1-Mb window within the same chromosome starting
2The Cycle VII population was genotyped with the BovineSNP50 assay while the oth
and imputed to the BovineHD content using Beagle 4.0.
3sPPI: posterior probability of inclusion for the given lead-SNP.
The QTL on BTA 5 at 106 Mb explained 3.13% of the
additive genetic variance in ADG in Hereford. This QTL
appears to be Hereford-specific and pleiotropic, accounting
for 2.6, 2.0, 4.9 and 3.9% of the additive genetic variance in
birth, weaning, yearling and mature weights, respectively,
in an independent population of 2,779 Herefords [46]. The
model selected lead-SNP rs132862617 lies within an intron
of CCND2 (cyclin D2), a member of the family of D-type
cyclins which are implicated in cell cycle regulation,
differentiation, and oncogenic transformation by governing
the activity of cyclin-dependent kinases [79,80]. Over-
expression of CCND2 in myeloid cells results in a decrease
in the duration of G1 (Gap 1 phase in the cell cycle when
cell size increases) and an increase in the percentage of
cells in S phase (Synthesis phase when DNA replication
occurs) in mammalian cells [81,82]. Since cell proliferation
is an essential element of body growth, CCND2 appears to
be a viable candidate gene for this QTL.

Conclusions
Although many QTL associated with feed efficiency
traits of beef cattle have been identified, very little of the
genetic variation in these traits has been explained by
the detected QTL because of small sample sizes and the
fact that the majority of variation appears to be due to
small-effect loci. In this study, we took advantage of a
relatively large sample size (5,133 animals from 4 inde-
pendent beef cattle populations) to identify novel QTL
y gain in 4 different beef populations1

netic variance (%) Nominal
P-value

Bonferroni
corrected P-value

Lead-SNP sPPI3

3.13 1.37E−7 3.67E−4 rs132862617 0.09

1.43 1.27E−5 3.21E−2 rs109294917 0.36

9.18 1.07E−10 2.87E−7 rs109618368 0.11

2.60 4.21E−7 1.13E−3 rs136695610 0.07

2.42 6.45E−7 1.63E−3 rs42602138 0.6

at 0 Mb and based on the UMD3.1 assembly.
er populations were genotyped with the BovineSNP50 and BovineHD assays



Table 5 Large-effect QTL associated with mid-test body weight in 4 different beef populations

BTA_Mb1 Population2 Start SNP End SNP Number of SNPs Genetic variance (%) Nominal
P-value

Bonferroni
corrected P-value

Lead-SNP sPPI3

1_98 Angus rs41638981 rs110173036 265 1.94 1.07E−5 2.88E−2 rs135605472 0.55

6_38 Cycle VII rs29010895 rs81131471 21 3.49 4.78E−7 1.21E−3 rs109294917 0.55

6_39 Cycle VII rs81139192 rs81129153 25 2.08 7.52E−6 1.89E−2 rs110012183 0.54

7_0 Angus rs134214229 rs133987755 219 3.99 2.26E−7 6.08E−4 rs134458731 0.89

7_23 Angus rs133100477 rs42926834 261 14.24 8.99E−11 2.41E−7 rs136491020 0.57

7_93 Hereford rs134145330 rs109802727 183 2.55 2.61E−6 7.00E−3 rs110680622 0.05

14_24 Sim × Ang rs109637592 rs109636480 192 3.14 8.54E−7 2.29E−3 rs134751608 0.08

18_63 Hereford rs110348373 rs42522614 225 1.76 1.75E−5 4.69E−2 rs41897307 0.39

20_4 Hereford rs134565601 rs43094976 299 3.78 3.07E−7 8.23E−4 rs133032375 0.08

20_6 Sim × Ang rs42517095 rs42352270 288 2.58 2.45E−6 6.56E−3 rs133488748 0.07

21_13 Angus rs109890770 rs137407067 277 1.97 9.92E−6 2.66E−2 rs41592029 0.54
1Bovine chromosome and nth 1-Mb window within the same chromosome starting at 0 Mb and based on the UMD3.1 assembly.
2Sim × Ang stands for Simmental × Angus. The Cycle VII population was genotyped with the BovineSNP50 assay while the other populations were genotyped with
the BovineSNP50 and BovineHD assays and imputed to the BovineHD content using Beagle 4.0.
3sPPI: posterior probability of inclusion for the given lead-SNP.
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and improve the resolution of the location of previously
mapped QTL. This study is the largest GWAS ever
performed to identify markers associated with feed
efficiency and its component traits in beef cattle and led
us to discover several large-effect QTL that cumulatively
account for a significant percentage of additive genetic
variance (the percentages in each of Tables 2 through 5
are additive within a population). Our results also suggest
that QTL associated with feed efficiency traits tend to be
population-specific with little overlap across populations,
which could be due to differences in the power to detect
QTL, environmental variation, or differences in the
Figure 5 The QTL network. The genomic locations (BTA_Mb) and the tra
gain (ADG), dry matter intake (DMI), metabolic mid-test body weight (MBW
Hereford and Simmental × Angus are shown with black, blue, red and gree
genetic architecture of trait variation among populations.
These results also suggest candidate genes for the detected
large-effect QTL which will improve our understanding of
the biology of growth, feed consumption and feed utilisa-
tion in beef cattle.

Methods
The US Meat Animal Research Center Animal Care and
Use Committee approved the procedures used in the
experiment applied on Cycle VII animals. For the other
3 experiments data were either collected by commercial
producers or were collected under the approval of the
it(s) associated with each identified QTL. The traits are average daily
) and residual feed intake (RFI). QTL identified in Angus, Cycle VII,
n arrows.
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University of Missouri (ACUC Protocol 7505) or Univer-
sity of Illinois at Champaign-Urbana (IACUC Protocols
06091 and 09078) Animal Care and Use Committees.

Animals, phenotypic and genotypic data
Feedlot ADG, daily DMI, and MBW traits were measured
in 4 different beef cattle populations. In all cases, average
daily gain was estimated as the regression of all available
weights on weigh dates and average daily feed intake was
estimated for each animal from the daily recorded intake
of each animal averaged across the number of days on
feed and converted to a dry matter intake based upon the
estimated moisture content of the ration. The sampled
populations included:

1) Cycle VII: 1,160 F1 × F1 steers derived from Cycle
VII of the US Meat Animal Research Center
Germplasm Evaluation Project. A description of the
breed composition and mating design for these
animals is in [37]. Briefly, in Cycle VII, Angus,
Hereford, Simmental, Gelbvieh, Limousin, Red
Angus, and Charolais sires were mated to Angus,
Hereford and MARC III composite (1/4 Angus,
1/4 Hereford, 1/4 Pinzgauer, 1/4 Red Poll) cows.
The resulting F1 animals were mated to generate 4-way
cross progeny which were individually measured for
growth and feed intake. A total of 15 contemporary
groups formed using year and season of feeding were
represented in these data.

2) Angus: 1,658 Angus steers were produced by breeding
registered Angus bulls to commercial cows at the
Circle A Ranch in Iberia, MO (N =527), at the MFA
Incorporated (N =224), Iowa State University
(N =41), or were sourced from producers located
throughout Missouri (N =866). Animals were
produced over 10 years including in 1999 (N =94),
2000 (N =96), 2001 (N =166), 2003 (N =171), 2004
(N =81), 2005 (N =119), 2008 (N =41), 2010
(N =191), 2011 (N =421) and 2012 (N =278). A
total of 173 bulls were identified as having sired
1,057 of the steers with half-sib groups ranging in size
from 1 to 81 and averaging 6.1 steers. The remaining
601 steers had unknown sires. Animals were fed
commercial concentrate rations at the Circle A Ranch
using a Calan Gate feeding system or at the University
of Missouri using a GrowSafe system for between 60
and 169 days (60–69 d, N =129; 70–79 d, N =66;
80–89 d, N =695; 108 d, N =89; 112 d, N =94;
120–129 d, N =171; 130–139 d; N =173; 140–149 d,
N =191; 169 d, N =50). Weights were taken on a
range from 3 to 13 occasions (3, N =445; 4, N =82; 6,
N =145; 7, N =102; 8, N =121; 9, N =485; 10, N =228;
13, N =50) during feeding. A series of nutritional trials
such as forage feeding, concentrate rations or amino
acid and mineral supplementation was imposed on
651 of the steers fed at the University of Missouri.
Consequently, there were a total of 102 contemporary
groups based upon nutritional trial, farm, year and
season of origin represented in these data.

3) Hereford: 870 animals were individually fed a
concentrate ration at Olsen Ranches, Inc in
Harrisburg, Nebraska using a GrowSafe system.
Olsen Ranches is the primary test herd for the
American Hereford Association's National Reference
Sire Program. Seedstock producers from around the
U.S. nominate Hereford bulls for inclusion in the
program. Phenotype and DNA samples were
collected on 840 steers and 30 heifers born in Spring
of 2009 (N =194), 2010 (N =293) and 2011 (N =383)
and sired by 40 bulls with half-sib groups ranging in
size from 1 to 104 and averaging 21.2 animals.
Animals were fed for 70 (N =630), 72 (N =209) or
140 (N =31) days and had 8 (N =456), 9 (N =383) or
16 (N =31) weights recorded while on feed. A total
of 10 contemporary groups based upon farm of
origin, sex, feeding duration and slaughter date were
represented in these data.

4) Simmental × Angus: 1,445 Simmental-sired steers
originating from 6 ranches were individually fed
concentrate rations at the University of Illinois at
Urbana-Champaign using a GrowSafe system in
2005 (N =231), 2006 (N =320), 2007 (N =322),
2008 (N =347) and 2009 (N =225). The steers
were produced from 122 registered Simmental bulls
with half-sib groups ranging in size from 1 to 113
progeny and averaging 11.7. Steers were fed either
122 (N =225), 134 (N =50), 140–149 (N =270),
160 – 169 (N =274), 170 – 179 (N =417), 183 (N =57)
or 195 days (N =152) and live weights were taken on
two adjacent days at the beginning and at the end of
each feeding period. A series of nutritional trials was
imposed on these steers resulting in a total of 202
contemporary groups based upon nutritional trial,
ranch and year of origin as well as slaughter group.

The Cycle VII animals were genotyped with the Bovi-
neSNP50 assay and data for 48,729 SNPs were analysed
for this platform [37]. Animals from the Angus and
Hereford populations were genotyped with both the
BovineHD and BovineSNP50 assays with missing values
imputed to the union of the marker sets using Beagle 4.0
with default parameters [83]. The 1,445 Simmental ×
Angus animals were genotyped with the BovineSNP50
assay, however, BovineHD data for 467 registered
Simmental bulls were also available and were used for
genotype imputation.
For the Angus, Hereford and Simmental × Angus data-

sets: Animals were removed from the dataset if their



Table 6 Summary statistics and estimated parameters
for the best-fit model (Johnson Su distribution) for
the distribution of the percentage of additive genetic
variance explained by 1-Mb windows generated from
the permutated data in the Angus population1

Parameter ADG DMI MBW RFI

N 2,684 2,684 2,684 2,684

Mean 0.039 0.042 0.043 0.041

Standard
deviation

0.017 0.048 0.054 0.045

−2Log(Likelihood) −14,665.593 −12,985.369 −12,578.502 −13,090.396

Shape γ −0.514 −1.019 −0.996 −1.001

Shape δ 1.772 0.924 0.908 0.976

Location θ 0.031 0.018 0.017 0.018

Scale σ 0.023 0.009 0.010 0.010
1ADG: average daily gain, DMI: dry matter intake, MBW: mid-test metabolic
body weight, and RFI: residual feed intake.
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genotype call rates were less than 0.90, if their autosomal
heterozygosity exceeded 45% or if they were predicted
to be Klinefelter (XXY) individuals (N =7 Angus, N =2
Hereford). For animals genotyped with the 50 K assay
(1,093 Angus, 361 Hereford, 1,445 Simmental × Angus),
sex was assigned as male if non-pseudo-autosomal X (paX)
locus heterozygosity was <0.03, otherwise the animals were
assigned as female. For animals genotyped with the 770 K
assay (510 Angus, 491 Hereford), sex was assigned as male
if non-paX locus heterozygosity was <0.03 and Y locus
call rate was ≥0.5, female if non-paX locus heterozygosity
was ≥0.03 and Y locus call rate was <0.5, and Klinefelter if
non-paX locus heterozygosity was ≥0.03 and Y locus call
rate was ≥0.5. Hereford females (n =23) had BTA X
heterozygosities (0.18) that were approximately one-half
of their autosomal heterozygosities (0.32). The threshold
of 0.03 was used to account for genotyping error rate.
Similarly, BTA Y call rates were generally negligible in
females and very high in males and the BTA Y threshold
of 0.5 successfully identified the presence or absence of a
Y chromosome. SNPs were removed from the dataset if
they had a call rate <0.85, minor allele frequency <0.001
or Hardy-Weinberg Equilibrium p <3 × 10−9. Non-paX
and BTA Y SNPs with heterozygosities >0.03 in males and
mitochondrial SNPs with heterozygosities >0.03 were also
removed leaving 747 473, 684 458 and 690 184 loci for
analysis in the Angus, Hereford and Simmental × Angus
populations, respectively.
For Angus and Hereford animals with weekly or biweekly

body weight measurements and Simmental × Angus ani-
mals with two start and ending weights, ADG and MBW
were estimated over the test period by linear regression.
The total feed intake of each animal over the test period
was averaged and adjusted for moisture content to produce
the average daily DMI [7]. Residual feed intake was ana-
lysed by including partial linear regressions on ADG and
MWT in the model used to analyse DMI.

Statistical analysis
The BayesB method was used to simultaneously analyse
whole genome SNPs, using GENSEL software [84]. For
each of the 4 populations (Cycle VII, Angus, Hereford
and Simmental × Angus), each trait (ADG, DMI, MBW
and RFI) was separately analysed, with SNP allele substitu-
tion effects fitted as random effects. Systematic environ-
mental effects fitted as fixed effects included cohort groups
based on birth herd, year and season of birth and sex,
resulting in 15, 102, 10 and 202 contemporary group levels
in the Cycle VII, Angus, Hereford and Simmental × Angus
populations, respectively. For the Cycle VII animals, linear
covariates for breed composition and expected heterosis
based upon the breed composition of each animal’s parents
were also included in the model. The parameter π, which
is the proportion of SNPs assumed to have no effect on
the trait was set at 0.99 for the Cycle VII animals (geno-
typed with 50 K SNPs) and at 0.9995 for the other 3
populations (genotyped or imputed to 800 K SNPs)
which corresponded to fitting about 400 markers in
each MCMC iteration. Allowing only markers with
strong associations to traits to be fitted, motivated the
choice of π. MCMC methods with 41,040 iterations
were used to generate posterior mean estimates of marker
effects and variance components after discarding the first
1,000 samples for burn-in.
Due to linkage disequilibrium, the effect of a QTL

may be spread over a number of neighboring SNPs.
Therefore, the genome was divided into non-overlapping
1-Mb windows based on the UMD3.1 reference assembly
base pair locations of markers and the percentage of
genetic variance explained by each window was calculated
for each trait. The null hypothesis distribution of the
percentage of genetic variance explained by each 1-Mb
window was generated for each trait by applying the same
model (BayesB with the same parameters) on permuted
data in the Angus population (data sets in which the
genotypes of individuals are randomly assigned to trait
values, which maintain the distributional properties of
the trait values and the genotypes under the null
hypothesis of no true QTL effects). As for the analysis
of the unpermuted data, the genome was divided into
the same non-overlapping 1-Mb windows and the per-
centage of genetic variance explained by each window
was calculated. The JMP software [85] was used to fit
the model and generate the distributions for the
percentage of genetic variance explained by the 1-Mb
windows. Next, the estimated parameters from the
best-fit models (Table 6) were used to calculate the
P-values for each window in the analysis of the unpermuted
data. The estimated parameters for RFI were also used
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for ADG, as the estimated parameters for ADG were
dissimilar to those for the other traits (Table 6) and
produced spurious significance results. The Bonferroni
correction was employed to adjust P-values for multiple test
comparisons using the p.adjust package in R [86]. Windows
with a Bonferroni-corrected P-value <0.05 were identified
as significant QTL. The sfdp algorithm from Graphviz
software was used to draw the QTL network [87].
Within each of the significant windows, the SNP with

the highest sPPI (percentage of the chains in which the
specific SNP is included in the model with non-zero
effect) was chosen as the most strongly associated SNP
within the 1-Mb QTL window and was denoted the
‘lead-SNP’. Posterior mean residual and additive genetic
variances and posterior mean of marker-based heritability
were reported for each trait in each population.
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